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In this paper a new concept of relative stability is extended to linear non autonomous discrete
dynamical systems and the behaviour of solutions is analyzed. Enlarging the validity ficld of
some useful results for economic theory, conditions of relative stability for unidimensional and
multidimensional discrete dynamical systems are supplied.

1. Introdoction

Studies on multisectoral dynamical models, where properties of time paths
involving initial conditions are investigated, have led to a consideration of bal-
anced growth models, which also have a significant meaning from the point of
view of economic theory. In order to develop this approach, the asymptotic
behaviour of components of solution vectors, as time increases, should be consid-
ered. Hence, in economical context, we are concerned with the relative stability
of a discrete dynamical system.

In previous studies [4, 12, 13, 16, 17, 5], definitions and results have referred
to discrete dynamical systems, belonging to particular classes which require rather
restrictive hypothesis.

In an attempt to supply a more general and systematic treatment of relative
stability problems of dynamical systems, L. Peccati [14] introduced a concept
of relative stability which is slightly more general than the ones employed pre-
viously, with significant analytical advantages. Some theorems were proved in
a continuous setting, which cannot be immediately extended to the discrete sit-
uation.

The main aim of this paper is to extend the results on relative stability to dis-
crete dynamical systems. We shall demonstrate that the relative stability proper-
ties of a given system are related to the properties of global stability'? of solutions
of another system, in the sense that they are logically equivalent. In order to
develop the study of the problem along the aforementioned lines, we shall use
both known and new results.

(® In our context the notion of stability of a system is that of asymptotic stability.
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In section 2, we give the definition of a relatively stable system, in its more
general formulation, making some useful remarks, and prove the aforesaid equiv-
alence. In n. 3, some theorems will be proved in the case of unidimensional dy-
namical systems, while, in 0. 4, an interesting relative stability condition will
be proved for n-dimensional linear systems. In our proofs, we use a theorem which,
to our knowledge, has so far only been demonstrated for continuous systems.
We therefore give the discrete version, together with its proof, in appendix.

2. Relative stability of discrete dynamical systems

Let the discrete dynamical system
(2.01) x(t + 1) = G(x(1), 1)

be defined on the time set 7= {0, 1,2, ...}, where x(t) € R*, and G : R* X T— R*
satisfies the conditions that guarantee the existence and uniqueness of the so-
lution of the system'®: system (2.01) is said to be relatively stable if a non-null
normalizing sequence g : 7 — R exists such that for any solution x(¢) of system
(2.01), we have .

lim —— =

Jm X0 =

with p € R*, non-null and independent of the solution®,

As we have announced previously, we develop the following remarks in a
way which is analogous to what has already been done in the continuous case.
Calling the initial condition x° = x(0) and the solution of system (2.01) ¢(, x°),
(which is fully determined by x° and t), we may represent the solution in the

following way
$(t, x°) = g(p + o(g(?)),

when it is relatively stable; o(g()) is a n-dimensional vector of functions which,
multiplied by 1/g(z), vanishes as 1 — -+co. As in the continuos case, the depen-
dence of ¢(t, x°) on jnitial condition x° is confined to the second term, because
the product g(z)p is independent of x°.

Moreover the normalizing sequence g() is not unique. In fact, if another non-
null normalizing sequence §(r) is considered, the solution of the system (2.01)

becomes

$(1, x°) = g(1)p + o(£(1))
and it follows easily the two vectors p and p are proportional and the two se-
quences g(z) and g(z) are asimptotically and antithetically proportional too (i.e.:

if p = Ap then g(r)/g(r) — 1/2).
If in system (2.01) we perform the transformation

1
(2.02) y{8) = oN x(r)

(*) P. Mazzoleni, [11]; L. Grippo - F. Lamparieilo, [9].
(® L. Peccati, [14].
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with y : T— R™®, we obtain the system
(2.03) - y(t+ 1D =F@F@®,

where ¥ : R® X T — R". Therefore, the relative stability of system (2.01) is
equivalent to the existence of a sequence g : T — R which transforms this system
into system (2.03) where all the solutions tend to one and the same non-null

vector p€ R" as ¢t — oo,
In this paper we intend to investigate the properties of linear discrete dynamical

systems (not necessarily autonomous and not necessarily homogeneous)
(2.04) x(t + 1) = A()x(?) + b(r)

where A(?) is the square coefficient matrix and b(¢) is a sequence in R”. To estab-
lish whether system (2.04) is relatively stable, we shall use transformation (2.02)

to obtain the new system

_ g(n) 1
(205) ¥+ 1) = [E 55 40 |y + b0

and, under appropriate conditions on A(f) and b(r), all the solutions of system
(2.05) will be proved to tend to a non-null vector p € R".

