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Abstract—The present trend in big-data analytics is to exploit
algorithms with linear or even sub-linear time complexity, in this
sense it is usually worth to investigate if the available techniques
can be approximated to reach an affordable complexity. However,
there are still problems in data science and engineering that
involve algorithms with higher time complexity, like matrix
inversion or Singular Value Decomposition (SVD). This work
presents the results of a survey that reviews a number of
tools meant to perform dense linear algebra at “Big Data”
scale: namely, the proposed approach aims first to define a
feasibility boundary for the problem size of shared-memory
matrix factorizations, then to understand whether it is convenient
to employ specific tools meant to scale out such dense linear
algebra tasks on distributed platforms. The survey will eventually
discuss the presented tools from the point of view of domain
experts (data scientist, engineers), hence focusing on the trade-
off between usability and performance.

I. INTRODUCTION

With the steadily growing amount of data involved in scien-
tific and engineering applications, the research towards linear
or even sub-linear (with respect to the problem size)algorithms
is more urgent than ever. Nevertheless, several techniques, that
are widespread in the mentioned domains, cannot depart from
complex tasks completely: operations such as dense matrix
inversions and factorizations are still fundamental kernels
nowadays. Since this kind of dense linear algebra problems in-
volve time and memory complexities up to O(n3) and O(n2),
respectively, solving them for growing problem sizes poses
severe challenges over common off-the-shelf workstations.

Over the last decades, the HPC community has proposed
several approaches for tackling these challenges, for both
shared-memory platforms (i.e., multi/many-core), distributed-
memory environments, and their heterogeneous combinations
[1]. In this context, the so-called MPI+x model, that consists
in combining MPI with some shared-memory programming
model, represents the de facto standard for chasing high
performance over heterogeneous platforms.

While sophisticated, multi-node set-ups were usually avail-
able only to the HPC community, due to the spread of pay-
per-use, XaaS public clouds, it is now common for data
scientists to have access to a large amount of computational
resources. This fed a substantial research effort for developing

higher-level frameworks, allowing the HPC-agnostic domain
experts (e.g., data scientists) to exploit the available resources.
A paradigmatic example of this phenomenon is the rise of
Apache Spark, that is becoming a de facto standard for data
analytics over distributed platforms.

From the conventional HPC standpoint, this approach is
often argued to lead sub-optimal performance. Instead of
adopting such a prejudicial perspective, we try to understand
when this higher-level approach is as effective as its wide
adoption would suggest, both in terms of performance and
usability. As part of the study, we also challenge the need
to rely on distributed resources at all, by defining a consistent
feasibility region for dense matrix factorizations on multi-core
platforms.

In this paper, we try to put some order in the complicated
landscape of linear algebra libraries, considering them from
both the performance and usability viewpoints, but assuming
a domain expert (rather than HPC expert) perspective. To
this aim, we consider a variety of different tools, ranging
from consolidated HPC libraries like BLAS/LAPACK and
their vendor-optimized implementations, up to modern data
analytics framework like the aforementioned Spark. Particular
focus is put into the possible integration of the presented tools
into a Python workflow.

A representative kernel, the Singular Value Decomposition
(SVD), has been extensively benchmarked to define as ac-
curately as possible a problem size feasibility boundary for
shared-memory computations on single nodes. Moreover, the
possibility to push such boundary by going distributed through
different tools is probed. Furthermore, the performance trade-
off of adopting higher-level tools is quantified.

This paper is structured as follows: in Sect. II, we present
the SVD use case, defining the theoretical background, its
applications, and the specific performance challenges it raises.
In Sect. III, we introduce the tools under review, discussing
some technical features and the reasons for their inclusion.
In Sect. IV, we present the benchmarking methodology and
we discuss the observed outcomes and, finally, in Sect. V, we
outline the lessons learned from these results.



II. BACKGROUND

This work will focus on evaluating the performance exhib-
ited by different libraries when executing instances of a SVD
computation, that is therefore regarded as benchmark. The
importance that this technique plays in many applications of
data science and the computational challenge that it represents
are the main motivations to this choice, which is also driven by
industrial interest in the potential performance improvement in
the execution of this task.

