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In plants, intracellular Fe trafficking must satisfy chloroplasts’ and mitochondrial demands
for Fe without allowing its accumulation in the organelles in dangerous redox-active
forms. Protein ferritin is involved in such homeostatic control, however its functional
role in mitochondria, differently from its role in chloroplasts, is still matter of debate.
To test ferritin functionality as a 24-mer Fe-storage complex in mitochondria, cucumber
seedlings were grown under different conditions of Fe supply (excess, control, deficiency)
and mitochondria were purified from the roots. A ferritin monomer of around 25 KDa
was detected by SDS-PAGE in Fe-excess root mitochondria, corresponding to the
annotated Csa5M215130/XP_004163524 protein: such a monomer is barely detectable
in the control mitochondria and not at all in the Fe-deficient ones. Correspondingly,
the ferritin 24-mer complex is abundant in root mitochondria from Fe-excess plants
and it stores Fe as Fe(III): such a complex is also detectable, though to a much
smaller extent, in control mitochondria, but not in Fe-deficient ones. Cucumber ferritin
Csa5M215130/XP_004163524 is therefore a functional Fe(III)-store in root mitochondria
and its abundance is dependent on the Fe nutritional status of the plant.
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INTRODUCTION
The detailed understanding of molecular mechanisms regulating
plant nutrient homeostasis is of the highest priority and repre-
sents one of the hundred most relevant questions facing plant
research (Grierson et al., 2011). Keeping iron (Fe) homeostasis
under control is particularly relevant for plants due to its essen-
tial role in many house-keeping cellular functions, but also to its
toxicity as catalyst of the Fenton reaction, when in a free form
(Winterbourn, 1995; Briat et al., 2010). A picture is now emerging
of how the Fe deficiency responses, uptake, transport and dis-
tribution to various plant organs, together with its intracellular
trafficking and storage, are finely tuned on the availability of solu-
ble Fe in the soil by a complex net of signal transduction pathways
(Vigani et al., 2009; Murgia et al., 2009; Conte and Walker, 2011;
Ramirez et al., 2011; Kobayashi and Nishizawa, 2012; Vigani et al.,
2013a,b; Thomine and Vert, 2013).

The intra-organellar partitioning of Fe under various nutri-
tional conditions is intriguing: the question of whether mod-
ifications of mitochondrial and chloroplastic Fe metabolism,
in response to alteration in the plant Fe status, represent a
source of retrograde signals necessary to regulate the nuclear
gene expression, has been posed (Vigani et al., 2013a). For that,
metabolic changes in organelles occurring under various condi-
tions of Fe supply should be documented in detail (Vigani et al.,
2013a). Investigation of mitochondria from roots is particularly
attractive, since the lack of photosynthetically active chloroplasts
might reduce the complexity of the retrograde signals involved.

Moreover, roots are directly involved in uptake of Fe from soil and
their mitochondria provide chemical energy for such a process.

An extra layer of complexity involving plant Fe nutrition is
given by the necessity to prevent Fe accumulation in dangerous,
redox-active forms, in the organelles as well as in the cytosol.
Ferritin protein, by forming a 24-mer cage-like structure able to
store Fe in a safe, bioavailable form, is involved in such intra-
cellular control of Fe trafficking and homeostasis, in both plant
and animal cells (Arosio et al., 2009; Briat et al., 2009). In plants,
ferritin is targeted to chloroplasts (Briat et al., 2009) but its local-
ization to mitochondria has been also documented in Arabidopsis
and in pea (Zancani et al., 2004; Tarantino et al., 2010a,b).

The characterization of Arabidopsis atfer4 mutants knock-out
for the ferritin isoform, targeted also to mitochondria (Tarantino
et al., 2010a,b), posed the question of whether the role of
the mitochondrial-targeted AtFER4 is a sort of ancestral relict,
replaced by other still unknown regulatory mechanisms of Fe
homeostasis, during the evolution to green plants. On the other
side, a relevant role of human mitochondrial ferritin (Levi et al.,
2001) as protectant against oxidative stress in various cell types
(Campanella et al., 2009; Wang et al., 2011) but also in improving
respiratory function in yeast mutants deficient in [Fe-S] cluster
biogenesis (Sutak et al., 2012), is emerging.