Finally we observe that transformation (2.02) does not aiter the structure of
the original system (2.04) since the matrix A(r) is substituted by matrix

g(?)
e+ 40

and the vector b(¢), by vector
1
gt +1)

Further, we shall characterize system (2.04) by the requirement that matrix
A(f) and sequence b(r) satisfy come conditions. In fact, our aim is to extend some
results on relative stablhty (see for example [13]) where systems with A(f) =
(constant) and b(z) = ¢! B(B € R*; p € R, ¢ > 0) are considered. In pamcular

we shall assume these following hypotheses:

— A(t) is an almost constant non negative matrix, that is lim,, ;. @;;(1) = d;; € R,
d; =0, Vi,j=1, ...,n, where a;(¢) is the general element of the matrix

A(zi—at time ¢;
— b{s) is almost exponential, that is b(r) = k(1)B(t) where B(r) is non-null almost
constant, lim,, ... B(f) = 8 € R*, B 52 0, and k() € R with

B+ 1)
ATy heR

being A(t) > 0 for any £ = 0,

b(z).

(*) In the following we shall write: lim,, ., A(f) = A.
(*} In general A(r) could have constant sign; the condmon h(#) > O is not restrictive because

B() can absorb the eventual negative sign of #().
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3. Unidimensional linear discrete dynamical systems

First of all we are going to prove a preliminary result. It will be the premise
for a more important theorem which gives a necessary and sufficient condition
for the relative stability of a difference equation.

THEOREM 1. In the unidimensional system
(3.01) x(t + 1) = a(®x(®) + b(r)

let a(t) be almost constant and b(¢) almost exponential. If k> 4 then system (3.01)
is relatively stable.

Proor. Calling the initial condition x® = x(0) and

7

PG, j) = H ak), if j =i, P@,7) =1 otherwise
the solution of system (3.01)is
x(t) = P(0, t — 1)x° +;V_:: PG+ 1, — 1), for t=1.
As indicated previously, the normalizing scquenc;a may be chosen as follows
(3.03) 80 =F BUIPG+ 10— 1]

Since the recurrent relation g(t + 1) = a(t)g(t) + b(t) holds between con-
secutive terms of the normalizing sequence, such sequence can be proved to be
definitively non-null monotone (with mcrease or decrease depending on the value
of 4 = 1). Indeed T exists such that for any ¢ > T sequence a(t) is positive and
sequence f(t) has the sign of f, from which it follows that g(z 4 1) > a(£)g(s),
ifFE>0g+1) < a(t)g(t) otherwise.

Presently, we point out that system (3.01) is relatively stable for at least 4 = 0.
In fact, if we write the solution of system as follows

x(®) = PO, t — 1)x° + g(z), for t=1,

we obtain
lim x(f) = lim g(¢)
t>+oo ¢t->too

that is solution x(¢) and sequence g(f) have the same asymptotic behaviour,
because, as ¢ diverges, the product P(0, t — 1) vanishes*® and normalizing se-
quence g(r) is monotone.

In particular, since

lim g(t + 1) = lim h(t),
t->+oco t-+»+4oo

(®) See K. Kuopp, [10], p. 93.
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the behaviour of normalizing sequence g(f) and, consequently, that of solution
x(r) will depend on the behaviour of sequence A(f). Hence, the solution x(7) of
system (3.01), for é = 0, is infinitesimal whenever 0 < A < 1, it is convergent
for & = 1 and, finally, it is divergent for A > 1.