A. SVD in Data Science and Engineering

Given a generic complex matrix A, the SVD [2] yields the
following factorization:

A = U ΣV ∗ (1)

where the following properties hold:

• Columns of U are orthonormal eigenvectors of AA∗;
• Columns of V are orthonormal eigenvectors of A∗A;
• Σ is diagonal with non-negative elements which are the

square roots of the eigenvalues of both A∗A and AA∗.

This factorization is a significant result of linear algebra, but
the theoretical background is out of the scope of this paper.
Conversely, a brief recap over the applications of SVD is
provided in the following, along with a discussion about the
computational complexity involved.

The SVD has a large number of application in data science
and engineering [3], hence we regard SVD as a meaningful
example of dense linear algebra kernel. Here are reported
two examples that, as discussed in Sect. II-B, are particularly
representative from the computational viewpoint, given the
different kinds of matrices involved:

a) Principal Component Analysis (PCA): it is a major
approach to reduce the dimensionality of a complex dataset.
The SVD can be used to perform PCA on a dataset [4]. In
this case, the input matrices typically present a number of rows
much larger than the number of columns. Moreover, only the
matrices Σ and V are relevant as PCA outcomes.

b) Moore-Penrose Pseudoinverse (MPP): it represents a
generalized inverse for rank-deficient or rectangular matrices
[5]. It is widely used to solve least squares approximations
in the form of rank-deficient linear systems. A relevant ap-
plication is the calculation of the weights of a Radial-Basis
Function interpolation: in this case the matrix A from equation
(1) is square and slightly rank-deficient [6].

Further examples of applications based on SVD include
low-rank matrix approximation, image compression, graph
analysis, and recommendation systems.

B. Computational Challenges

The time complexity for SVD over a matrix with M rows
and N columns such that M > N , is O

(
M2N + N3

)
,

with constants defined by the specific algorithm and matrix
shape [5]. Equations (2) and (3) represent the relative matrix

sizes introduced in Sect. II-A for PCA and MPP, respectively.

A = U Σ V ∗ (2)

A = U Σ V ∗ (3)

In the following, Equation 2 will be referred to as the TALL-
AND-SKINNY case, where M � N and the complexity is
dominated by the O

(
M2

)
term. Conversely, Equation 3 will

be referred to as the SQUARE case, where M = N and the
complexity is O

(
N3

)
.

In the context of SVD computation, the memory footprint
significantly affects the capability of the calculation to scale on
distributed architectures. By definition, matrix U in Equation
(2) and (3) is equal in size to A, hence M by N , with M �
N , while Σ and V are both N by N . This implies that, if
matrix A does not fit the memory, then neither the results can
be stored in memory: this in principle prevents the problem
to scale at all to distributed architecture, at least in terms of
problem size. However, as anticipated, there are applications
which do not require U to be stored (e.g., PCA), opening up
the possibility to scale for the TALL-AND-SKINNY SVD when
the matrix A is distributed in advance. It is worth mentioning
that this discussion is less relevant for the SQUARE problem,
since the O

(
N2

)
space allocation is less than a bottleneck

when compared to the O(N3) time complexity. Moreover, all
the matrices involved are of the same size, hence the memory
footprint cannot be reduced by dropping part of the result.

In order to give a more clear picture of the context of
dense linear algebra, it is worth noting that the matrix mul-
tiplication presents roughly the same complexity, but in this
case the available parallelism is larger and the computation
pattern is by far more predictable. Along with the rise of
techniques heavily based on matrix multiplications (e.g., Deep
Neural Networks), this led to the development of dedicated
hardware (e.g., GPUs, Google TPU [7], and Intel Nervana
Neural Network Processor1, allowing a significant speedup
for matrix multiplications. The relevance of the SVD lies
into the performance challenge that it poses, given also its
wide range of applications described in Sect. II-A: there is
no “SVD machine” that can enable large performance leaps,
so it is mostly up to software developers to provide the best
performing implementation.

As a final remark, although all the memory-related issues
could be avoided by relying on out-of-core processing [8],
this approach falls out of the topic of this work, since no tool
providing out-of-core SVD can be considered mature enough
to be a choice for domain experts.