Taken together, this evidence prompted us to investigate
whether ferritin is functional in the mitochondria of cucumber
(Cucumis sativus) roots, that is, if it can truly store Fe(III), as a
24-mer complex.
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MATERIALS AND METHODS
PLANT GROWTH CONDITIONS AND PURIFICATION OF ROOT
MITOCHONDRIA
Seeds of cucumber (Cucumis sativus L. cv. Marketmore) were
sown in Agriperlite, watered with 0.1 mM CaSO4, allowed to
germinate in the dark at 26◦C for 3 d, and then transferred
to a nutrient solution with the following composition: 2 mM
Ca(NO)3, 0.75 mM K2SO4, 0.65 mM MgSO4, 0.5 mM KH2PO4,
10 µM H3BO3, 1 µM MnSO4, 0.5 µM CuSO4, 0.5 µM ZnSO4,
0.05 µM (NH4)Mo7O24, and Fe(III)-EDTA at the following con-
centrations: 0 mM (Fe deficiency), 0.05 mM (Control), 0.5 mM
(Fe excess). The pH was adjusted to 6.0–6.2 with NaOH. Aerated
hydroponic cultures were maintained in a growth chamber with
a day: night regime of 16:8 h and 200 µE m−2s−1 photosynthet-
ically active radiation (PAR) at the plant level. The temperature
ranged from 18◦C (in the dark) to 24◦C (in the light).

Mitochondria were purified from cucumber roots according to
Balk et al. (1999) and Vigani et al. (2009), with few modifications.
10 days old roots were homogenized with a mortar and pestle in
0.4 M mannitol, 25 mM MOPS pH 7.8, 1 mM EGTA, 8 mM cys-
teine, and 0.1% (w/v) bovine serum albumin (BSA). The filtered
homogenized plant material (total extract, TE) was centrifuged
5 min at 4000 g and the pellet was used as an enriched plas-
tids fraction (P). The supernatant was re-centrifuged 15 min at
12,000 g to pellet mitochondria whereas the supernatant fraction
constitutes the so-called PMS (post-mitochondria supernatant
fraction). The crude mitochondrial pellet was resuspended in RB
buffer (0.4 M mannitol, 10 mM Tricine pH 7.2, 1 mM EGTA)
and lightly homogenized with a potter; mitochondria were fur-
ther purified on a 40, 28, and 13.5% (v/v) Percoll (Pharmacia)
step gradient in RB buffer. The fraction at the 28/40% interface
(purified mitochondria) was collected and washed by differential
centrifugation in RB buffer.

NATIVE GEL ELECTROPHORESIS AND WESTERN BLOT ANALYSIS
Purified mitochondrial proteins were loaded on a non-denaturing
polyacrylamide gel (3% [w/v] stacking, 5.5% [w/v] separating)
after heating at 65◦C for 7 min. The gel was run for 5 h at 25 mA
(on ice); then the gel was rinsed in water and incubated in potas-
sium ferrous cyanide solution [2% KFe(II)CN, 2% HCl], 1 h in
the dark. The gel was washed four times in H2O, 15 min each,
with gentle shaking and incubated overnight in a diaminobenzi-
dine (DAB) solution (0.05% DAB, 18 mM H2O2 in PBS at pH
7.4) without shaking.

SDS-PAGE was performed according to Vigani et al. (2009)
with the following antibodies: spinach anti-Toc33 (Rödiger et al.,
2010) at 1:1000 dilution, maize anti-porin (Balk and Leaver,
2001) at 1:2000 dilution, Arabidopsis anti-ATFER1 (Murgia et al.,
2007) at 1:2000 and an anti-rabbit conjugated with alkaline
phosphatase as secondary antibody. Protein quantification was
determined according to Vigani et al. (2009).

RT-PCR
Roots apices and true second leaves from 10 days old plants
grown under Fe-excess were sampled and RNA extracted with
Trizol reagent (Gibco). RT-PCR reactions were performed by
using Access RT-PCR kit (Promega), 60 ng total RNA/reaction.