Considering T as above and the ratio x(t)/g(t), V¢ > T, system (3.01) is re-
latively stable if the ratio :
PO,t—1)
-1

) BUYPG + 1, £ — 1)]

vanishes as t — 4-oo, that is if either
-1

(3.04) Z:o [BGHRG)IP(O, /)]
X

or, by the hypothesis on 8(j),

-1

Zo [R()/P(0, /)]

tends to oo as f - 400,

We can consider P(0, j)#0, j=0,...,r — 1, because for P(0, j) =0,
i.e. at least a null term of sequence a(k) exists, for k =0, ..., j, we would have
limg, o PO, t — 1) = 0", from which lim,, ., x(t) = lim,,,. g(f) and, con-
sequently, the relative stability of system (3.01). It also follows it is not restrictive
to assume a(r) > 0, V¢ = 0, because if only one term of sequence a(f) is null
then system (3.01) is relatively stable,

Sum (3.04) is a partial sum of the series with j-th term

(3.05) BURU)P(O, /).
Since the ratio between consecutive terms of series (3.04) is
Blr+1) Aht+1) PO, _Bt+1) Az+1) 1
B Ay PO, e+ 1) B() h(e)  a(t+1)
and
(3-06) lim 2 e =
series

+o0
Zo BURG)PO, /)]

has the same asymptotic behaviour as the geometric series with positive common
ratio 4/é. Hence, we conclude that series (3.04) diverges as ¢ — -}-oo because, by
hypothesis, the common ratio of the asymptotic geometric series is greater than 1.

() See K. Knopp, {10}, p. 93.
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The above theorem provides a sufficient condition for the relative stability
of the system. Now 2 more general theorem, based upon the behaviour of series

(3.04), may be proved:

THEOREM 2. The system
x(t + 1) = a(@Ox(2) + b(@)

with almost constant a(t) 2 0, Vt 2 0, almost exponential b(t) and f > &, is rel-
atively stable if and only if

-1

(3.07) };0 (A()/PO, /)]
diverges as t — }-co,

Proor. Condition (3.07) is clearly sufficient because it is derived from theorem
1. To prove its necessity, we assume that the system is relatively stable, i.e. a
non-null normalizing sequence y(z) exists, According to the solution x(z) and
the definition of the sequence g(t), we find

X0 POI—1) , g
@ 0 F T

Relative stability of the system implies that the coefficient of x° vanishes and
gDy > k0 as t - oo, Now, if P(0, t — 1)/y(r) is multiplied and di-
vided by g(t), we obtain equivalently;

PO, t—1) ~0
£>+o0 g )
or
lim — ! =0.

fbes Zo BGHAG)/PO, j)]
Since the series
<00
Zo [R(F)/P(O, j)]

and

5 BOMWGIPO, ]

-l

5,

have the same divergent behaviour, the theorem js proved.
Moreover, under the hypothesis of this theorem, the normalizing sequences
are characterized by this structure:

20 = k() )_:o HGIPG 4 1, £ — 1]
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where k(t) is any non-infinitesimal convergent sequence as ¢ — oo and

[y

Zo (RGIPG + 1, t — 1]

is a normalizing sequence, as it can be easily proved.

REMARKS. 1. From an applied point of view, as time increases, condition
(3.07) implies that the jincrease coefficient h()fh(t — 1), in the forcing term,
«dominates » the asymptotic coefficient of autonomous increase a(t).

2. If a(r) = a is a positive constant, the normalizing sequence

€0 =Y h() T] at)
J=0 3=j+1

becomes

B0 =% Kt

-0

The latter expression will be useful to identify the normalizing sequence for the
n-dimensional case,

4. r-Dimensional linear discrete dynamical system

Let the norm of vector x € R*, be the scalar quantity

n
Ix|= Z Fx;l
i~1
where | x; | is the absolute value of the i-th component of vector x and let the
norm of matrix A be the scalar quantity

7
[4]=.3 lay|
i,7=1
where | a;; | is the absolute value of a;;, the generic element of matrix A4.
Let the dynamical system be

(4.01) x(t + 1) = A@©Ox(t) + b(2)

with the square matrix of coefficient A (r) almost constant (that is lim,, ., A(?) =
= A), the vector b(t) = h(1)B() almost exponential, where B(f) € R*, h(f) € R and
lim B@)=BeR, B~0and finally, A(r) > O with lim,, ., Az + 1)/h(t) =
= h. Calling 4 the spectral radius of 4, we also assume that 4 > 4.
Choose the following non-null normalizing sequence g(f) € R
-1
g(0) = Y, h(j)a—.