1https://www.intelnervana.com/



III. TOOLS

The perspective driving the selection of tools considered
for this work is that of a domain expert who is interested in
performing data analytics and engineering tasks, having little
to no knowledge about low-level programming or performance
aspects.

Shared-memory tools are introduced in Sect. III-A, focus-
ing on Python-based interfaces, according to the domain-
expert perspective. Within the distributed-memory domain, the
MPI+x approach (see Sect. I) is considered first, in Sect. III-B.
Then, the emergent higher-level approach is considered in
Sect. III-C, by presenting a number of tools based on Apache
Spark.

A. Shared-Memory Tools

Given the large spectrum of applications for dense linear al-
gebra, it is not surprising that the landscape of libraries aimed
to such computations has grown to a quite complicated shape,
spanning most of the existing programming languages and
hardware platform. However, most of these tools either wrap
or reimplement two reference libraries: Netlib’s BLAS library
[9], and Netlib’s LAPACK library [10], respectively oriented
to basic (i.e. matrix-vector multiplications) and advanced (i.e.
eigenvalues, SVD) linear algebra operations.

These two libraries provided an API which still holds as
a de-facto standard for dense linear algebra, even if, due to
its complexity, it is almost never used directly nowadays, in
favour of some higher-level wrappers, such as Armadillo [11]
and NumPy [12], that is introduced below.

Moreover, BLAS and LAPACK libraries evolved in different
directions over time. In addition to multithreaded (PLASMA
[13]) and distributed-memory (ScaLAPACK [14]) evolutions,
some of them are vendor-optimized implementations have
been developed. In general, the API of these evolutions is
more or less compatible with the reference one.

a) Intel MKL: the Math Kernel Library2 is usually
regarded as the best-in-class implementation of BLAS and
LAPACK It comes out of the box with the popular Python
distribution dedicated to data scientist: Anaconda3. As its
API is totally BLAS/LAPACK compatible and hence quite
complex, most of the times it is used by means of high-level
wrappers. Given the domain expert orientation of this work,
this approach has been favoured, relying on the following
higher-level libraries.

b) NumPy: it is a package for scientific computing
with Python. It provides Python users with N-dimensional
arrays managed by a C back-end and it relies on BLAS and
LAPACK distributions to perform dense linear algebra. Being
a lightweight wrapper on C code, we can safely assume that,
at least for the large matrices on which this paper is focused,
the performance overhead is negligible with respect to direct
calls to the underlying library.

2https://software.intel.com/en-us/mkl
3https://anaconda.org/anaconda/python

c) Intel DAAL: Intel Data Analytics Acceleration Li-
brary4 is a high-level library that provides C++, Java/Scala,
and Python bindings all with an API which is friendly for
domain experts. Its peculiarity is the capability to execute
algorithms in three different ways: shared memory, distributed,
and streaming (referred by the documentation as batch, dis-
tributed and online); this work focused on the former two
implementations. Also DAAL relies internally on MKL, hence
the same state-of-the-art performance are expected for plain
MKL.

Note the above-mentioned PLASMA multithreaded replace-
ment for LAPACK has been deliberately excluded from the
presentation, since it has been reported to perform very closely
to MKL [13]; moreover, it has questionable capability to
be integrated into higher-level libraries, that is a substantial
requisite under the perspective considered for this work.

Finally, libraries aimed to perform SVD on GPUs exist (e.g.
Magma [13], CuSolver5 and higher-level wrappers as Array-
Fire6) and their performance has been already assessed [15].
Although some good performance was observed, the capability
to handle large problems is limited by the GPU memory, which
is usually smaller than CPU memory; for this reason, this
survey targets CPU-only libraries.

