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Abstract
Background: To understand the energetics of the interaction between protein and DNA we
analyzed 39 crystallographically characterized complexes with the HINT (Hydropathic
INTeractions) computational model. HINT is an empirical free energy force field based on solvent
partitioning of small molecules between water and 1-octanol. Our previous studies on protein-
ligand complexes demonstrated that free energy predictions were significantly improved by taking
into account the energetic contribution of water molecules that form at least one hydrogen bond
with each interacting species.

Results: An initial correlation between the calculated HINT scores and the experimentally
determined binding free energies in the protein-DNA system exhibited a relatively poor r2 of 0.21
and standard error of ± 1.71 kcal mol-1. However, the inclusion of 261 waters that bridge protein
and DNA improved the HINT score-free energy correlation to an r2 of 0.56 and standard error of
± 1.28 kcal mol-1. Analysis of the water role and energy contributions indicate that 46% of the
bridging waters act as linkers between amino acids and nucleotide bases at the protein-DNA
interface, while the remaining 54% are largely involved in screening unfavorable electrostatic
contacts.

Conclusion: This study quantifies the key energetic role of bridging waters in protein-DNA
associations. In addition, the relevant role of hydrophobic interactions and entropy in driving
protein-DNA association is indicated by analyses of interaction character showing that, together,
the favorable polar and unfavorable polar/hydrophobic-polar interactions (i.e., desolvation) mostly
cancel.

Background
Macromolecular recognition is based on the requirement
of dual geometric and chemical complementarity, eventu-

ally leading to the formation of a thermodynamically sta-
ble and specific complex between interacting molecules.
These aspects are key elements for understanding the
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function of biological systems: enzymes that bind sub-
strates and effectors, proteins that mediate signal trans-
duction via networks of alternative or specific protein-
protein pair, and nucleic acids that, via the binding of
transcription factors, repressors, co-activators, regulate
protein expression. In particular, the site-specific associa-
tions between DNA and proteins regulate most biological
events [1], with key involvement in transcription, replica-
tion and recombination. Matthews [2] stated "the full
appreciation of the complexity and individuality of each
complex will be discouraging to anyone hoping to find
simple answers to the recognition problem". A few years
later, Draper [3] was still asking "...how does a protein
select a specific DNA site out of the many available, when
all potential binding sites share such a high degree of
structural similarity? Thermodynamic, as well as struc-
tural, approaches must be used to answer this question...
". Now, more than a decade later, no simple model for rec-
ognition between amino acids and nucleotides has been
found [2,4-7]. From the analysis of the first protein-DNA
crystal structure it was evident that several distinct contri-
butions lead to formation of the complex [8-10], i.e.,
hydrogen bonds, electrostatic interactions, direct and
indirect contacts between amino acids and phosphate,
sugars and bases, water-mediated contacts, hydrophobic
effects, ion release, mutual conformation rearrangement,
bending and distortion. Amongst the enthalpic contribu-
tions, hydrogen bonds are the most easily recognized, and
energetically may represent the bulk of interactions
between nucleic acids and proteins, comprising protein
backbone and side-chains contacting bases at their edges
and the polynucleotide backbone [11]. About half of the
hydrogen bonds found in known protein-DNA complexes
involve phosphodiester oxygens [12], initially mediating
indirect recognition between DNA and protein, and favor-
ing a subsequent localization of the protein in a specific
site [13]. In direct recognition, representing the founda-
tion of sequence specificity, hydrogen bonds are formed
between amino acid side-chains and DNA bases. Even ear-
lier in the binding process, entropy plays a significant role
in recognition as non-specific (low affinity) interactions,
driven by long-range electrostatic forces, bring the DNA
and protein into proximity and cause the release of coun-
ter-ions from the free DNA [14]. Thusly, water molecules
in free and protein-bound DNA complexes have been
thoroughly investigated both experimentally and theoret-
ically, and different roles have been proposed for interac-
tion and recognition (see [14-16] and references therein).

While enthalpy is associated with molecular interactions
resulting from complex formation, entropy is associated
with multiple protein and DNA conformations, variations
in the structure of water molecules and counterions, and
other factors. This complexity and the interplay between
multiple chemical and physical mechanisms necessary to

achieve the required level of specificity are extremely diffi-
cult to describe quantitatively [17,18]. Recent investiga-
tions using osmotic pressure [19] has led to a
determination of the differential role and number of
water molecules released in specific and nonspecific bind-
ing of protein to DNA sequences [20,21]. Some results
from these studies do not appear to be supported by x-ray
crystallographic data of specific and nonspecific protein-
bound DNA complexes [15]. Interestingly, osmotic pres-
sure experiments suggest that in vitro studies in dilute
solutions are likely to be less informative on in vivo proc-
esses than expected, due to the presence of crowding and
confinements effects [22,23]. This, in turn, implies that
the biological environment is relatively similar to that
experienced by macromolecules within a crystal lattice
[15,24,25]. Computational methods, which are heavily
dependent on x-ray crystallographic data and are widely
and successfully used in the evaluation of the energetics of
ligand-protein interactions [26-29], should also be appli-
cable to understanding protein-DNA complex formation.
The earliest attempts [3,30] tried to estimate the contribu-
tion of each pair of amino acid residues/nucleotide bases
with respect to the total protein to DNA binding affinity.
A different approach, proposed by Mandel-Gutfreund and
Margalit [5], assumed that a global score reflecting the
complementarity between a protein and its DNA target
can be calculated by statistical analyses of the frequency of
interactions for specific amino acid residue-nucleotide
base types, thus implying additivity in binding energetics.
Other attempts to qualitatively, semi-quantitatively and/
or quantitatively describe the interaction between protein
and DNA [6,7,11,14,31-37], have taken advantage of the
available three-dimensional crystallographic structures of
proteins that bind to DNA, a field pioneered by Matthews
[38].

A wealth of information on the rules that govern biomo-
lecular recognition is derived from structural data, pre-
dominantly x-ray crystallography and nuclear magnetic
resonance. However, the analysis of the three-dimen-
sional structure of a complex can only provide a geometric
framework that ultimately needs quantitative evaluation
of the binding energetics to enable assessment of codes,
rules, and/or mechanisms. To date, pursuit of this goal has
primarily focused on ligand-protein interactions due to
the intense interest in designing compounds that bind
selectively and with high affinity to therapeutically rele-
vant enzyme or protein targets. Consequently, a variety of
computational modeling approaches have been devel-
oped to obtain quantitative descriptions of ligand-protein
encounters. Usually, the process is simplified by: i) con-
sidering only the volume specified by the active site; ii)
assuming no or reduced conformational flexibility; and
iii) neglecting the energetic contributions of water mole-
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cules (both with respect to their contribution to enthalpy
and entropy).