=0
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If in system (4.01) the transformation x(#) = g{#)y(¢) is performed, we obtain

Yt + 1) = 050 oy _HO) - B().

k(1) + ag(®) h(1) + ag(t
Let us call:

_ h(®) .
e = 20 + 4,

where lim,, 0 0(f) = A®. We find the transformed system
A(2)
e()

As t diverges, the coefficient in the first term and the whole known term
approach, respectively, the coefficient and the known term of the autonomous

system
A é
(4.03) e+ )= 200 + [1 - T]G

a

¥+ [1 - —- |

(4.02) ye+1)=

which obviously admits an equilibium point z*; i.e. a constant solution z(f) = 2*
for all 2. In order to find z*, in the equation (4.03) it is sufficient to replace z(z)
and z(r + 1) with z*, so we obtain

4.04) [—;— - I]z* + [1 _ —Z—]B —o

[~ %]

is non-negatively invertible, so that:

o= fi-4- 4]

Since £ > 4, matrix

(® If we consider ratio

=1
h(2)ig(t) = K(D)a*tt / [}3 h(j)é-’].

j=0
under assumption k> 4, it follows that denominator diverges as f — +oo. Now, since ratio
HOd 1 — k(t — 1at+ h(r) R
= —a
1 2 . h(f — l)
2 Kpad — 3 k(e
=0 =0

tends to & — &, as ¢ — +oo, for the analogous De L’Hospital’s theorem, which is_true in dis-
crete case (See K. Knopp [10], p. 35), we can conclude that lim,, ., #(t)/g(r) = k — &, from
which thesis follows.
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and because 8 3 0, z* 7% 0. Moreover z* appears to be globally stable for the
system since the eigenvalues of matrix 4/A are less than 1 in modulus.

If we prove that all solutions of system (4.02) tend to z*, then the original
system is consequently proved to be relatively stable. As we said in the second
section, we show that the solutions of system (4.02) tend to ope and the same
non-null vector as ¢ diverges, that is, for any solution y(f) of system (4.02),

lim y(2) = z*.
t++oo
For this purpose; we define:
V() = y(0) — z*
and through substitution in (4.02) we obtain:

. AW . __4
@s) v+ D+ =2 ) 42 1+[1 = ]p(r).

Now, remembering the definition of z* (in particular equation (4.04)), we get:

_ A@® A@) A7,
(4.06) e+ =200 + [ o ]z

+ [1 ——é%)—]ﬁ(t) - [1 ——;—]ﬂ

System (4.05) has been rewritten as system (4.06) in order to show that system
(4.06) admits infinitesimal solutions, at ¢ diverges.
For this purpose we consider the homogeneous system

_ A
(4.07) w(i+ 1) = Yol w(t)

and the system

(4.08) w(t+ 1) = % w(t)

with (constant) coefficient matrix equal to the limit of the corresponding coef-
ficient matrix of system (4.07). All the solutions of system (4.08) are infinitesimal
since, by hypothesis, the eigenvalues of the coefficient matrix are all less than |
in modulus. By comparison between systems, (4.07) and (4.08), it follows at
once'® that all the solutions of system (4.07) are infinitesimal. Now, if we assume
that a constant M exists such that

8+1 A(k)
11, S | =™

k=t-1

(®) Based on an easy theorem proved for continuous dynamical systems with almost constant
coefficients, reported in Bellman [2], (theorem 2, p. 36), the discrete version of which can be found

in appendix.
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forany 0 < s <1, s, te T it follows that the equilibrium point of system (4.06)
is also uniformly stable (theorem 2.14 of P. Mazzoleni [11]). From this and under

the assumption that
[ AW _ _{]

ey &

(=< eo - (=]

are limited it follows all solutions of system (4.06) vanish, as t — 4-co, because
of theorem 2.30 of P. Mazzoleni [11 ]!, By this way we have proved the followin g

theorem:

and

THEOREM 3. Let the system be
x(t + 1) = A@X() + b(z)

with the matrix of coefficients A(t) almost constant, the vector b(t) almost expo-
nential and h > &, where & is the spectral radius of A. Then the system is relatively
stable if a positive constant M exists such that

il 4(k)
JL1(3) I =M,

Jor0<s<ts,teT, and the quantities

[ =] = [ y)eo - (1=-F)