Cucsafor1:5′-CCACCACACACACACACGC-3′
Cucsarev1:5′-ATTGTCTCTGTCAAAGTAGGC-3′
Cucsarev2: 5′-TTGGCCAAACCCTTGAGTGC-3′
Cucsarev3: 5′-CCATTGCAAAAAAAGCATCTCC-3′
Cucsarev4: 5′-GAGCTCCATTGCATATAAGGC-3′

For Cucsafor1-Cucsarev1: 1 mM MgSO4 final conc., annealing
at 61◦C; for Cucsafor1-Cucsarev2: 1.5 mM MgSO4 final conc.,
annealing at 61◦C; for Cucsafor1-Cucsarev3: 1.5 mM MgSO4 final
conc., annealing at 57–67◦C; for Cucsafor1-Cucsarev4: 1 mM
MgSO4 final conc., annealing at 61–67◦C.

MISCELLANOUS
Total Chl, Chla and Chlb content was determined according to
Lichtenthaler (1987). Fe content in purified mitochondria was
determined by ICP-MS spectroscopy (Variant).

F0F1ATP synthase and G6PDH activities were performed
according to Camacho-Pereira et al. (2009).

O2 consumption and use of KCN and SHAM (salicylhydrox-
amic acid) was measured on root apices from 10 days-old plants
according to Vigani et al. (2009).

Protein sequence alignment was performed with Multalin
version 5.4.1 (Corpet, 1988) at http://multalin.toulouse.inra.fr/
multalin/.

RESULTS
Fe-DEFICIENT AND Fe-EXCESS ROOT TIPS SHOW AN INCREASE IN THE
O2 CONSUMPTION RATES
Cucumber seedlings were grown in hydroponic medium for 10
days in a complete nutrient solution containing 0, 50, or 500 µM
Fe(III)-EDTA (Fe deficiency, control, excess) (Figure 1A). Fe
deficient plants showed the typical symptoms of chlorosis in
leaves, while leaves from both control or Fe excess plants were
green; length of root apparatus was reduced in Fe-deficient plants
(Figures 1A,B). Accordingly, total Chl content was very low in the
Fe-deficient leaves (Figure 1C), while no significant differences in
total Chl nor in Chla/Chlb content, could be detected between
Fe-excess and control leaves (Figure 1C).

Root tips are the most metabolically active parts of the roots
and indeed they are the main site displaying Fe uptake in which
Strategy I activities are strongly induced (Landsberg, 1986; Vigani
et al., 2012) Both Fe-deficient and Fe-excess root tips show
higher O2 consumption rates than control root tips (Figure 1D).
Moreover, the addition of KCN and SHAM (inhibitors of the res-
piratory O2 consumption) did not completely block the O2 con-
sumption, differently from what was observed in control root tips
where such inhibitors almost completely abolished it (Figure 1D).
Such residual O2 consumption in root tissues of Fe deficient as
well as of Fe-excess plants, not attributable to the mitochondrial
respiratory chain activity, has been already described in cucumber
(Vigani et al., 2009).

PURITY OF MITOCHONDRIA ISOLATED FROM CUCUMBER ROOTS
A one step-gradient protocol was applied for purifying mito-
chondria from seedling roots grown in the different conditions
of Fe supply. Since it is well established that ferritin accumu-
lates in plastids of plants grown under Fe-excess, all the different
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FIGURE 1 | Cucumber seedlings under different conditions of Fe

supply. (A) 10 days-old cucumber seedlings grown in hydroponic medium
containing either 500 µM Fe(III)-EDTA (Fe excess), 50 µM Fe(III)-EDTA
(control), or with no added Fe in the medium (Fe deficiency). (B) Leaves of
cucumber seedlings grown as in (A). (C) Chl content (mg g−1 FW) of
seedlings leaves, grown as in (A); upper panel: total Chl content; lower

panel: Chla and Chlb content. Bars represent mean values ± SE from 4
independent samples of 3–4 leaves each (D) O2 consumption in seedlings
roots, grown as in (A); for each condition (Fe excess, control, Fe
deficiency), the initial rate and the rates after addition of KCN or KCN +
SHAM are provided. Bars represent mean values ± SE from 6
independent samples of 10 root tips each.