To overcome some of these limitations, the HINT
(Hydrophatic INTeractions) force field was developed.
HINT is based on LogPo/w, the solvent partition coefficient
of a species between 1-octanol and water, these solvents
being models for the internal apolar and polar protein
milieus, respectively [39]. Because LogPo/w is a free energy
parameter, its measurement takes into account both
enthalpic and entropic contributions originating from all
molecules, including water, that participate in a biomo-
lecular association, and solvent partitioning data are
unique experimental measurements of intermolecular
and interatomic interactions. The total interaction score
(B) for a complex is calculated with the following equa-
tion:

HTOTAL = ΣiΣjbij = ΣiΣj(ai Si aj Sj Tij Rij + rij),  (1)

where bij represents the interaction score between atoms i
and j, a the atomic hydrophobic atom constant, S the
atomic solvent accessible surface area, Tij a logic function
assuming +1 or -1 values, depending on the polar nature
of interacting atoms, and Rij and rij are, respectively, func-
tions of the distance between the atoms i and j. Rij is usu-
ally a simple exponential function, while rij is an
adaptation of the Lennard-Jones function. The key param-
eters a are calculated by a procedure adapted from the
CLOG-P method [40]. Because the sum of all ais is the
LogPo/w for a molecule, each ai is a partial logP that can be
considered a δg for solute transfer. If the "receptor" is
changed from the 1-octanol/water solvent pair to a
biomacromolecule with hydrophobic and polar regions,
then, in a sense, the ais represent atomic free energies of
association. Each ai thus encodes all aspects of free energy,
both enthalpic and entropic. In HINT, favorable bij inter-
actions (hydrogen bonds, acid-base, hydrophobic-hydro-
phobic) are positively scored, while unfavorable contacts
(acid-acid, base-base, hydrophobic-polar) are negatively
scored in the HINT paradigm. HTOTAL, the sum of all bij
terms describes the total interaction between the two spe-
cies. In this way, the ligand-protein interaction is not sep-
arated in multiple factors by interaction type (e.g.,
hydrogen bond, hydrophobic, etc.), but is considered a
concerted event, as it occurs in nature [41]. Because the
HINT analysis is carried out on biomolecular systems with
three-dimensional structure, geometric information is
embedded in the procedure. We have applied this
approach to the energetics of protein-ligand complexes
both in the absence and presence of water molecules that
bridge protein and ligand, at constant pH and as a func-
tion of the ionization state of interacting groups [29,42-
44], in protein-protein interfaces [45,46], and in ligand-
DNA recognition [47-49]. Results from these diverse stud-

ies indicate that HINT is a powerful tool to quantitatively
investigate and describe the energetics and specificity of
biomolecular processes. It must be noted that HINT anal-
ysis evaluates the interactions between pre-formed mole-
cules, and does not include terms for evaluating the
internal energies of these molecules. These internal ener-
gies are certainly important components of overall bind-
ing free energy, but may be relatively invariant within a
particular data set as we have reported [29,42-49].

In the present work HINT analysis was used to evaluate
the strength of interaction in protein-DNA complexes,
explicitly taking into account the energetic contribution
generated by water molecules found at the interface
between protein and DNA. This analysis was performed
on 39 DNA-protein complexes, determined at resolution
better or equal to 2.8 Å and for which experimental equi-
librium constants are available. Correlation of HINT score
with experimental free energy indicates predictive models
with a standard error of ± 1.28 kcal mol-1. These results
represent a quantitative basis for ultimately dissecting the
amino acid residue-nucleotide base interaction to under-
stand the amino acid-base "recognition code", a topic we
are currently investigating.

Results and discussion
Being able to accurately model the energetics of protein-
DNA association will help us to more completely under-
stand the machinery of life itself and to uncover a wealth
of new opportunities for the therapeutic treatment of
many diseases. While direct interactions, i.e., recognition,
between the two macromolecules are important for spe-
cificity, the water molecules at protein-DNA interface also
contribute to the complex formation and potentially play
a role in mediating specific interactions (see [14-16] and
references therein). In fact, Janin reports that protein-pro-
tein and protein-DNA interfaces contain at least as many
water-mediated interactions as direct hydrogen bonds or
salt bridges [50]. Water molecules mediating biological
interactions have been the subject of intense recent study
[16,43,44,51-53]. The importance of water in regulating
recognition, complex formation and, generally, interac-
tions among biomolecules is widely accepted, but experi-
mental and computational tools for quantifying these
effects are still somewhat lacking [54]. Even x-ray crystal-
lography at high resolution likely underestimates the
number of solvent molecules, and can misrepresent other
ions, precipitant molecules or artifacts as water. One
approach we have previously used to validate crystallo-
graphic water sets is application of the GRID program
[55], which evaluates empty regions of space in terms of
water (or another probe) being favorably bound. We
found that crystallographic water molecules with high
specificity virtually always exhibit favorable GRID ener-
gies [43], and thus should be considered well-placed.
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Both protein and DNA molecules in solution, when
uncomplexed, are surrounded by a variable number of
water molecules interacting through hydrogen bonds with
exposed polar groups. While the protein solvation pattern
is extremely variable, a consequence of the protein's
nature and folding [18,56], DNA presents largely the same
(conserved) hydration pattern, with minor sequence-
dependent local variation. An ordered spine of hydration
occupies the minor groove, whereas the major groove is
too wide to retain the same water network and is filled
with ordered water molecules interacting singly or in pairs
with the nucleotide bases [15]. In addition, the phosphate
groups are usually surrounded by six hydration sites, with
positions differing with the conformation and nucleotide
types [57]. Overall, these conserved water patterns con-
tribute to stabilization of the DNA conformation [16].

The process of protein-DNA association is certainly very
complex, with substantial conformational changes of the
interacting macromolecules and a concomitant signifi-
cant rearrangement of the bound solvent water molecules
and counterions. Matthews, in his pioneering work on
protein-DNA interaction, recognized the fundamental
role played by water molecules in mediating the forma-
tion of the Trp repressor-DNA complex, stating that "the
explicit need to consider bound water on the surfaces of
both proteins and DNA adds another level of complexity
to the recognition problem" [2]. Figure 1a illustrates the
three-dimensional structure of the homing endonuclease
I-Crei complex (PDB code 1g9y), one of the 39 complexes
studied in this work, including display of the bound water
molecules. Water molecules hydrating exposed polar
groups on the protein and DNA respectively, are high-
lighted in Figure 1b and 1c. The goal of this paper is to
unravel the energetics of association as they relate to rec-
ognition between protein and DNA. We will put particu-
lar emphasis on understanding the contribution and role
of water in protein-DNA associations.

Protein-DNA interaction energetics
The structures of 39 proteins bound to their target DNA
sequences were retrieved from the Protein Data Bank [58]
and from the Nucleic Acid Database [59] (see Table 1). In
order to obtain reliable calculations and predictions, only
structures characterized by resolution better than 2.90 Å
were considered: the average resolution is 2.18 Å. Other
selection criteria are described in the Methods. The data
set is composed of DNA binding proteins with different
functions, i.e., 6 transcription factors, 19 transcription reg-
ulators, 12 enzymes and 2 DNA binding proteins. The
binding affinities for the complexes vary over about four
orders of magnitude. The interaction of each protein with
its corresponding DNA sequence was evaluated with the
HINT force field [39] (Table 2). Correlation (Figure 2,
solid line) of the calculated HINT scores for each protein-

DNA association with the experimentally determined free
energies of binding for that complex (all symbols) leads
to:

∆G° = -0.000198 HTOTAL -9.98,  (2)

with a relatively poor r2 = 0.21 and a standard error of ±
1.71 kcal mol-1. However, several outliers (open symbols)
are evident, negatively affecting the correlation. All outlier
complexes contain the same protein: homing endonucle-
ase I-CreI, complexed in the native form with either the
DNA product (1g9z) or the DNA substrate (1g9y), and
enzyme mutants (1t9j and 1u0c). While the data point for
the endonuclease I-CreI substrate complex 1t9i is well
placed in this correlation, it is considered an outlier in this
discussion (vide infra). The exclusion of these five outliers
produces a significantly improved correlation (Figure 2,
dashed line):

∆G° = -0.000409 HTOTAL -7.77,  (3)

with an improved r2 of 0.51 and a decreased standard
error of ± 1.41 kcal mol-1.