B. Conventional Distributed Tools

a) DPLASMA: Distributed PLASMA [16] is MPI-based
and can be seen either as a multithreaded evolution of ScaLA-
PACK or a distributed evolution of PLASMA. It is included
in this review since it represents the state of the art for
what concern the conventional MPI+x HPC approach, so it is
considered a reference for the performance of distributed dense
linear algebra, regardless of the usability, which is hindered by
an extremely complex API and the single program, multiple
data (SPMD) programming model.

b) Intel DAAL: the distributed implementation of Intel
DAAL is agnostic with respect to the programming model. In
fact it provides building blocks that allow the user to rely on
whatever technique to transfer data and execute the building
blocs across different nodes. One of the options advertised
in the documentation is the SPMD model based on MPI.
The main advantage with respect to DPLASMA is the much
simpler API, while the added complexity of SPMD remains,
even if it is feasible to perform calculations only relying on
Python code.

C. Emerging Technologies

a) Spark + MLlib: Apache Spark [17] is a framework
developed to manipulate large datasets in memory on dis-
tributed architectures. Its main advantage is that provides the
user with a fully sequential programming model, managing
the data distribution in a transparent way, while relying on
a Dataflow model to perform computations. Java, Scala, and

4https://software.intel.com/articles/opendaal
5http://docs.nvidia.com/cuda/cusolver/index.html
6https://github.com/arrayfire/arrayfire



Python bindings are provided. MLlib [18] is Spark’s open-
source distributed machine learning library, including linear
algebra and the SVD, relying on Spark’s own distributed
data structure (i.e., the Resilient Distributed Dataset, RDD).
At the lowest level, MLlib also relies on BLAS/LAPACK
libraries to perform dense matrix computations, it is however
not straightforward to make it use the vendor optimized
implementation instead of a Java-based replacement. These
details will be discussed in depth in the next section. Spark’s
outstanding popularity among the data science community
makes it an obvious choice for inclusion in this survey.

b) Spark + DAAL: Intel DAAL provides also the ca-
pability to run its distributed algorithms on top of Apache
Spark, in particular its Scala API acts as a drop-in replacement
for MLlib. In order to benefit from the advertised DAAL
performance boost, there is, in principle, no need to change the
code developed for MLlib. The inclusion of this configuration
in the survey aims to probe the possibility to improve the per-
formance of a popular, easy to use, tool by leveraging best-in-
class numerical libraries, without any impact on consolidated
workflows.

The following section presents quantitative and qualitative
results for the SVD benchmark, when executed by the men-
tioned tools.

IV. BENCHMARKS

The performance results are at first presented for individual
tools varying the problem size, then a comparison is drawn
and the relevant remarks are reported. The tests have been
performed on a cluster [19] of up to 4 nodes, each equipped
with 2× Xeon E5-2680 v3 @ 2.50GHz with 24 cores and
128GB RAM. Interconnecting network is 10GbE. Synthetic
datasets of double-precision real values are used to perform the
benchmarks and their generation time is either not considered
in the timing of the calculation or it is measured to be of
negligible impact on the overall timing. Standard deviation of
timing results is negligible.

Analysis of numerical accuracy of the results is not relevant
to this work, since all the presented tools are based on widely
adopted algorithms and implementations that are expected to
provide consistent results.

A. Shared Memory

To be consistent with the high-level, domain expert ap-
proach, MKL (2018.0.0) is never used directly. Conversely, it
is used by means of Python wrappers, namely NumPy (1.13.1)
and DAAL (2018.0.0).

Both the TALL-AND-SKINNY (i.e. M � N ) and the
SQUARE (i.e., M = N ) cases have been considered for
the benchmark, while the range of problem sizes explored
has been dictated by the capability to fit the matrices in
memory for the former case, and by the exploding computing
complexity for the latter.

Figure 1 presents the timing for TALL-AND-SKINNY ma-
trices, while Fig. 2 reports results for SQUARE matrices. The
largest matrix that can be handled with the considered tools is
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80M×100, achieved with DAAL. Given that both NumPy and
DAAL rely on MKL to perform the SVD, it is quite surprising
to observe that the performance is different. Moreover, the
NumPy variant for the TALL-AND-SKINNY case crashes for
smaller matrix sizes with respect to the DAAL variant.

This asymmetry can be traced back to the LAPACK function
that is called internally from the two libraries: for NumPy is
the divide-and-conquer dgesdd, while for DAAL it is the
standard dgesvd. It is known that, while faster in some cases,
the divide-and-conquer implementation is much more heavy
on the memory, which can explain the presented results.

