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STRUCTURAL TIME SERIES MODELS FOR LEVEL AND VOLATILITY
OF HOURLY ELECTRICITY PRICES

Paolo Chirico ∗

SUMMARY

This study considers an empirical investigation of the hourly PUN, which is the spot

price of a megawatt on the Italian electricity market. This price is characterised by

strong intra-day seasonality, i.e., hourly effects, which influence the level and volatility

price, and many parameters are involved in the ARMA-GARCH modelling process.

In order to reduce the number of parameters, an alternative modelling approach is

presented based on structural time series modelling, i.e., an autoregressive model with

seasonal effects at the PUN level and a stochastic volatility model (with seasonal ef-

fects) for the PUN volatility. This modelling approach allows us to treat seasonality

as a latent stochastic component, which is governed by only a few parameters. The

results obtained using this method demonstrate that the proposed modelling approach

has beneficial strengths, and thus it should be developed further.

Keywords: hourly electricity price, stochastic volatility model, structural time

series model

1. INTRODUCTION

Similar to most OECD countries, electricity is traded in an electricity day-ahead
market in Italy. In particular, the Italian electricity market is a pool market be-
cause market clearing and scheduling are coordinated by an authority called the
Energetic Markets Manager, GME, (Cervigni and Perekhodtsev, 2013). Every
day, market participants submit their production offers and their consumption
bids for electricity during each hour on the following day to the GME. The clear-
ing price for each hour is the price that makes the supply for that hour equal to
the demand. The market clearing price ensures the maximization of the gains
from the trade and the efficiency of electricity dispatch (i.e., the organization of
electricity flows onto the electricity net).

Electricity markets are conceptually similar to financial and commodities
markets, but the price formation is more complex because of the singular fea-
tures of electricity. Indeed, electricity cannot be stored in large quantities,
electricity production can be affected by weather conditions (aeolian and pho-
tovoltaic production), and it is not efficient for big electricity plants to vary
their production flows rapidly. Therefore, electricity prices possess some of the
typical features of financial prices (e.g., volatility clustering), but also specific

∗Dept. of Economics and Statistics. - University of Turin. - Lungo Dora Siena, 100, 10153
TORINO (e-mail: paolo.chirico@unito.it).



ARTICLE TITLE 2

features such as seasonality, jumps and peaks, and mean reversion, which differ-
entiate electricity prices from other financial and commodity prices (see Bunn,
2004, for a broad review of the features of electricity prices).

Seasonality refers to the presence of periodic patterns in the level and the
volatility of electricity prices, which are due to the dependence of the demand
for electricity on human activities and weather conditions, e.g., the demand is
higher in the afternoon and lower at night, as well as being higher on working
days and lower at the weekend.

Jumps and peaks are due to difficulties with electricity dispatching. Thus,
shocks in the demand or in the supply of electricity may occur for several rea-
sons such as technical problems with the electricity net (flow congestion) or
unexpected peaks in demand due to changes in the weather conditions. How-
ever, these shocks do not change the price trend, which tends to remain at the
average level during the short to middle term (mean reversion).

For these features, the prediction of electricity prices and their volatility
has been a demanding challenge for several scholars since the origin of elec-
tricity markets (see Weron, 2014, for a recent review of the principal essays).
In particular, hourly electricity prices (HEPs) have been hard to treat because
spikes/jumps and seasonality are stronger at hourly frequency than other fre-
quencies; moreover, these prices are not a univariate stochastic process, but a
24 dimensions multivariate process. Actually, the prices of hall the hours of
the next day are known at the same time, not one hour at a time. Therefore,
HEPs has been principally modelled by panel models (Huisman, Huurman and
Mahieu, 2007; Pena, 2012) or VAR models (Raviv, Bouwman and van Dijk,
2015). Nevertheless, this way to model HEPs has to face some complications:
the use of a lot of parameters, the single processes can be co-integrated, the loss
of significant information about intra-day links. Moreover, we may interested in
some latent variables related to HEPs like seasonality (hourly effects) or volatil-
ity whose determination/extraction could be better realized one hour at a time
than simultaneously every 24 hours. Actually, the extraction of each hourly
effect should take into account the hourly effects in the previous 24 hours.

Since this study focus principally on the analysis of seasonality affecting
HEPs and their volatility, it was useful to consider HEPs as a univariate process
even if they are not in practice. Then,a structural time series model was used to
filter hourly effects from HEPS of Italian wholesale electricity market in order
to analyse seasonality and non-seasonal prices separately. A similar structural
model was apply to draw the periodic volatility of HEPs.