The count of solvent molecules is extremely variable in the
analyzed structures (Table 2), ranging from 2 in 1jkr to
857 in 1g9z, with a mean value of 200. We have shown
previously that water molecules, in particular those that
bridge between interacting species, play a significant ener-
getic role in biomolecular associations [43]. Significantly,
the average number of crystallographically detected
waters in the endonuclease I-CreI-DNA complexes (1g9z,
1g9y, 1t9i, 1t9j, 1u0c) is much higher, 454. Complexes
with an overall high number of crystallographic waters
would also be expected to have a concomitantly high
number of potentially bridging and energetically relevant
waters at the protein-DNA interface. Since a high water
count in crystallographic models is usually due to higher
accuracy in the x-ray structure as a larger fraction of bound
waters are revealed, the crystallographic resolution of the
five endonuclease I-CreI-DNA complexes (varying
between 1.6 to 2.5 Å with an average of 1.99 Å), is only a
partial cause of this difference. It is important to note,
however, that water molecules may be introduced during
crystallographic refinement only to account for electron
density with unknown origin, which improves the appar-
ent data analysis statistics.

Water role in protein-DNA interaction energetics
Water can play several fundamental roles at the interface
of protein-DNA systems [16]. Water molecules can: i) fill
destabilizing holes in the complex; ii) facilitate binding by
screening unfavorable electrostatic contacts (Figure 1d);
and iii) act as linkers or "bridging waters" at the protein-
DNA interface by providing side chain "extensions" that
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facilitate indirect hydrogen bonding (Figure 1e). We eval-
uated the contribution of water molecules placed at the
protein-DNA interface by first identifying all waters (oxy-
gen atoms) that are ≤ 4 Å from both protein and DNA.
This set contains an overall total of 1244 water molecules
(Table 3). When, as described in Material and Methods,

the contribution of these interfacial waters was added to
the protein-DNA HINT score, the correlation of HTOTAL
with the experimental free energy of association (Figure
3a), is described by the following equation:

∆G° = -0.000118 HTOTAL -9.38,  (4)

Three-dimensional structure representation of Homing endonuclease I-crei complex (1g9y), using display features of the Lith-ium software package [75]Figure 1
Three-dimensional structure representation of Homing endonuclease I-crei complex (1g9y), using display features of the Lith-
ium software package [75]. a) Overall view of the complex where the protein is displayed in ribbon/tube style and the DNA is 
represented in color-coded ribbons: red for adenine (A), blue for cytosine (C), green for guanine (G), and yellow for thymine 
(T). b) Water molecule hydrating a negatively-charged amino acid side-chain. c) Water molecule hydrating a DNA phosphate 
group. d) Water molecule screening the repulsive interaction between an Asp side-chain and a DNA phosphate. e) Water 
molecule located at the complex interface mediating specific amino acid-base interactions.

e

d

b

c

a
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with r2 of 0.43 and standard error of ± 1.45 kcal mol-1.
Complexes previously identified as outliers (Figure 2) are
now coherent with the correlation, supporting the funda-
mental contribution played by water molecules to the free
energy of binding between protein and DNA. Only 1t9i,
the endonuclease I-CreI-DNA complex that was not an
obvious outlier in Figure 2 (but nevertheless removed), is
an obvious outlier in Figure 3a.

Previous analyses of protein-ligand systems indicated that
only "bridging" water molecules are relevant for complex
formation [43], and these highly constrained waters
should be located in crystallographic experiments of even
moderate resolution. We used the Rank algorithm [60],
which has been validated with a wide set of protein and

protein-ligand structures [44], to identify bridging waters
and predict the weighted number of hydrogen bonds
potentially formed by each with both the protein and the
DNA. Using the filter that only waters characterized by
Rank greater than 0 with both macromolecules (i.e., form-
ing at least one hydrogen bond with each) are included in
HTOTAL, the number of significant waters placed at the pro-
tein-DNA interface is reduced from 1244 to 996 (Table 3)
for all complexes. Correlating this HTOTAL with free energy
(not shown) yielded a model with r2 of 0.47 and standard
error of ± 1.41 kcal mol-1. Visual inspection suggested,
however, that some of the members of this water set are
not truly bridging, possibly because the Rank algorithm
does not distinguish between distance and angular contri-
butions to Rank. The implication is that Rank only mod-

Table 1: Classification data for the 39 protein-DNA complexes used in this study.

PDB code Name classification Family DNA-binding motif C.A.T.H. Structure ref.

1a3q NF kB p52 Transcr. regulator Rel homology region other Mixed b [79]
1aay Zif268 zinc finger Transcr. regulator ββα-zinc finger Zinc coordinating group 3.30.160.60 [80]
1azp Sac7D DNA binding Hyperthermophyle DNA-BP β-sheet group 2.40.50.40 [81]
1bl0 MarA Transcr. regulator AraC transcriptional activator Helix-turn-helix 1.10.10.60 [82]
1by4 Retinoic acid receptor rxr-alpha Transcr. regulator Nuclear receptor Zinc coordinating group 3.30.50.10 [83]
1c9b TF IIB Transcr. initiator TF IIB Helix-turn-helix 1.10.472.10 [84]
1cez T7 RNA polymerase Enzyme T7 RNA polymerase DNA/RNA polymerases Mixed b [85]
1cit Orphan nuclear receptor NGFI-B Transcr. regulator Nuclear receptor Zinc coordinating group 3.30.50.10 [86]
1du0 Engrailed homeodomain (q50a) Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [87]
1dux Elk-1 Transcr. regulator Ets domain Winged HTH 1.10.10.10 [88]
1f4k Replication terminator protein DNA binding Replication terminator protein Winged HTH 1.10.10.10 [89]

1g9y a Homing endonuclease I-CreI Enzyme Homing endonuclease Homing endonuclease-like 3.10.28.10 [90]
1g9z a Homing endonuclease I-CreI Enzyme Homing endonuclease Homing endonuclease-like 3.10.28.10 [90]
1h88 Myb proto-oncogene protein Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [91]
1hcr Hin-recombinase Enzyme Hin-recombinase Helix-turn-helix 1.10.10.60 [92]
1i3j Homing endonuclease I-TevI Enzyme DNA-binding domain of intro 

endonuclease
DNA-binding domain of intro 

endonuclease
3.30.60.40 [93]

1ig7 Homeotic protein Msx-1 Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [94]
1jk1 Zif268 d20a mutant Transcr. factor ββα-zinc finger Zinc coordinating group 3.30.160.60 [95]
1jk2 Zif268 d20a mutant Transcr. factor ββα-zinc finger Zinc coordinating group 3.30.160.60 [95]
1jko Hin recombinase Enzyme Homeodomain Helix-turn-helix 1.10.10.60 [96]
1jkr Hin recombinase Enzyme Homeodomain Helix-turn-helix 1.10.10.60 [96]
1le8 3A Mating-type protein a-1 Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [97]
1lmb Lambda repressor Transcr. regulator Repressor Helix-turn-helix 1.10.260.40 [98]
1mhd Smad3 Transcr. regulator Smad Mh1 Domain Smad Mh1 Domain 3.90.520.10 [99]
1pnr Purine repressor Transcr. regulator LacI repressor Helix-turn-helix 1.10.260.40 [100]
1pue TF PU.1 Transcr. factor Ets domain Winged HTH 1.10.10.10 [101]
1qpz Purine repressor Transcr. regulator LacI repressor Helix-turn-helix 1.10.260.40 [102]
1skn Transcription factor skn-1 Transcr. factor Transcription factor skn-1 Other α-helix group 1.10.880.10 [103]
1t2t Homing endonuclease I-TevI Enzyme DNA-binding domain of intro 

endonuclease
DNA-binding domain of intro 

endonuclease
3.30.60.40 [104]