B. MPI-based

As mentioned in Sect. III-B, two libraries from the MPI-
based family have been considered: DAAL over MPI and
DPLASMA (from PaRSEC version 2.0.0rc2).

The former has been accessed using its Python interface
that is, however, less straightforward with respect to the
shared memory version. In fact the choice to make the library
independent from the underlying message-passing back-end
(i.e., the MPI+x approach), leaves the burden of setting up the
data transfer between computation stages on the programmer’s
shoulders.

The DAAL implementation of SVD itself has some draw-
back, since its individual stages are not able to cope with
chunks of matrices that have more columns than rows, which
is always the case when dealing with SQUARE matrices. For
this reason, the benchmark for the SQUARE case is omitted.
For the same reason, the case with M = 1000, N = 100 need
the number of processes to be ≤ 10 in order to keep the shape
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of the chunks at least square.
Figure 3 shows the performance featured by DAAL over

MPI when executing SVD in the TALL-AND-SKINNY case.
A few notes can be made on the results reported: first, the
largest matrix computed for 2 and 4 nodes is larger than what
achieved for the shared-memory case, as expected from the
considerations made in Sect. II-B. However, the maximum
size is not larger by a factor of 2 or 4 with respect to the
shared-memory deployment, hence some memory overhead is
involved in this implementation.

As a reference about the state-of-the-art performance for
dense distributed linear algebra, the DPLASMA library is
considered. DPLASMA provides C and Fortran interfaces,
but cannot be immediately integrated into a Python workflow.
Fig. 4 reports the results for different test configurations:
single-node multiprocessing, 2, and 4 nodes. DPLASMA
scales almost linearly with the problem size and, surprisingly,
it outperforms even the shared memory version. Note that,
also in this case, the SQUARE case is omitted, since it has
shown no scalability on multiple nodes and it performs worse
than the shared-memory implementation. Further discussion
of these results is reported in Sect. IV-D.

A point that emerges from both the MPI-based benchmarks,
is that the optimal number of MPI processes does not match
the number of physical nodes. Figure 5 and 6 show a few
samples of the scalability data for a fixed problem size and
4 nodes. As somehow expected, the scalability depend on
the granularity of the problem: using multiple processes for a
small problem adds significant overhead.
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C. Spark-based

Also in the case of libraries running upon Spark (2.2.0), this
work followed a Python-based approach. All the results are
presented using the maximum available parallelism as detected
by Spark initial configuration.

The MLlib syntax is very similar to NumPy and, combined
with the sequential programming model exposed by Spark, it
makes very easy to develop code effectively without having
to deal with low-level implementation details. Figure 7 reports
the results for MLlib on Spark: it is possible to note that,
while there is never a performance advantage in moving the
calculation on multiple nodes, there is good capability to scale
the problem size. Results for the SQUARE case are again not
reported as they are not relevant: there is a significant perfor-
mance penalty with respect to the shared memory approach,
no performance scalability on more nodes and, given what
discussed in Sect. II-B, no possibility to scale on more nodes.

The DAAL over Spark configuration has been also tested.
However, while the Scala API for DAAL provides a direct,
drop-in replacement for MLlib (see Sect. III-C), due to com-
patibility issues between the involved frameworks we were not
able to test such implementation.7. Conversely, we were forced
to exploit the Python-based interface to implement the DAAL
over Spark variant, that required an effort comparable with
the one required to move from the shared memory to the MPI
version. Moreover, the performance achieved are significantly

7This is probably due to immaturity of DAAL-over-Spark implementation,
compared to the DAAL-over-MPI version.
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worse than what can be achieved with naive MLlib, hence it
does not make sense to report the figures here. This can be
possibly due to implementation issues, which might be solved
in a more mature release of the package.

D. Comparisons and Remarks

a) TALL-AND-SKINNY case: This problem turned out to
be by far the more interesting to test, as the slightly lower com-
putational complexity compared to the memory requirements,
and the possibility to scale on distributed platforms with the
problem size, allowed the authors to observe a rich collection
of phenomena.