Structural time series models are very suitable to detect possible trends in
the structural components of electricity prices (Chirico, 2016). For example,
analysing the hourly effects series, we can note that the hourly effects change
over the months and seasons, because the HEPs depends on human daily activ-
ities which change over month and seasons. That information can be taken into
account to develop long-term forecasting models.

The rest of paper is organized as follows: in Section 2 structural time series
models are presented for HEPs and for the volatility of HEPs; Section 3 illus-
trates the application of the models to the hourly prices cleared by the Italian
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wholesale electricity market; finally, the Section 4 reports the study Conclusions.

2. MODEL SPECIFICATION

As stated above, the hourly price of electricity is characterised by a strong
periodic pattern with a periodic length of S = 24, so the hourly price pt can be
viewed as the sum of two components: (i) the price in the absence of seasonality,
pnst , and (ii) the effect of seasonality (hourly effect), st:

pt = pnst + st

A basic model for the non-seasonal price can be defined as follows:

pnst = pt + ε0t

pt = δ +

k∑

j=1

φjpt−j + ε1t

where pt is the level of the non-seasonal price, and ε0t and ε1t are white-noise
errors (disturbances). More specifically, ε0t represents shocks which produce
effects only on the current price; ε1t represents shocks that cause a structural
effects on the level price, and then have effects on the future prices.

Since the most electricity price often exhibits mean reversion, pt is a mean

stationary process, so
∑k

j=1
φJ < 1 (but not much lower than one) may be

expected (Knittel and Roberts, 2005).
With respect to seasonality, it is known that the HEPs exhibit a main pe-

riodic pattern with length S = 24, but also a weekly (S = 24 × 7) pattern, so
each hourly effect is not exactly constant every 24 hours, and thus the hourly
effects within a day are generally different from those in the following or pre-
vious days. A practical way to treat this variability is by assuming that the
daily seasonality in the hourly prices is a stochastic component, i.e., the sum
of 24 consecutive hourly effects is not zero as found in the case of deterministic
seasonality (constant hourly effects), but instead it is a stochastic zero mean
error:

23∑

j=0

st−j = ε2t

The previous equations comprise the following structural time series model:

pt = pt + st + ε0t ε0t ∼ n.i.d(0, σ2
0)

pt = δ +

k∑

j=1

φjpt−j + ε1t ε1t ∼ n.i.d(0, σ2
1) (1)

st = −

23∑

j=1

st−j + ε2t ε2t ∼ n.i.d(0, σ2
2)

where δ, φ, σ0, σ1, σ2 are unknown parameters.
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The model above can be referred to as autoregressive level model with sea-
sonal effects; it is formulated in the state space form, and, under the assump-
tion of gaussian disturbances, the price forecasts as well as the estimates of the
structural series (pt, st) and the model parameters (σ2

0 , σ
2
1 , σ

2
2) can be obtained

using the Kalman filter (Harvey, 1990). The assumption of Gaussian distur-
bances might be not realistic since ε0t and ε1t include spikes and jumps which
make their distributions havy-tailed. In this case the Kalman filter will only
yield Linear MMSE estimators of the future prices rather than MMSE ones.
Moreover the exact likelihood cannot be obtained from the resulting prediction
errors, so the forecasts are quasi-maximum likelihood (QML) estimates. How-
ever, if the disturbance distributions are not too far from normality, Kalman
filter works quite well (Ruiz, 1994).

2.1 The heteroscedasticity issue

Model (1) assumes the homoscedasticity of the HEPs, but this assumption is
not realistic for at least two causes described in literature (Knittel and Roberts,
2005; Koopman, Ooms and Carnero, 2007):

1. volatility clustering;

2. time-varying/periodic volatility.

These causes may be considered assuming the one step-ahead forecast error,
et = pt − p̂t|t−1, comprising three factors:

et = ut
√
exp(λt)ht ut ∼ i.i.d.(0, 1)

where λt is a seasonal factor; ht is a scale factor; ut is a stochastic error, inde-
pendent identically distributed with mean zero and variance one.

The crucial issue is how we model λt and ht in order to define the squared
volatility σ2

t = exp(λt)ht. According to Koopman et al. (2007) we could model
σ2
t by a periodic GARCH model similar to this one∗:

σ2
t = exp(λt)ht

λt = −

23∑

j=1

λt−j

ht = ω +
h∑

j=1

αj exp(−λt−j)e
2
t−j +

k∑

j=1

βjht−j

It is easy to note that λt is a periodic function depending on 23 parameters
since λt can be rewritten as:

λt =

23∑

j=1

γj [dj(t)− d24(t)]

∗Actually, the model of Koopman et al. includes regression effects too.
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where γjs are hourly parameters and dj(t)s are hourly dummies.
This approach allows us to estimate the ARIMA and GARCH models si-

multaneously, but the periodic GARCH model requires many parameters, i.e.,
23 for the seasonality alone.