1t9i a Homing endonuclease I-CreI (d20n) Enzyme DNA-binding domain of intro 
endonuclease

DNA-binding domain of intro 
endonuclease

3.10.28.10 [105]

1t9j a Homing endonuclease I-CreI (q47e) Enzyme DNA-binding domain of intro 
endonuclease

DNA-binding domain of intro 
endonuclease

3.10.28.10 [105]

1tc3 Transposase Tc3a1-65 Enzyme Transposase Helix-turn-helix 1.10.10.60 [106]
1tro Tryptophane repressor Transcr. regulator Tryptophane repressor Helix-turn-helix 1.10.1270.1

0
[107]

1u0c a Homing endonuclease I-CreI (y33c) Enzyme DNA-binding domain of intro 
endonuclease

DNA-binding domain of intro 
endonuclease

3.10.28.10 [108]

1yrn Mating-type protein a-1 Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [109]
1ytb TATA box binding protein Transcr. initiator TATA box binding protein β-sheet group 3.30.310.10 [110]
2bop Bovine papillomavirus-I E2 Transcr. regulator bovine papillomavirus-I E2 Other α-helix group 3.30.70.330 [111]
2hdd Engrailed homeodomain (q50k) Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [112]
9ant Antennapedia protein Transcr. regulator Homeodomain Helix-turn-helix 1.10.10.60 [113]

a Homing endonuclease I-CreI-DNA complexes (see text for more information).
b The domain arrangements of the protein portions interacting with the DNA are identified by multiple C.A.T.H. codes.
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estly greater than zero may correspond to unstable and
very weak contacts.

Our previous studies of water molecules in proteins and
protein-ligand complexes [44] demonstrated that water
molecules with total Rank of at least 4 and non-zero par-
tial Ranks had more impact on the formation of protein-
ligand complexes. Waters with Rank ≥ 4 should form at
least two hydrogen bonds and have very favorable geom-
etry and thus be more locked and stable at the protein-
DNA interface and, thus, more detectable by X-ray diffrac-
tion analysis. The number of waters that satisfy these cri-

teria is 261. The more "fixed" position of these waters is
confirmed by a relatively lower mean B factor (32.7 Å2)
than the mean value calculated for all the 7394 crystallo-
graphic water molecules (42.8 Å2). Correlation of HTOTAL
calculated with this set of waters with free energy (Table 2
and Figure 3b) yields:

∆G° = -0.000302 HTOTAL -8.22,  (5)

with r2 = 0.56 and standard error ± 1.28 kcal mol-1. The
improvement in the correlation is clearly due to the con-
tributions of a smaller, but more significant, set of water

Table 2: Structural, experimental dissociation and calculated HINT score data for the 39 protein-DNA complexes.

HINT scores for protein-DNA complexes

PDB code (Resolution, Å) Total water count pKd (M) Kd ref ∆G° (kcal mol-1) Hprotein-DNA HP-D-W 
a 

(water count)
HP-D-W (R > 0)b 

(water count)
HP-D-W (R≥4)c 

(water count)

1a3q (2.10) 785 10.82 [79] -14.71 11257 22843 (39) 19954 (28) 12461 (2)
1aay (1.60) 148 9.90 [114] -13.46 14166 36884 (47) 36300 (43) 20454 (11)
1azp (1.60) 132 6.81 [115] -9.26 4045 9182 (16) 8400 (12) 5225 (4)
1bl0 (2.30) 144 7.70 [116] -10.46 4742 6513 (15) 6294 (12) 5143 (4)
1by4 (2.10)d 120 6.46 [83] -8.78 6328 17213 (24) 14606 (19) 10407 (7)
1c9b (2.65)d 101 7.35 [117] -9.99 7122 14402 (20) 13101 (14) 7355 (1)
1cez (2.40) 471 6.33 [118] -8.60 2697 8969 (17) 8125 (12) 4807 (4)
1cit (2.70) 38 9.00 [119] -12.23 8239 12266 (9) 12347 (8) 9973 (4)
1du0 (2.00) 103 9.72 [120] -13.21 9793 15802 (37) 16295 (24) 12380 (5)
1dux (2.10) 129 10.07 [121] -13.69 8837 18746 (24) 18768 (20) 13227 (7)
1f4k (2.50) 96 10.70 [89] -14.54 10836 18458 (20) 17928 (18) 14753 (8)
1g9y (2.05) 435 10.00 [105] -13.59 2991 37385 (102) 33546 (83) 16470 (30)
1g9z (1.80) 857 8.70 [122] -11.83 -747 32408 (117) 31561 (93) 10064 (25)
1h88 (2.80) 25 7.45 [91] -10.13 7335 8677 (3) 8436 (2) 7335 (0)
1hcr (1.80) 16 7.47 [96] -10.15 5553 6173 (4) 6173 (4) 5553 (0)
1i3j (2.20) 185 8.02 [123] -10.90 11217 21035 (37) 21381 (30) 13263 (6)
1ig7 (2.20) 153 8.70 [124] -11.83 7656 19284 (34) 10839 (27) 10839 (6)
1jk1 (1.90) 136 10.59 [95] -14.39 14098 38199 (53) 35286 (40) 18768 (7)
1jk2 (1.65) 145 10.37 [95] -14.09 14283 35196 (51) 33716 (42) 19239 (7)
1jko (2.24) 13 7.03 [96] -9.55 7571 7731 (1) 7731 (1) 7732 (1)
1jkr (2.28) 2 6.08 [96] -8.27 6787 6787 (0) 6787 (0) 6787 (0)
1le8 (2.30) 102 6.66 [97] -9.05 8571 12904 (26) 12679 (18) 8990 (2)
1lmb (1.80) 140 9.00 [98] -12.23 8191 19046 (37) 16445 (31) 10154 (6)
1mhd (2.80) 24 6.93 [99] -9.42 1607 1660 (2) 1660 (2) 1629 (1)
1pnr (2.70) 92 8.47 [125] -11.51 11760 14090 (6) 14090 (6) 11760 (0)
1pue (2.10)d 61 6.85 [126] -9.30 5823 11403(18) 10461 (14) 6659 (1)
1qpz (2.50) 184 8.59 [102] -11.67 12015 16625 (12) 16877 (12) 13527 (4)
1skn (2.50) 28 9.00 [103] -12.23 9158 10976 (6) 10976 (6) 9618 (2)
1t2t (2.50) 72 8.28 [104] -11.25 12893 16500 (13) 15693 (7) 14360 (4)
1t9i (1.60) 656 8.74 [105] -11.89 6895 49015 (122) 43140 (98) 18371 (31)
1t9j (2.00) 189 9.22 [105] -12.54 -449 27873 (81) 24965 (70) 8215 (22)
1tc3 (2.45) 49 7.10 [127] -9.65 10246 13475 (9) 13390 (6) 10720 (1)
1tro (1.90) 572 9.30 [128] -12.64 5739 22606 (60) 22434 (46) 10568 (12)
1u0c (2.50) 90 8.23 [108] -11.19 -2591 12569 (37) 7561 (30) 3622 (14)
1yrn (2.50) 58 10.00 [129] -13.59 14429 22584 (25) 22846 (24) 17871 (9)
1ytb (1.80) 513 8.40 [130] -10.06 9035 16607 (32) 17529 (23) 9996 (1)
2bop (1.70) 121 9.40 [131] -12.77 13400 22452 (33) 22254 (24) 14692 (2)
2hdd (1.90) 183 11.06 [120] -15.03 14613 31840 (46) 30951 (39) 18688 (9)
9ant (2.40) 26 8.80 [132] -11.96 9192 12971 (9) 13049 (8) 11711 (5)