are limited,

APPENDIX

Writing system (4.07) as follows

o= [ (42 A

we prove the

THEOREM A. Consider the system
¢y ¥+ 1) = A

(%) Let the system be X(f + 1) = A(Ox(¢) + b(r) then « If the equilibrium of homogeneus
system is uniformly asymptotically stable and if b(s) is limited with lim,,, . b(r) = 0, then all
solutions of non-homogeneous system vanish as 7 — 4-co (i.e. quasi-asymptotical stability) ».
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with the square matrix A non-negative of order n. If all the solutions of the system
(1) are infinitesimal for t — +-oo, there exists a constant ¢ > 0, depending upon A,

such that the solutions of the system
2 z(t + 1) = [4 + B(0)]z(r)

are infinitesimal if the elements of B(t) are definitively bounded in modulus by c;
le. T exists such that for t 2T, | b,(1)| < ¢, Vr,s =1, ..., n, where | byy(0) |
are the moduli of the elements of B(t).

Proor. Since, by hypothesis, the solutions of system (1) are infinitesimal, the
spectral radius of 4 is less than 1. Let E be the square matrix of order n, with
all elements equal to 1. We choose a constant ¢ > 0 such that the spectral radius
of the matrix (4 + cE) is less than 111, Obviously, the choice of constat ¢ depends

upon matrix A.
The general solution of system (2) is

=1

z(r) = I__;_ [4 + B()](T)

where

r-1
z(T) = I___[0 [4 + B(s)]z°

and z” is the initial position of the state vector.
Let p,(¢) be the elements of the matrix (4 + cE)*T+ and 7,,(t) be those
of the matrix

ﬁM+B®L

Since [ b,(t) | S ¢, Ve 2 T,Vr,s =1, ..., n, we obtain:

ln,,(t)lgp,,(t), Vth,f,S=l,...,n

as it can easily proved by induction on .

Now, owing to the fact that lim,, ., p,(r) =0, Vr,s=1,...,n froma
comparison theorem it follows that lim,, . 7,(f) = 0, Vr, s = 1, ...,n and
hence that

ﬂu+mm

is infinitesimal for ¢ — oo, from which our thesis follows.

(*') This is possible because the roots of a polynomial are continuous functions of the coeffi-
cients of polynomial; see for example A. S. Householder The rumerical treatment of a single non-

linear equation, McGraw-Hill, New York, 1970.
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RIASSUNTO

Dato 1l sistema dinamico discreto
o x(? + 1) = G(x(»), 1)
definito sull’insieme temporale 7= {0,1,2, ...}, dove x(!)e R", e G: R* X T~ R?

soddisfacente le condizioni che garantiscono I'esistenza e unicita della soluzione del siste-
ma, diciamo che il sistema (1) & relativamente stabile se esiste una successione normaliz-
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zante, non nuila, g : 7— K tale che per ogni soluzione x(¢)siha:

lim x(t)=0p

i (1)
con p € R, non nulio e indipendente dalla soluzione. La relativa stabilita del sistera (1)
£ equivalente alla stabilita globale del sistema ottenuto da (1) mediante la trasformazione
x(1) = g(2)y(2)-
In questa nota studiamo inoltre la stabilita relativa dei sistemi dinamici lineari discre-
ti del tipo:
x(t + 1) = A()x(2) + b(z)

sotto ipotesi meno restrittive di quelle finora incontrate in letteratura. Precisamente si
considerano:

— A(t) matrice quasi costante non negativa, ciot limu eat) =dy€ R, dy =0,
Vi, j=1, ...,n dove a;(r) ¢& il generico elemento della matrice A(¢) all’istante r;
— b(r) vettore guasi esponenziale, cioé b(t) = h(1)p(t) dove p() & non nullo quasi costante,

limey 0 B(r) =B € R,B 3£ 0, dove k(1) € Ree:

lim h(r+ 1) =k

trres  A(E)

€ R,

con A(t) > 0 per ogni ¢ = 0.

Sotto queste ed altre ipotesi sul comportamento delle successioni a(t) € k(1), al diverge-
re di 1, viene fornita una condizione necessaria e sufficiente di stabilita relativa per sistemi
anidimensionali. Per i sistemi multidimensionali & garantita la stabilita relativa se ven-
gono aggiunte alcune ipotesi sui comportamenti iniziali della matrice A(zr) e del vettore
b(z).
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