fractions collected during isolation of mitochondria from Fe-
excess roots, i.e., the TE, the plastid enriched fraction (P), the
purified mitochondria (M) and the post-mitochondrial super-
natant (PMS) (Balk et al., 2004) were tested with two different
enzymatic assays as well as with different antibodies (in SDS-
PAGE experiments), in order to exclude any contamination of
the purified mitochondrial fractions with intact plastids. Activity
of F0F1ATP synthase enzyme, a marker used for mitochon-
dria (Camacho-Pereira et al., 2009) was measured in the four
isolated fractions TE, P, M, and PMS (Figure 2A). F0F1ATP syn-
thase activity is highest in the M fraction (0.79 U mg−1 prot),
and, as expected, also in the TE fraction (0.56 U mg−1 prot)
(Figure 2A). A 40% reduction of enzyme activity is observed in
PMS fraction containing the cytosol (0.35 U mg−1prot) whereas
it is almost undetectable in the P fraction (0.05 U mg−1 prot)
(Figure 2A). Glucose 6 phosphate dehydrogenase (G6PDH) is
localized both in cytosol and in the plastids’ stroma (Camacho-
Pereira et al., 2009) therefore it can be used as a cytosolic and
plastidial enzyme marker; its activity is undetectable in M fraction
(Figure 2B), whereas it is highest in the PMS (8.95 U mg−1prot),
followed by P (6.70 U mg−1prot), and TE (4.20 U mg−1 prot)
(Figure 2B). The two enzyme assays confirmed that the puri-
fied mitochondria are not contaminated by the cytosolic fraction
nor from integral, undisrupted plastids, since in that case the
G6PDH enzymatic activity should have been detected also in the
mitochondrial fraction. Furthermore, the plastid marker Toc33
protein (Rödiger et al., 2010) accumulated only in the P fraction

(Figure 2C), whereas porin (Balk and Leaver, 2001) accumulated,
as expected, in the M fraction and, to lesser extent, in the P
fraction (Figure 2C).

A FERRITIN 24-mer COMPLEX ACCUMULATES IN THE ROOT
MITOCHONDRIA FROM Fe-EXCESS PLANTS AND IT STORES Fe(III)
The genome of the Chinese Long cultivar of cucumber (line 9930)
was first annotated in 2009 and then reassembled and reanno-
tated (Huang et al., 2009; Li et al., 2011) (www.icugi.org/cgi-
bin/ICuGI/index.cgi). According to that annotation, a unique
ferritin protein sequence, named Csa5M215130 (259 aa), is
encoded by the cucumber genome (Figure 3). The genome
of a North-European cultivar (B10) has been also sequenced
(Wóycicki et al., 2011) and again, a unique ferritin gene has
been identified, LOC101221012 with three different transcript
variants, the protein sequences of which are deposited in the
NCBI database: XP_004148174 (259 aa), XP_004163524 iden-
tical to Csa5M215130 (259 aa) and XP_004163525 (241 aa)
(Figure 3). XP_004148174 and XP_004163524 differ by two aa
at position 180–181 (Figure 3), whereas XP_004163525 lacks a
18 aa stretch at position 104 (Figure 3). A further sequenc-
ing of the cucumber genome has been made available at
Phytozome (http://www.phytozome.net), a comparative hub for
plant genome analysis (Goodstein et al., 2012). According to
this, the cucumber genome possesses a single ferritin gene
Cucsa144440 with its primary transcript coding for a protein
identical to Csa5M215130/XP_004163524.

www.frontiersin.org August 2013 | Volume 4 | Article 316 | 3

http://www.phytozome.net
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Nutrition/archive


Vigani et al. Functional ferritin in cucumber mitochondria

FIGURE 2 | Purity of mitochondria isolated from cucumber roots. (A)

F0F1ATPsynthase activity, expressed as Units mg−1 protein in the different
fractions obtained during purification of mitochondria: total extract (TE),
enriched plastids (P), mitochondria (M) and the post- mitochondria
supernatant fraction (PMS). Bars represent the mean values ± SE from 4
independent samples of 30–50µg protein each. (B) Glucose 6-phosphate
dehydrogenase activity (G6PDH) in TE, P, M and PMS fraction. Bars
represent the mean values ± SE from 4 independent samples of 30–50 µg
protein each. (C) SDS-PAGE, followed by western blot analysis, of TE, P, M
and PMS fractions; equal protein quantity (12 µg) was loaded in each lane.