a HP-D-W = Hprotein-DNA + Hprotein-water + HDNA-water. Only the contributions of water molecules in a 4 Å range at the protein-DNA interface are 
considered.
b Only waters with nonzero Ranks with respect to both protein and DNA are included in HP-D-W.
c Only waters with nonzero Ranks with respect to both protein and DNA and total Rank ≥ 4 are included in HP-D-W.
d The PDB files report the structures as two equivalent protein-DNA complexes. The second complexes were removed and only waters 
surrounding the first in a 8 Å sphere were considered.
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molecules. The 261 waters, in fact, correspond to just
3.5% of the whole set of crystallographically detected
water molecules in the 39 complexes. This value is close to
the 5.5% identified by Reddy and co-workers as the per-
centage of waters contacting simultaneously both the pro-
tein and the DNA and thus mediating recognition
directly, on a set of 17,963 analyzed crystallographic
water molecules [51]. This model has no outliers: the
reduction in the count of potential bridging waters from
98 to 31 in the 1t9i complex led to a considerable decrease
in HTOTAL from 43,140 to 18,371, positioning this point
within about 1.5 kcal mol-1 of the correlation line. The
water contribution to the total interaction energy for all
complexes is 28%. But, removing the endonuclease I-
CreI-DNA native and mutant complexes from the data set,
where the solvent contribution to the overall binding
process is seemingly anomalously high, reduces the water
contribution to just 16% of HTOTAL for the remaining 34
complexes. This value is similar to the fraction of water-
mediated bonds (14.9%) estimated by Luscombe and

Thornton [61] after a geometry-based analysis of all pro-
tein-DNA interactions.

It is important to emphasize that the results presented
here explain only part of the protein-DNA-water interac-
tion and the tools we have used only illuminate the proc-
ess through examination of the bound endpoint. For
example, the energetic contribution of the internal con-
formations, i.e., conformational entropy, of the interact-
ing biopolymers is not treated explicitly, and is only one
of several components of the additive constant portion of
our correlations (eqs. 2–5). However, the low standard
errors in our models indicate that these contributions are
more or less constant across the data series. The magni-
tude of the additive constant can be rationalized by the
fact that these complexes do have many structural and
chemical similarities – the most important of which is
that they all form crystals analyzable by x-ray diffraction.
Note (eqs. 2, 4 and 5) that as we incrementally improved
the models by explicitly including more appropriate sets
of water molecules, the additive constant decreased in
magnitude as the standard error improved, indicating that
this particular contribution to ∆G° is now being treated
more explicitly.

Energy contributions of the DNA base, phosphate and 
ribose to complex formation
The association of a protein-DNA complex usually
involves a two-step process: an initial binding via non-
specific interactions and a subsequent translocation of the
protein to the specific binding site [62,63]. The first step is
regulated by electrostatic contacts between the protein
side-chains and the DNA backbone phosphates, while
binding specificity is achieved by interactions with the
nucleotide bases themselves. However, the DNA back-
bone (ribose and phosphates) may play a less dramatic
but fundamental role in specificity by holding the protein
in a defined orientation, thus decreasing the energetic cost
of the complex formation, or because the phosphate ori-
entations are somewhat determined by the base sequence
[12]. From a geometric-based analysis, which evaluated
two atoms to be in contact if their centers were 1–5 Å
apart, Lejeune and co-workers [64] reported that an aver-
age of 47% protein-DNA interactions involve the phos-
phate group, while 24% can be attributed to the base.

Table 3: Number, mean HINT scores and mean Ranks of waters found at the protein-DNA interface.

Water count Mean HINT score Mean Rank

Hprotein-water HDNA-water HTOTAL Rprotein-water RDNA-water RTOTAL

All within 4 Å 1244 -22 355 333 1.6 1.4 3.0
global Rank > 0, partial Ranks > 0 996 -10 388 378 1.8 1.6 3.4
global Rank ≥ 4, partial Ranks > 0 261 21 432 452 3.0 2.0 5.0

Correlation between the experimental binding free energies and the calculated HINT score values for the 39 analyzed protein-DNA complexesFigure 2
Correlation between the experimental binding free energies 
and the calculated HINT score values for the 39 analyzed 
protein-DNA complexes. Solid line is correlation for all 39 
complexes; dashed line is correlation after five endonuclease 
I-CreI-DNA native and mutant complexes (1g9z, 1g9y, 1t9i, 
1t9j, 1u0c; open symbols) are removed from dataset.
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The total HINT score for each analyzed complex was
deconvolved into partial contributions from protein-
DNAphosphate, protein-DNAribose and protein-DNAbase
interactions (Figure 4a). Clearly, both the non-specific
(DNA backbone) and the specific contacts (base) play a
fundamental role in driving the association event and in
stabilizing the complex. The protein-DNAphosphate HINT
score values are variable, ranging from -7900 to 10800
HINT score units (Table 2), but the most negative contri-
butions are found in the endonuclease I-CreI-DNA com-
plexes 1g9y, 1g9z, 1t9j and 1u0c, noted for their non-
conforming behavior earlier. These high negative-valued
protein-DNAphosphate contacts clearly explain the low over-
all protein-DNA HINT scores calculated for complexes
1g9z, 1t9j and 1u0c (Table 2), whose association seems
unfavorable without a compensating water term. In these
cases, water molecules do not only mediate the recogni-
tion between amino acids and bases, but may also signif-
icantly screen the unfavorable electrostatic interactions

between phosphate groups and negatively charged amino
acid side-chains. Thus, the high number of water mole-
cules is needed to stabilize the DNA/I-CreI endonuclease
complexes. The ribose groups do not significantly partici-
pate in the binding energetics (Figure 4a) and, in fact, the
protein-ribose interactions are equally likely to be favora-
ble or unfavorable with respect to HINT score. In contrast,
the DNA bases contact the protein with ubiquitously favo-
rable interactions (mean value of 3300 HINT score units).
It is important to note that recognition is a complex proc-
ess; for example, there is an almost complete absence of
protein-DNAbase interactions in the specific complex
between TFIIBc and its target DNA sequence (1c9b), so
this recognition must be mediated by protein-DNAphos-

phate or protein-DNAribose interactions [12].