An alternative approach might be to define both λt and ht as stochastic
latent factors:

λt = −

23∑

j=1

λt−j + ε3,t ε3,t ∼ n.i.d.(0, σ2
3)

lnht = α+

k∑

j=1

βj lnht−j + ε4,t ε4,t ∼ n.i.d.(0, σ2
4)

Set xt = lnht, we can define the following structural time series model:

ln e2t = κ1 + λt + xt + ηt ηt ∼ i.i.d.(0, κ2)

λt = −

23∑

j=1

λt−j + ε3,t ε3,t ∼ n.i.d.(0, σ2
3) (2)

xt = α+

k∑

j=1

βjxt−j + ε4,t ε4,t ∼ n.i.d.(0, σ2
4)

where κ1 = E[lnu2t ], ηt = lnu2t − κ1, and κ2 = V ar[lnu2t ].
The values of κ1 and κ2 depend on the distribution of ut: in case of standard

normal distribution, κ1 = −1.27 and κ2 = 4.93; in case of standardised Student’s
t-distribution, tv

√
(v − 2)/v:

κ1 = −1.27− ψ0(v/2) + ln
v − 2

2

κ2 = 4.93 + ψ1(v/2)

where v are the degrees of freedom of the t-distribution, ψ0 and ψ1 are the
digamma and trigamma functions respectively (Abramowitz and Stegun, 1970).

The proposed model can be viewed as a seasonal version of the classic
stochastic volatility (SV) model (Harvey, Ruiz and Shepard, 1994; Shepard,
2005), which was originally referred to as the log-normal autoregressive model
by Taylor because the logarithm of the volatility follows an autoregressive model
(Taylor, 1982).

Since model (2) is formulated in the state space form, forecasts and pa-
rameters estimates can be obtained using a Kalman filter, although ηt is not
Gaussian, and the estimation method is the quasi-maximum likelihood (QML)
method in this case (Ruiz, 1994; Shepard, 2005).

Now, the unknown parameters are only α, β, σ2
3 , and σ

2
4 , since the seasonality

depends only on a variability parameter (σ2
4) rather than 23 hourly parameters.
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Then, the squared volatility forecasts are derivable from the forecasts of the
structural components, λt and xt:

σ̂2
t+1 = exp(λ̂t+1)ĥt+1

= exp(λ̂t+1 + x̂t+1)

2.1 Forecasting vs filtering

As stated in Introduction, the day ahead electricity markets clear the 24
HEPs of the next day together. Then, models (1) and (2) cannot be used to
predict each next price pt+1 knowing always the current price pt as if the mar-
ket were a continuous market. Obviously, we can use these models to make
forecasts one, two,..., twenty-four hours ahead, but the forecasts of the late
day hours (twenty or more hours ahead) will be always less accurate than the
early day hours (few hours ahead). Actually, models (1) and (2) should be
principally thought and used as filtering models rather than forecasting models:
their strength is they allow to draw seasonality from HEPs and from hourly
volatilities. That is useful to better understand the seasonality into prices and
volatilities, and than to shape more accurate forecasting models. For exam-
ple, we might obtain interesting one day ahead hourly forecasts combining the
last seasonality estimates with the forecast of the daily price (average price):
p̂h,d+1 = ŝh + p̂d+1. Moreover, we might shape the hourly effects and the price
level (after their filtering) by suitable long term models in order to have long
term hourly price forecasts.

3. ANALYSIS OF THE ITALIAN PUN

We analysed the Italian hourly price for electricity (PUN) during the period
from January 1, 2014 to April 30, 2014 (120 days, 2880 hourly prices), where
Figure 1 shows the time series plot. This graph shows 2880 hourly prices, and
some of the features mentioned in the first section can be observed, such as
volatility clustering, mean reversion, and jumps and spikes, whereas seasonality
is not clearly evident.

The presence of seasonality is more evident in the plots of the means per
hour and the standard deviations per hour of the PUN (Figure 2).

For the hourly means, we note that there is a “roller-coaster” pattern where
two periods have relatively high prices, i.e., the morning and the evening, and
the following periods are characterised by lower prices, i.e., the early afternoon
and night/early morning. This pattern is consistent with the demand for elec-
tricity (due to human activities) during the day. However, the hourly standard
deviation follows a different pattern, which is high from 8.00 a.m. to 8.00 p.m.,
before decreasing until 10.00 p.m. and then remaining low until 6.00 a.m.