To investigate ferritin localization and its physiological role in
root mitochondria, quantification of Fe content, by ICP-MS anal-
ysis, in mitochondria purified from roots of plants grown under
different conditions of Fe supply, was first performed.

Total Fe in mitochondria from Fe-excess roots is 718.92 nmol
mg−1 prot, more than two-fold higher than in control ones
(309.77 nmol mg−1 prot) (Figure 4A); this result confirms that
growth of cucumber plants under Fe-excess treatment is effec-
tive in perturbing the Fe content of their mitochondria, beside
their function, such as the described increase in O2 consumption
(Figure 1D). Total Fe content is, instead, dramatically reduced
in mitochondria purified from Fe-deficient plants; nevertheless,
such Fe-deficient mitochondria are still able to perform their res-
piratory function (Figure 1D) thus suggesting that mitochondria
are still functional in such stress conditions.

The mitochondria purified from control, Fe-excess or Fe-
deficient roots were then analyzed by western blot with the
Arabidopsis anti-ATFER1 ferritin antibody (Murgia et al., 2007),
raised against the 16-aa antigen peptide GVVFQPFEEVKKADL

FIGURE 3 | Sequence alignment of the three predicted cucumber

ferritin protein variants of the unique ferritin gene: XP_004148174,

XP_004163524 identical to Csa5M215130 and XP_004163525. In blue
are the aa residues differing among the three sequences; highlighted in red
are the aa identical to those in the 16-aa peptide GVVFQPFEEVKKADL used
as antigen for raising the anti-ATFER1 antibody.

corresponding to aa 60–74 in the Arabidopsis ATFER1 sequence;
such an antibody is appropriate for the detection of cucum-
ber ferritin since both Csa5M215130/XP_004163524, as well as
XP_004148174 and XP_004163525, would show an 11/16 aa
match with such a peptide (Figure 3).

As a positive control, crude protein TE from pea seeds (rich in
ferritin) was used (Figure 4B); pea ferritin is indeed detected by
the anti-ATFER1 antibody (Murgia et al., 2007).

A single band of around 25 KDa could be detected, the accu-
mulation of which is dependent on Fe-content of the mito-
chondria, being strong in Fe-excess mitochondria, still detectable
in control mitochondria and undetectable in Fe-deficient ones
(Figure 4B). Equal loading of protein content for each sample
was confirmed through hybridization with anti-porin antibody
(Figure 4B) (Vigani and Zocchi, 2010).

The Fe-excess, control and Fe-deficient mitochondria, tested
above, were also analyzed by native gel electrophoresis fol-
lowed by Prussian blue staining, which stains Fe in the oxi-
dized form Fe(III), and DAB/H2O2 enhancement (Luscieti et al.,
2010). Recombinant human ferritin 24-mer complex (around
500 kDa) served as a positive control. A band of higher molec-
ular weight than the recombinant human ferritin complex is
clearly detected in Fe-excess mitochondria; such band is fairly
weak in control mitochondria and undetectable in Fe-deficient
ones (Figure 4C).

Identity of the ferritin detected in Fe-excess mitochon-
dria (Figures 4B,C) could be unambiguously attributed to
Csa5M215130/XP_004163524. Indeed, based on gene and pre-
dicted coding sequences of XP004163524 (annotated at NCBI as
ferritin-3, chloroplast-like, transcript variant 1 (LOC101221012)
(Figure 5), of XP004163525 (annotated at NCBI as ferritin-3,
chloroplast-like, transcript variant 2) (Figure S1) and of
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FIGURE 4 | Fe and ferritin content in mitochondria from cucumber

roots grown under different conditions of Fe supply. (A) Total Fe
content in mitochondria purified from Fe-excess, control, or Fe-deficiency
roots, quantified by ICP-MS. Each bar represents the mean value ± SE from
4 independent samples consisting of 60–200µg mitochondria each.
(B) SDS-PAGE and western blot analysis of mitochondria purified from
Fe-excess, control, or Fe-deficiency root. 15 µg proteins were loaded in
each lane. As positive control, 34 µg total extract (TE) from pea seeds, rich
in ferritin, has been loaded in leftmost lane. (C) native PAGE analysis,
followed by Prussian blue/DAB stain of mitochondria purified from
Fe-excess, control or Fe-deficiency root; 40 µg proteins were loaded in each
lane. As positive control, 48 µg proteins recombinant human ferritin
consisting of a 24-mer of around 500 KDa, was also loaded in the far left
lane.