Both direct, including hydrophobic interactions, and indi-
rect (water-mediated), interactions between the protein
and DNA are relevant [12,64]. Figure 4b illustrates the
contribution of the 261 interfacial (bridging) water mole-
cules (both water-protein and water-DNA partial Ranks >
0, total Rank ≥ 4, as in eq. 5) to the protein-DNA interac-
tion, where the water-DNAphosphate, water-DNAribose,
water-DNAbase and water-protein terms are individually
shown. The favorable DNA-water interaction is generally
attributable to both water-DNAphosphate and water-DNA-
base contacts, reinforcing the notion that in most com-
plexes water facilitates binding by screening unfavorable
electrostatic contacts and acts as a linker at the protein-
DNA interface. The water-DNAphosphate HINT score ranges
from near zero to 9800 with a mean value of 2400, while
the water-DNAbase contribution ranges from near zero to
6700 HINT score units, with a mean value of 1600. Only
in a few cases is a positive DNA-water HINT score com-
pletely attributable to the water-DNAbase interaction; e.g.,
in 1azp, 1bl0, 1pue and 1qpz complexes water mediation
is necessary to achieve specific recognition between the
two macromolecules. The water-DNAribose interaction
always negatively affects the global HINT score because of
unfavorable hydrophobic-polar contacts made between
water and the hydrophobic moieties of ribose. Finally, the
score contributions from protein-water contacts range
from -1340 to 2120, with an average of only 140 units.
The discrepancies between protein-water and DNA-water
HINT scores will be discussed later, but are generally
attributable to the different chemical natures of the inter-
acting groups. It is evident in comparing Figure 4a and 4b
that in the cases where the overall protein-DNA score is
negative (i.e., the DNA/I-CreI endonuclease complexes),
the water terms are able to compensate.

Water molecules in protein-DNA interaction specificity 
identified by role
Coordinating water molecules are found in high numbers
around protein-DNA complexes, and they play a variety of

Correlation between the experimental binding free energies and the calculated HINT score values taking into account the score contributions of water moleculesFigure 3
Correlation between the experimental binding free energies 
and the calculated HINT score values taking into account the 
score contributions of water molecules. a) Including all 
water molecules within in a 4 Å range of both atoms of the 
protein and atoms of the DNA. b) Including waters in a 4 Å 
range with total Rank ≥ 4, and non-zero partial Ranks with 
both protein and DNA.
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a) Contributions of various structural components of the protein-DNA associationFigure 4
a) Contributions of various structural components of the protein-DNA association. Shown are protein-DNAphosphate, protein-
DNAribose and protein-DNAbase-edge contributions, colored as indicated in the legend. b) HINT score contributions calculated 
for the interaction between water molecules (having total Rank ≥ 4 and non-zero Rank with both macromolecules) and the 
protein-DNA interface. Shown are the water-DNAphosphate, water-DNAribose, water-DNAbase and water-protein contributions, 
colored as indicated in the legend. Bars corresponding to 1h88, 1hcr, 1jkr and 1pnr complexes are missing because no signifi-
cant crystallographic water molecules were found in the crystal structures.
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roles in stabilizing these complexes. To ascertain these
roles, and to determine if conclusions regarding role
could be determined by their Rank, we visually analyzed
the larger set of waters; i.e., the 996 water molecules hav-
ing non-zero Rank with respect to both macromolecules.
Of these, somewhat more than half (547) interact with
phosphate and ribose groups of the DNA in the ways
described above. The main role of these waters is to screen
unfavorable electrostatic forces arising between phos-
phate groups and charged amino acids side-chains. These
waters are tightly bound to the DNA, with an average par-
tial HINT score (HDNA(backbone)-water) of 426 (Table 4), but
a weakly negative Hprotein-water of -36. On the other hand,
the corresponding Rank has the opposite trend, the partial
Rank for protein (1.9) is larger than that for the DNA
(1.3). Together these data suggest that these waters are
predominantly locked by a single very strong interaction
with the DNA, and that favorable interactions between
the protein and the DNA backbone are not actually medi-
ated by water to any large extent other than by shielding
the highly negative phosphate charge and generally mak-
ing the environment around the phosphates more condu-
cive to protein binding.

The remaining 461 waters of the set interact only with the
bases of the polynucleotide. Each was then categorized
(Table 4) as either non-bridging (when they are posi-
tioned such that cannot link protein and DNA base or
when they unnecessarily mediate already favorable inter-
actions between protein and DNA bases) or bridging
(mediating specific protein-DNA recognition and associa-
tion). This analysis identified 212 waters as non-bridging
with an average Rank of 2.8. In fact, only 23 of these non-
bridging waters (10%) have Rank ≥ 4. Among the 249
nucleotide base-to-protein bridging waters, 218 are found
between bases and amino acid side-chains, 20 between
bases and protein backbone, and 11 connect the bases to
both the side-chain and backbone of the protein. The
average Rank of these bridging waters is 3.7, with those
linking to both the protein side-chain and backbone hav-
ing an unsurprisingly larger average Rank of 4.6. One-
third (82) of the bridging waters have Rank ≥ 4. HINT
scores and Rank statistics for the set of waters interacting
with both protein and DNA bases are summarized in

Table 4. The mean interaction scores for waters bridging
protein side chains to DNA bases are 94 and 360 for Hpro-

tein-water and HDNA-water, respectively, while the partial
Ranks are 1.9 and 1.8.

The previous analyses of bridging waters in protein-ligand
systems [44], revealed a global Rank of 4.5 less evenly
divided between protein and ligand: the mean partial pro-
tein-water Rank was 3.0, while the mean partial ligand-
water Rank was 1.5. This difference is probably attributa-
ble to the different natures of protein-ligand and protein-
DNA interfaces. Proteins, with a more extended and het-
erogeneous surface characterized by clefts and cavities,
usually envelop small ligands, but formation of a protein-
DNA complex likely involves winding of the objects
together, yielding two more or less comparable surface
areas. The HINT score values are also differently distrib-
uted in protein-ligand systems compared to protein-DNA
systems. In the protein-ligand system [44], Hprotein-water
and Hligand-water were 307 and 277 HINT score units,
respectively, i.e., nearly equal. Here, even in the case of
protein side-chain to DNA base, waters interact notably
stronger with the DNA (360) than with the protein (94).
This is, at first, somewhat surprising, given that the bases
are structurally constrained to be planar, while the protein
side-chains possess more flexibility and would presuma-
bly adopt the most conducive conformation for binding.
However, the aromatic groups, present in both pyridine
and purine bases, are capable of forming weak hydrogen
bonds with water, either by water hydrogen atoms donat-
ing to aromatic electron clouds, or by water oxygen atoms
accepting from polarized aromatic hydrogens. Thus,
nearly all contacts between the nucleic acid bases and the
surrounding water molecules are potentially positive. In
contrast, hydrophobic protein side-chains would produce
numerous unfavorable (negative scored) hydrophobic-
polar contacts with water, regardless of the water geome-
try. Also, structural differences between the two types of
interfaces are relevant. The cavities and shallows that bind
waters at interfaces in protein-ligand complexes are usu-
ally formed by backbone or, more frequently, by charged
and polar groups; however, the surface of a protein inter-
acting with a polynucleotide can also be formed by apolar
moieties. Thus, even though the number of hydrogen

Table 4: Number, mean HINT scores and mean Ranks of waters initially classified by role.

Water count Mean HINT score Mean Rank
Hprotein-water HDNA-water HTOTAL Rprotein-water RDNA-water RTOTAL

All H2O interacting with DNA backbone 535 -36 426 390 1.9 1.3 3.2
All H2O interacting with nucleotide base 461 32 324 356 1.7 1.6 3.3

All non-bridging H2O 212 -17 281 264 1.6 1.2 2.8
All H2O bridging nucleotide base and protein 249 71 361 432 1.9 1.8 3.7

H2O bridging nucleotide base and protein's side-chain 218 94 360 453 1.9 1.8 3.7
backbone 20 -120 400 280 1.6 1.9 3.5

backbone & side-chain 11 36 310 346 2.8 1.7 4.6
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bonds to waters is more equally distributed between the
two macromolecules in the protein-DNA case, these
waters cannot be enveloped by either the protein or the
DNA.