Figure 8 and Tab. I resume the data gathered during the
survey, presenting both a comparison of the execution time
of the best configuration tested for each tool as well as all
the upper bound of the problem size that can be handled with
each tool. Given these data, it is possible to make some general
remarks, which are reported hereafter.

The first observation is that, for any applicable problem
size, DPLASMA turned out to be the best performing library
for the SQUARE case. While not surprising for distributed
architectures, this result is not expected for a shared-memory
single node. There are two points that may explain this
behaviour, that should be further investigated in a future work:

1) It was observed that the CPU is not fully utilised during
the whole calculation by the best performing shared-
memory library (DAAL): even if a certain portion of
the calculation keeps all the CPU cores busy, for the
largest part there are at most 2 cores working at a

given time. The DPLASMA implementation spawn a
number of processes, where each of them multithreaded,
performing in fact some resource overbooking: this does
not bring any advantage for the most intesive part of
the computation, but parallelises the other parts through
multiple processes, running indeed faster overall. More-
over, the following point could also contribute to explain
why this holds regardless of the problem size.

2) The shared-memory LAPACK implementation underly-
ing DPLASMA, which is PLASMA, might be more
efficient than previous benchmarks would suggest [13],
when compared to MKL.

The aforementioned point 1 can also explain another inter-
esting behaviour: resource overbooking provides significant
advantage on distributed set-ups. As Fig. 5 and 6 highlight,
for a constant number of physical nodes, and given a sufficient
problem size, the performance improves with the growing
number of processes. This resource overbooking can, thanks to
an efficient implementation, exploit more parallelism than the
equivalent single node version up to the point that the trend
in Fig. 6 is superlinear for DPLASMA.

Apart from the purely performance point of view, the
usability trade-off of these approaches should be discussed.
Given a domain expert used to Python-based workflows, we
can safely assume that the effort of performing as SVD with
NumPy is negligible, to the point that such implementation
might be already in place. From this perspective, the transition
to single-node DAAL is almost painless as shown by the
comparison of Listings 1 and 2.

Moving to the MPI-based tools, the landscape changes sig-
nificantly: DPLASMA can not be integrated into a data science
workflow without a deep understanding on numerical libraries
that goes far beyond the domain expert’s knowledge. DAAL
can partially overcome such limitation, along with Python
bindings for MPI, but the SPMD paradigm still represents a
burden as it makes the code longer and less readable.

For what concerns MLlib and Spark, there is a very good
trade-off between programmability and scalability with respect
to the problem size. However, it is less than ideal when coming
to pure performance.

The considerations above are made regardless of the effort
to set-up the benchmarking environment, but in a real-life
application, this mainly IT work must be taken into account
when choosing the right tool to perform a calculation. In fact,
while the effort to set up an MPI cluster is well known and
might be mitigated by leveraging already existing infrastruc-
tures, the apparent simplicity of Spark programming hides all
the complexity of setting up a well-performing cluster, that is
also something not affordable for a researcher focused on the
domain logic.

b) SQUARE case: In this case the data obtained is
less rich, but not less significant: given that scaling beyond
the capability of a single machine is not possible for in-
memory computations, due to the definition of the problem
itself (Sect. II-B), the focus is only on the performance that
can be achieved. NumPy proved to be the fastest library, not



TABLE I
TIME FOR SOLVING TALL-AND-SKINNY SVD. BOLD FIGURES REPRESENT THE BEST TIME FOR THE GIVEN TOOL/SIZE SET-UP AND OPTIMAL NUMBER OF

PROCESSES. TIME IN SECONDS. - NOT TESTED, × CRASHED FOR INSUFFICIENT MEMORY.