XP_004148174 (annotated at NCBI as ferritin-3, chloroplast-like)
(Figure S2) five different primers Cucsafor1, Cucsarev1-rev4 were
designed for RT-PCR experiments with RNA purified from either
roots or leaves from Fe-excess cucumber plants (thus accumu-
lating ferritin). Results show that RT-PCR with the following
pairs: Cucsafor1-Cucsarev1 and Cucsafor1-Cucsarev2, amplified,
respectively a fragment of 436 and 470 bp (Figure 5B, left panel),
as expected from an mRNA coding for XP004163524 (Figure 5A)
but not from an mRNA coding for XP004163525 (Figure S1).
Moreover, RT-PCR with the Cucsafor1-Cucsarev4 primer pair
amplified a fragment of 612 bp (Figure 5B, right panel), expected
from an mRNA coding for XP004163524 (Figure 5A) but not
from an mRNA coding for XP_004148174 (Figure S2); ampli-
fication of such fragment, in roots and in leaves, has been

obtained not only at the optimal annealing temperature for
that primer pair (61◦C), but also at more stringent conditions,
i.e., with annealing temperatures up to 67◦C (Figure 5B, right
panel). Viceversa, RT-PCR with Cucsafor1-Cucsarev3 primer pair
(Figure S2) performed with RNA extractions from different roots
and leaf samples, could not amplify any fragment expected from
the mRNA coding for XP_004148174 (data not shown).

The transcription of a single mRNA coding for cucum-
ber ferritin in roots as well as in green leaves with conse-
quent translation of a unique ferritin protein, strongly suggests
that cucumber ferritin is “dual targeted” in both mitochondria
and chloroplasts (Carrie and Small, 2013). PSort (http://psort.
hgc.jp/form2.html), MitoProtII (http://ihg.gsf.de/ihg/mitoprot.
html) and TargetP (http://www.cbs.dtu.dk/services/TargetP/)
programs are three widely used bioinformatic tools predict-
ing subcellular localization of a given protein sequence and
cleavage site of the corresponding transit peptide (Nakai and
Kanehisa, 1991; Claros and Vincens, 1996; Emanuelsson et al.,
2007). Such programs, when applied to the three putative pro-
tein variants Csa5M215130/XP_004163524, XP_004148174 and
XP_004163525, for prediciting the mitochondrial localization,
give different results: MitoProtII scores are indeed, respectively:
0.82, 0.79, 0.80; PSort scores are 0.47 for all the three sequences
whereas TargetP scores are below 0.1 for all the three sequences.
The predictions of the cleavage site for the transit peptide are also
quite different among the three programs, being of 68 aa with
MitoProtII, 32 aa with PSort and 50 aa with TargetP. Variability
of such results is not surprising, since it is widely known that such
bioinformatic predictors proved extremely problematic for dual
targeted proteins (Pujol et al., 2007; Berglund et al., 2009; Carrie
and Small, 2013).

A 14 bp Iron Dependent Regulatory Sequence (IDRS) is
present in the promoter region of the Arabidopsis AtFer1 gene
and is responsible for the AtFer1 transcriptional repression under
low Fe supply. On the contrary, Fe treatment releases the IDRS-
mediated transcriptional repression of the AtFer1 gene via a
NO-dependent mechanism, and AtFer1 ferritin transcript can
therefore accumulate (Petit et al., 2001; Murgia et al., 2002;
Arnaud et al., 2006).

A 14-bp sequence, 64% identical to the AtFer1 IDRS, is
present in the promoter region of the cucumber ferritin gene
LOC101221012/Csa5M215130/Cucsa144440, at position -199
from ATG start (Figure 5A), similarly to what is observed for the
AtFer1 IDRS sequence (Petit et al., 2001).