A most interesting consequence of the above results is that
water molecules contributing to protein-DNA recognition
specificity have a somewhat different set of criteria than
those contributing energetically to the complex stability.
Visual evaluation indicates that: 1) 54% of waters with
nonzero Rank with respect to both macromolecules were
involved in interactions with the DNA backbone and thus
play a minor role in specificity but are energetically critical
for the association. 2) 46% of the waters interact with the
nucleotide base; of these, 21% are actually non-bridging,
and the remainder (25%) bridge between the base and
various features of the protein. Interestingly, only 2–3%
of the nucleotide base-bridging waters interact (only) with
the protein backbone, so that the vast majority interacts
with the protein side-chains and potentially governs bind-
ing specificity. It is likely that only these waters forming
hydrogen bonds with amino acid side-chains would be
involved in recognition of specific nucleic acid sequences,
but that accounts for more than 90% of the waters bridg-
ing between protein and bases of DNA.

Character of protein-DNA interactions
Figure 5 illustrates the protein-DNA interactions for the
set of 39 complexes in terms of HINT interaction types;
i.e., hydrogen-bond, acid/base, hydrophobic, acid/acid,
base/base and hydrophobic/polar. As is usually the case in
biomolecular associations, the non-covalent forces in pro-
tein-DNA association are system-specific and finely bal-
anced [37]. This is evident from Figure 5 where the
favorable polar terms (hydrogen-bond and acid/base) are
compensated by the base/base, acid/acid and hydropho-
bic/polar terms. The unfavorable HINT terms represent
energy costs such as desolvation that are paid when the
complex forms by association of isolated biomolecules.
The overall sum of these forces is the binding free energy,
generally ranging from -9 to -17 kcal mol-1 [65], and
involving electrostatic and van der Waals interactions,
hydrogen bonds, ion and water release, complex reorgan-
ization due to hydrophobic effects, hydrophobic contacts
and other entropy effects [5,36,37,61,65]. While hydro-
gen bonds (direct and water-mediated) and electrostatic
contacts are usually taken into account and considered
fundamental in analyses of complex formation and in
specific recognition, and are clearly the dominant terms in
Figure 5, the other factors related to entropy and hydro-
phobicity are commonly ignored. We have found that
inclusion of hydrophobic terms (favorable hydrophobic-
hydrophobic and unfavorable hydrophobic-polar) in
scoring models leads to reliable binding free energy pre-

dictions in protein-protein [45,46], protein-ligand
[29,43] and DNA-ligand [47-49] complexes.

Hydrophobic effects have been proposed to be the major
driving forces of protein-DNA association [35,37,66], as
this force arises from the burial of non-polar protein sur-
faces into the DNA binding site. The predominant role of
hydrophobicity (i.e., entropy) is supported by calorimet-
ric analyses that reported a negative change in heat capac-
ity upon complex formation [67,68]. On the enthalpic
side, the electrostatic term of free energy counteracts bind-
ing because favorable charge-charge interactions are often
counterbalanced by the highly unfavorable contribution
from dehydration of the polar groups [35]. Jayaram's
computational analysis of binding [37] also demon-
strated that packing and hydrophobic effects favor bind-
ing, whereas electrostatic interactions energetically
oppose it [41]. However, the negative heat capacity
change associated with the formation of specific protein-
DNA complexes could not be completely explained by
taking into account only hydration effects [14,17,18].
Other contributions, like the conformational changes of
both proteins and nucleic acids accounting for 20% of the
total ∆Cp [69-72], the modification of the protonation
state of the interacting residues [73] and counterion
release [74], have been considered. In particular, even if
ion release was generally considered to be favorable for
complex formation, several studies demonstrated that the
negative contribution from ion-molecule electrostatics,
rather than the positive entropy given by the ion reorgan-
ization, dominates the salt-dependent solvation effects
[36,37]. Furthermore, the ionic interaction with water
molecules induces an increased ordering of waters, pro-
ducing a large negative heat capacity change [14,74].

The HINT analysis in this work allowed examination of
the character of interactions contributing to an associa-
tion without actually parsing them energetically because
all atom-atom interactions are evaluated with the same
protocol. HINT evaluates not only the electrostatic and
van der Waals contributions, but also hydrophobic-
related contacts and should be able to evaluate the obser-
vation of Mandel-Gutfreund and Margalit [5] that amino
acid-nucleotide base recognition is governed by both
hydrogen bonds and hydrophobic interactions. Stabiliz-
ing hydrophobic contacts, mainly between sugar meth-
ylenes and aliphatic or aromatic amino acid side-chains,
were estimated to account for 63% of protein-DNAribose
contacts [64]. Note that the free energy-based analysis
illustrated in Figure 5 is over the entire protein-DNA inter-
action set (not just protein to ribose). Nevertheless, the
hydrophobic/hydrophobic interactions (Figure 5) always
contribute favorably to the protein-DNA binding but
apparently only to a moderate extent. These contributions
are not impacted by unfavorable effects or the presence/
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absence of bridging waters, and in some cases are the
dominant factors in binding after the other terms appear
to cancel out. In this sense, hydrophobic contacts and the
related hydrophobic effects may represent the main driv-
ing force of protein-DNA association, while the electro-
static interactions seem to increase specificity but not
affinity. It must be reiterated, however, that this computa-
tional analysis tool is probing only the (relatively short
range) energetics between pre-formed DNA and protein
components of the final, end-state, complex. As such, it
does not measure or account for the internal energies of
the protein and DNA molecules and the energy involved
in conformational changes of these molecules between
their unassociated and bound states. The quality of the
resulting models, eq. 5, suggests that these and other
terms are largely invariant over the data set.

Conclusion
Water contributes to protein-DNA complex formation in
two principal ways. Without water, some of the complexes
would be scored as energetically unfavorable. There is an

apparent, but interesting, disconnect between water mol-
ecules that are significant for DNA-protein recognition
having a lower Rank threshold than those critical for accu-
rate free energy calculations. Also, the results above dem-
onstrated that including the energetic contribution from
waters at the protein-DNA interface significantly
improved the quality of our computational free energy
predictions, particularly with only "true" bridging waters.
Our criterion, based on the previous analysis of 15 pro-
tein-ligand complexes [44], is that only waters character-
ized by nonzero partial Ranks with each interacting
molecule and total Rank of at least 4 are energetically rel-
evant. In effect, a bridging solvent molecule should form
a minimum of two strong, well-located hydrogen bonds,
with at least one additional favorable contact. Those
waters with lower Rank, especially between 3 and 4, are
still significant in mapping the energetic landscape for
interaction by altering the shape, polarity and surface
charge of the DNA or protein, even if they do not directly
contribute to the free energy of binding.