M NumPy DAAL DAAL (MPI) DPLASMA (MPI) MLlib (Spark)
(N = 100) 1 node 1 node 2 nodes 4 nodes 1 node 2 nodes 4 nodes 1 node 2 nodes 4 nodes

1k 0.047 0.015 0.046 - 0.0080 0.0077 0.0080 1.62 3.25 3.16
10k 0.026 0.04 0.067 0.066 0.010 0.011 0.011 1.74 3.18 3.14

100k 0.15 0.11 0.17 0.13 0.067 0.057 0.036 2.00 3.46 3.48
1M 1.99 0.50 0.74 0.40 0.30 0.19 0.13 4.18 6.37 6.28
10M 22.7 5.56 8.50 4.35 2.52 1.15 0.86 23.0 36.4 36.1
40M 102.9 - - - - - - - - -
80M × 21.0 - 36.9 23.3 - - 165.4 - -

100M × × 108.7 56.9 × 13.1 7.5 × 324.7 328.8
120M × × 119.1 - × - - - - -
200M × × × 87.4 × × 18.5 × 638.6 -
250M × × × 113.8 × × - × × -
300M × × × × × × 25.4 × × -
400M × × × × × × × × × 1297.4

1 import numpy as np
2 data = #numpy 2D-array
3 U,s,V = np.linalg.svd(data, full_matrices=False)

Listing 1. SVD computation with NumPy. full_matrices=False is
required for the m > n case.

1 from daal.algorithms import svd
2 from daal.data_management import

HomogenNumericTable
3 npdata = #numpy 2D-array
4 data = HomogenNumericTable(npdata)
5 algorithm = svd.Batch()
6 algorithm.input.set(svd.data, data)
7 results = algorithm.compute()

Listing 2. SVD computation with DAAL.

matched by any other tool in any configuration, either single-
node or distributed. The gap with DAAL presented in Fig. 2
is due to the LAPACK routine called, in particular dgesdd
is much faster than dgesvd when all the singular vectors are
required [20].

It is noteworthy that in this case no scalability is shown by
neither DAAL or DPLASMA, while the latter’s dgesvd is
slower than MKL’s dgesdd.

V. CONCLUSION AND FUTURE WORK

The presented results and the lessons learned by setting up
the benchmarking environment lead eventually to a classifi-
cation of the tools based on three coordinates: performance,
usability and set-up complexity. As expected, there is no
such thing as one library to rule them all, but of course
this classification changes depending on the specific problem
size and shape. For instance, in the SQUARE case (i.e.,
M = N ), the indication is to use the simplest shared-
memory available, possibly linking to some dgesdd divide-
and-conquer implementation of the SVD algorithm. Within the
scope of this work, the obvious choice is NumPy, but there are
high-level libraries for other languages that provide the same
functionality, such as Armadillo [11].

The TALL-AND-SKINNY case (i.e., M � N ) presents a
different situation: if the problem fits the memory, shared-

memory DAAL is the best trade-off between performance and
usability. PLASMA, being is faster by almost an order of
magnitude, it is the best option if speed is paramount, but
it is hardly useful to domain experts unless an integration
with higher-level tools become readily available. The same
argument holds when A does not fit the memory: DPLASMA
is by far the fastest option and it is the second best when
considering the capability to scale on more nodes with the
problem size. However, Spark provides both good scalability
(at least up to the limited number of nodes considered in this
work) and a simpler SPMD-free programming model, making
MLlib-Spark a valuable option among those presented for
domain experts. Finally, distributed DAAL is slow when using
Spark as a back-end, whereas it represents a good trade-off
when coupled with MPI: the performance is better than Spark
and the usability is better than DPLASMA, but it does not
match the strengths of the two.

It is noteworthy that, as mentioned before, setting up a
Spark cluster is not easier than dealing with MPI, even if this
complexity is hidden further from the user and weights more
on the shoulders of IT professionals and system administra-
tors. In particular the offer of Spark itself, and Spark-ready
infrastructures as XaaS is steadily growing, making such set-
ups readily available to data scientists.

As an additional lesson learned, the different relative per-
formance of MKL and DPLASMA for the two different SVD
cases is an evidence of how complicated is the landscape
of linear algebra libraries, further justifying the effort to
put some order into this scenario. On the other hand, much
work still needs to be done: matter for a future work will
be the identification of a broader class of problems and the
related linear algebra functions to be benchmarked, from the
viewpoints of high-level workflows typically used by domain
experts. Still, this work somehow addresses an upper bound of
complexity for linear algebra kernels, hence other applications
that present more parallelism can benefit even more from the
high-performance libraries presented here.
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