DISCUSSION
The scientific relevance in focusing on plant nutrients and their
homeostasis is not confined to the potential long-term benefits in
agriculture: indeed, a better understanding of Fe homeostasis can
have positive impacts and can offer new solutions for combatting
malnutrition (Grierson et al., 2011). Such knowledge can assist
the exploitation of new strategies for the production of plants bio-
fortified for Fe and for reducing Fe deficiency anaemia, a severe
burden for populations in developing countries mostly affecting
children and women (Murgia et al., 2012).

Elucidation of the role of mitochondria in plant Fe home-
ostasis is a challenging issue (Vigani et al., 2013a). Despite the
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FIGURE 5 | Gene and predicted coding sequence of cucumber ferritin

protein XP004163524 (reported at NCBI as ferritin-3, chloroplastic-like,

transcript variant 1, LOC101221012). (A) IDRS-like sequence in gene
promoter is highlighted in yellow; ATG start is in red color; exons are
highlighted in gray. Positions of primers Cucsafor1 (in red), Cucsarev1
(in blue), Cucsarev2 (in green), Cucsarev4 (in black) are underlined; (B) left
panel: RT-PCR reactions with primer pairs Cucsafor1-Cucsa-rev1 and

Cucsafor1-Cucsa-rev2, with either two independent RNA extracts from
Fe-excess cucumber roots or two independent RNA extracts from
Fe-excess leaves. The Kb ladder Plus (Invitrogen) has been loaded in
the far left lane. Right panel: RT-PCR reactions with primer pair
Cucsafor1-Cucsa-rev4, with RNA purified from Fe-excess roots at 61, 63,
65, 67 anneal. temp., or with RNA purified from Fe-excess leaves at 61◦C
anneal. temp.
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fact that mitochondria are strongly affected by Fe deficiency,
they in fact display a high level of functional flexibility, which
allows them to guarantee cell viability under Fe shortage
(Vigani, 2012).

The present work confirms the localization of the ferritin
in mitochondria of cucumber roots, as already observed in
Arabidopsis and pea (Zancani et al., 2004; Tarantino et al.,
2010a,b); its abundance is strictly dependent on the total Fe
content in mitochondria which, in turn, is dependent on the
availability of Fe in the growth medium.

A unique mRNA transcribed from LOC101221012 cucum-
ber gene, coding for the ferritin protein named alternatively
Csa5M215130 or XP_004163524 by two different sequenc-
ing consortia (Li et al., 2011; Wóycicki et al., 2011) has
been identified in Fe-excess cucumber roots and leaves; more-
over, such mRNA is 100% identical to the primary transcript
of the ferritin gene named Cucsa144440 in the Phytozome
hub (Goodstein et al., 2012). Results in the present work
show that a single Fe-dependent ferritin isoform, named
Csa5M215130/XP_004163524 accumulates in cucumber roots.
Since no other transcripts are detected in green leaves of Fe-excess
cucumber plants, such ferritin protein is most probably dual-
targeted to both chloroplasts and mitochondria and represents
an example of the so-called “ambiguous targeting” (Peeters and
Small, 2001; Carrie and Small, 2013).

The presence, in LOC101221012/Cucsa144440 gene promoter
ferritin, of an IDRS-like stretch, is suggestive of a common reg-
ulatory mechanism for the Fe-dependent expression of the two
ferritin genes in Arabidopsis and in cucumber.

The results shown in the present work strongly suggest that
the detected multimer complex is truly the 24-mer ferritin com-
plex Csa5M215130/XP_004163524; indeed, as observed for the
monomer, the abundance of the multimer complex is also depen-
dent on the mitochondrial Fe content and results obtained
in native gel are consistent with its expected weight (around
600 KDa).

In conclusion, for the first time proof that ferritin is a func-
tional Fe-storage protein in cucumber mitochondria is provided:
the 24-mer ferritin complex indeed truly binds Fe(III).

Such results open the way to further investigations about the
possible physiological relevance of ferritin as a root protectant
against various oxidative stresses which may arise during adverse
field conditions.
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