Contributions of the different interaction types participating in the direct protein-DNA association process, as estimated by the HINT force fieldFigure 5
Contributions of the different interaction types participating in the direct protein-DNA association process, as estimated by 
the HINT force field. The bars are color-coded as indicated in the legend.
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This report is the first part in an effort to decode the
molecular features leading to protein-DNA recognition.
The interaction between these two biomacromolecules is
an essential component of the machinery of life. Here we
have demonstrated that our modeling experiments, using
the empirical HINT free energy forcefield, with a meas-
ured incorporation of critical water molecules, gives more
than acceptable estimates (± 1.28 kcal mol-1) of the free
energy of binding. In addition, we have identified a set of
traits based on Rank for water molecules that impact bind-
ing specificity. The count, orientation and binding
strength of this set of water molecules is far more depend-
ent on the chemical nature of the protein amino acid side-
chains than on features of the DNA bases. In a forthcom-
ing work, we will explore the specific match-ups of protein
amino acid residues and DNA nucleotide bases by their
types, with confidence that our computational approach
is representative of actual binding free energy, and with
these guidelines for the inclusion of relevant water mole-
cules in our models.

Methods
Protein-DNA data set
The protein-DNA data set was selected from the available
structures in the Protein Data Bank [58]. While there are
123 unique structures in the PDB, many do not have reli-
able protein-DNA dissociation constants for exactly the
same complex, are of poor resolution, and/or have miss-
ing residues or bases due to disorder or other experimen-
tal factors. The structures of the remaining thirty-nine
protein-DNA complexes solved at a resolution better than
2.90 Å (28 complexes at better than 2.50 Å), were
retrieved from the PDB and are listed in Table 1. Twenty-
one structures are monomeric proteins interacting with
double-stranded DNA, while eighteen structures are
homodimeric and heterodimeric proteins complexed
with palindromic double-stranded DNA. When only the
monomeric-single stranded structure was available in the
PDB because of crystallographic symmetry, the actual bio-
logical complex (i.e., dimeric protein and double-
stranded DNA) was obtained from the Nucleic Acid Data-
base http://ndbserver.rutgers.edu. 1jkr and 1jko structures
are protein mutants of the 1hcr DNA-native protein com-
plex. Analogously, 1jk1 and 1jk2 are mutants of the 1aay
DNA-native complexes, and 1t9j, 1t9i, 1u0c are mutants
of 1g9y. Only non-covalent complexes with four or more
base pairs in the polynucleotide strand were included in
the dataset. PDB files characterized by anomalous DNA
structure, non-classical bases or anomalous base-base
coupling were not considered. Moreover, only complexes
for which published experimental dissociation (Kd) con-
stants values are available were retained. In particular, to
avoid misleading correlations between experimental and
computational results, a structure of a particular protein-
DNA complex was included in the data set only when the

DNA sequence used for the experimental assay was com-
pletely coincident with the sequence of the crystallized
complex, and when, at least, the same protein domain
involved in DNA recognition was used in both binding
and crystallographic experiments. When small differences
between the DNA sequences used in Kd determination
and crystallization experiments were observed, those
complexes were included in our analysis only if the diver-
gent bases were not directly involved in the protein-DNA
recognition and association.

Model building
All complexes were modeled with Sybyl version 7.0 [75].
The structures were carefully checked and corrected for
chemically consistent atom and bond type assignment.
Hydrogen atoms, not normally detected with common X-
ray diffraction techniques, were computationally added,
using the Sybyl Biopolymer and Build/Edit menu tools.
To avoid steric clashes, added hydrogen atoms were then
energy minimized using the Powell algorithm, with a con-
vergence gradient of 0.5 kcal (mol Å)-1 for 1500 cycles,
while fixing all heavy atom positions.

Hydropathic analysis
Hydropathic analyses were carried out with the HINT soft-
ware [75], using a locally modified version 3.09Sβ [76], as
previously reported [29,42-44]. All partition calculations
(where atomic HINT constants are assigned based on
LogPo/w) were performed using the dictionary option for
both proteins and nucleic acid sequences [77]. In this
work ionization states of neither protein residues nor
DNA nucleotides were modified, i.e., keeping the default
protonation models (ca. pH 7) of Sybyl. Because the inter-
actions between proteins and nucleic acids are mainly
electrostatic and H-bond based, the 'essential' option,
which treats only the polar hydrogen atoms explicitly, was
chosen as partition mode. A new HINT option that cor-
rects the Si terms for backbone amide nitrogens and
hydrogens [78] by adding 20 Å2 was used in this study.
This correction improves the relative energetics of inter-
and intra-molecular hydrogen bonds involving backbone
amides.

Energetic contribution of water molecules
Water molecules crystallographically placed at the pro-
tein-DNA interface in a 4 Å range were automatically opti-
mized and scored, using the "optimize bridging waters"
and the "water accounting" options, implemented in the
3.09Sβ HINT version. For all of the succeeding calcula-
tions, each water was treated as an individual static mole-
cule, and no statistical mechanical averaging on dynamics
simulation trajectories were performed. During HINT
optimization, the crystallographically-determined oxygen
atom is allowed to translate at most 0.1 Å around its orig-
inal position. HINT scores involving water are calculated
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as if each water molecule is a "ligand" interacting with the
surrounding biomolecules acting in concert as a "recep-
tor". Next, the "optimize water network" option was
applied on crystallographic waters within 4 Å of both
atoms of the protein and atoms of DNA using the geome-
try-based Rank algorithm [44,60]. Rank is able to predict
the weighted number of potential hydrogen bonds
formed by each water molecule with both the protein and
the DNA sequence. During the optimization process the
water hydrogen atoms are allowed to adopt all possible
positions in order to maximize hydrogen bonds and acid/
base interactions, and to minimize unfavorable hydro-
phobic/polar or acid/acid contacts; i.e., the process is
exhaustive. Only waters exhibiting Rank values greater
than 0 with both protein and nucleic acid are considered
bridging water molecules [44]. Waters forming hydrogen
bonds with only the protein, the DNA or neither are con-
sidered as waters of solvation that are not involved in the
binding event and presumed to be not essential to the
energetics of complex formation. Therefore, for each ana-
lyzed complex, the contribution given by waters character-
ized by Rank > 0 was calculated and added to the protein-
DNA HINT score, i.e., HTOT = Hprotein-DNA + Hprotein-water +
HDNA-water. Even though the Rank algorithm allows each
water molecule to act as donor with at most two hydrogen
bond acceptors and as acceptor with at most two hydro-
gen bond donors, Rank should be interpreted only loosely
as a count of hydrogen bonds. In previous analyses per-
formed on protein-ligand complexes [44], Rank greater
than four was associated with very locked and stable water
molecules. Thus, in this work, bridging waters with total
Rank ≥ 4 were identified for special consideration (see
Results and Discussion).

Identification of water molecules mediating specific 
protein-DNA recognition
Some water molecules are specific mediators of recogni-
tion between protein and DNA. To isolate specific interac-
tions between protein and base atoms, the phosphate and
ribose groups were excluded from the HINT partition.
Again, water molecules found in a 4 Å range at the pro-
tein-DNA interface with Rank > 0 were optimized, scored
and Ranked only with respect to protein residues and
DNA bases. These waters, potentially significant for spe-
cific recognition and association, were classified as bridg-
ing or not bridging. Another constraint is that bridging
waters must mediate interactions between groups that are
too far to contact each other otherwise. The bridging
waters were divided into three different classes: (I) waters
bridging DNA bases and protein amino acid residue side-
chains, (II) waters bridging DNA bases and the protein
backbone, and (III) waters bridging DNA bases and both
protein side-chain and backbone atoms. Specific mean
HINT score and Ranks were determined for each category,
paying particular attention to side chain bridging waters,

the only that should be able to mediate specific recogni-
tion. HINT score and Rank diagnostic of the three classes
were calculated in order to identify essential water mole-
cules in new protein-DNA complexes.
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