The standard deviation is positively correlated with the mean only during
the early hours of the morning and the last hour of the evening, but it is not
proportional to the level. Thus, logarithmic transformation does not appear to
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FIGURE 1: Hourly PUN, Jan. 2014-Apr. 2014

be necessary to make the volatility stationary, which is an interesting difference
from most financial prices.

According to these findings, the price level was shaped by the autoregressive
level model with seasonal effects (1); Table 1 reports the parameters estimates.

TABLE 1: Estimates of model (1)
param. value std.err z p-value sign.
σ0 0.000 0.158 0.000 0.999
σ1 3.827 0.067 57.12 0.000 ***
σ2 0.504 0.031 16.26 0.000 ***
δ 10.503 0.390 26.931 0.000 ***
φ1 0.949 0.013 70.460 0.000 ***
φ3 -0.108 0.022 -4.831 0.000 ***
φ4 -0.062 0.026 -2.421 0.016 **
φ5 0.083 0.026 3.218 0.001 ***
φ6 0.041 0.019 2.171 0.030 **
φ12 -0.039 0.009 -4.230 0.000 ***
φ24 -0.070 0.008 -8.397 0.000 ***

Log-likelihood -8369.6 Akaike 16759.2
Schwarz 16818.7 Hannan-Quinn 16780.7

About the variability of the disturbances, we note: σ0 is not significant, that
means almost every shocks, included spikes and jumps, produce some effect on
the next hourly price; the hourly effects are stochastic, but slowly variable, since
σ2 is significant, but quite low.

The autoregressive level is characterized by the lags 1, 3, 4, 5, 6, 12 and 24
(the sum of the autoregressive coefficients is 0.794 < 1). This model represents
quite well the electricity prices as proved by the correlogram for the one step-
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FIGURE 2: PUN’s means and standard deviations per hour

ahead forecast errors (Figure 3).
The presence of seasonality in the standard deviations and the presence of

volatility clustering also highlight the need for a model of volatility. According
to the considerations discussed in the previous section, the errors et were treated
by an SV model with seasonal effects similar to (2); more specifically a SV(1)
with seasonal effects and standardised t10 errors† (Table 2).

TABLE 2: Estimates of model (2)
param. value std. err z p-value sign.
σ3 0.230 0.035 6.498 0.000 ***
σ4 0.077 0.014 5.548 0.000 ***
α 0.100 0.030 3.328 0.001 ***
β 0.960 0.012 82.56 0.000 ***

Log-likelihood -6299.510 Akaike 12607.02
Schwarz 12630.64 Hannan-Quinn 12615.56

We can note that all model parameters are significant, particularly σ4, that
means the hourly effects on volatility are not periodically constant; β is slightly
less than one, that proves the persistence in volatility is high.

†The order model and the degrees of freedom of Student’s-t distribution were chosen on
the basis of the information criteria of Akaike and Schwarz).
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FIGURE 3: Correlogram for the forecast errors

3.1 Model validation

If both models (1) and (2) are well specified, the (estimated) standardised
forecast errors:

ût =
et

exp(λ̂t/2 + x̂t/2)
(3)

should have a standardised Student’s t10-distribution. As we can note in Figure
4 reporting the Q-Q plot of ûts versus standardised t10, the standardised forecast
errors seem to respect the assumption (std. t-distribution) except the last three
errors which are related to some particularly large spikes. Actually, the first
errors seems to deviate from the assumption too, but slightly. Nevertheless, all
the outliers are less then 0.3% of the data, and then the volatility predicted
by the Kalman filter in the SV model (1) appeared to be consistent with the
model’s assumptions.

3. CONCLUSIONS

Hourly electricity prices (HEPs) are characterised by strong intra-day seasonal-
ity, which affects the level and volatility of prices, and many parameters would
be required for ARMA-GARCH modelling.

In this study, a new modelling approach was proposed, which employs struc-
tural time series modelling for both the level and volatility of the price. In both
cases, seasonality is treated as a latent stochastic component that requires few
parameters.

The strengh of this modelling is the capability of filtering the hourly effects
from the level and volatility of HEPs, that should be a preliminary step towards
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FIGURE 4: Q-Q plot of ûts vs std. t10

shaping suitable forecasting models. The modelling was applied to the Italian
PUN and significant results were obtained, although this approach has the fol-
lowing weaknesses: (i) the SV model is estimated by a QML method, which is a
sub-optimal method; (ii) the level and volatility models are estimated separately,
whereas conjoint estimation would be better. However, the first weakness is less
significant than it appears because the experiments reported by Ruiz (1994)
suggest that his QML method works rather well for the series that are typically
encountered in financial economics. The conjoint estimation of both models
would be more complex, but we aim to address this issue in our future research.
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