
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Diols Production From Glycerol Over Pt-Based Catalysts: On the Role Played by the Acid Sites of
the Support

Published version:

DOI:10.1007/s10562-017-2183-5

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1664976 since 2019-02-12T16:06:54Z



 

 

 

 

 

This is the author's final version of the contribution published as: 

 

 

Alberto Villa, Maela Manzoli, Floriana Vindigni, Lidia E. Chinchilla, Gianluigi A. 
Botton, Laura Prati, Diols production from glycerol over Pt-based catalysts: on 
the role played by the acid sites of the support. Catal Lett (2017) 147:2523–
2533 DOI 10.1007/s10562-017-2183-5. 

 

 

The publisher's version is available at: 

https://link-springer-com.bibliopass.unito.it/content/pdf/10.1007%2Fs10562-

017-2183-5.pdf 

 

When citing, please refer to the published version. 

 

 

Link to this full text:  

[inserire l'handle completa, preceduta da http://hdl.handle.net/] 

 

This full text was downloaded from iris-Aperto: https://iris.unito.it/  

https://iris.unito.it/


Diols production from glycerol over Pt-based catalysts: on the role played by the 
acid sites of the support 

 

Alberto Villa,
1
 Maela Manzoli,

2
 Floriana Vindigni,

3
 Lidia E. Chinchilla,

4
 Gianluigi A. Botton,

4
 

and Laura Prati 
1,*

 

 

 

1
 Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy 

2
 Dipartimento di Scienza e Tecnologia del Farmaco and NIS Interdepartmental Centre, Università 

degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy.
 

3
 Dipartimento di Chimica and NIS Interdepartmental Centre, Università di Torino, Via P.Giuria 

7, 10125 Torino, Italy. 

4
 Canadian Centre of Electron Microscopy and Department of Materials Science and Engineering, 

McMaster University 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada) 

 

 

Corresponding author 

              Laura Prati 

        Dipartimento Chimica, via Golgi 19, I-20133Milano,  Italy 

                  e mail:  Laura.Prati@unimi.it 

 

 

 

 

 

 



 

 

 

Abstract:  

A series of 1%wt. AuPt (6:4) catalysts were prepared by sol immobilization using acidic (TiO2, H-

Mordenite, SiO2, MCM-41, Sulphated ZrO2 (S-ZrO2)) and one basic (MgO) oxide supports. EDX 

analysis showed that only alloyed AuPt nanoparticles are present on all catalysts but the final size of 

AuPt particles is significantly affected by the support. Indeed, on TiO2 the mean AuPt nanoparticles 

diameter is 3.7 nm whereas for all the remaining support larger AuPt nanoparticles with diameter of 

6-7.5 nm were obtained. AuPt catalysts result very active in catalyzing the liquid phase 

hydrogenolysis of glycerol to 1,2-propandiol with ethylene glycol, 1-propanol and 2-propanol as 

main by-products 

The role of the support has been highlighted in terms of acidic properties, the medium strength of 

Lewis acid sites of TiO2 leading to the best performance in terms of activity, selectivity and stability 

of the catalytic system. 

  



Introduction 

The use of biomass for the production of renewable raw materials and their conversion to high 

value chemicals and materials shows a significant potential [1-3]. The utilization of vegetable oil 

for the production of biodiesel has led to an increase in glycerol production, as it constitutes the 

main co-product (about 20% wt). Glycerol is a highly functionalized molecule, which is recognized 

as a promising chemical building block for the synthesis of fine chemicals [1-6]. One attractive 

route involves the catalytic hydrogenolysis of glycerol to diols and alcohols (as reported in Scheme 

1) [7-9].  

 

Scheme 1. Valuable chemicals obtained by glycerol . 

 

1,2-PD, is commercially produced from propylene oxide and it is an important chemical for the 

production of polyesters, resins, and polyurethanes [10]. 1,3-PD is an important monomer utilized 

for the production of polyester fibers and films [11]. EG is produced via hydration of ethylene oxide 

and it is used as antifreezing agent [12].  
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In the past decade, glycerol hydrogenolysis has been extensively studies using different metal based 

catalysts, including Pt, Ru, Ni and Cu [7-9]. Among all noble metal based catalysts, Pt has been 

recognized as one of the most effective in the glycerol hydrogenolysis to 1,2-PD [7-9]. For 

example, commercial Pt/C showed high selectivity to 1,2-PD (82.7%) but only at low conversion 

(35%) [13]. Similar results were obtained using PtSn/SiO2 with a good selectivity to 1,2-PD (84%) 

but even at lower conversion (16%) [14]. Nevertheless, the drawback of most of the monometallic 

Pt systems seems to be the low resistance to deactivation and the low capacity to maintain high 

selectivity at high conversion. We recently reported that the addition of Au to Ru improves the 

stability of the catalysts, maintaining a good selectivity also at high conversion [15]. Moreover, the 

beneficial effect of Au addition to Pt catalysts in terms of activity, selectivity and stability was 

already verified in the case of oxidation of glycerol [16,17]. Recent papers illustrated that the nature 

of the support can significantly affect the catalytic performance. In particular, the acid base 

properties have been reported to modify the activity and, primarily, the selectivity  in the glycerol 

oxidation [7-9, 18]. Therefore, this study encompasses the investigation of the effect of the acid 

base properties of the support in AuPt catalyzed glycerol hydrogenolysis to 1,2 PD. 

Many mechanisms corresponding to glycerol hydrogenolysis to 1,2 PD have been proposed, where 

the acidic/basic properties seem to have a key role in determining the final mechanism. Three main 

pathways (Scheme 2) are generally accepted: dehydration-hydrogenation,  

dehydrogenation-dehydration–hydrogenation and direct-hydrogenolysis [9].  

 



 

Scheme 2. Reaction pathways of glycerol hydrogenolysis. 

 

In the first path, glycerol is initially dehydrated through an acid-catalyzed reaction to form an 

intermediate, which is subsequently hydrogenated to generate propanediol [19]. Following the third 

possible path, which usually occurs in neutral and alkaline conditions. Glycerol is dehydrogenated 

to glyceraldehyde with a consecutive dehydration-hydrogenation to 1,2-PD [20]. The last possibility 

is the direct-hydrogenolysis that was initially reported for Ir catalysts [21]: glycerol is adsorbed on 

the metal surface to form dihydroxyisopropoxide that is successively transformed to 1,2-PD. 

According to this mechanism, the low stability of the intermediate dihydroxyisopropoxide can 

result in the formation of over-hydrogenolysis products (1-propanol and 2-propanol). In all the 

possible pathways, the role of the support properties appears fundamental and yet not fully 

understood. 

Therefore, to clarify the possible synergy between the acid base properties of the support and AuPt 

nanoparticles, different catalysts have been prepared supporting preformed AuPt NPs on acidic 

(TiO2, H-Mordenite, SiO2, MCM-41, S-ZrO2) and basic (MgO) oxides. High-resolution 

OH HO

OH

HO

O

HO

OH
acetol

OH

O

OH

HO

OH

HO

OH

-H2O

+H2

-H2O

+H2

- H2

-H2O

direct hydrogenolysis

dehydrogenation-dehydration-hydrogenation

dehydration-hydrogenation

+2H2

glyceraldehyde

1,2-propanediol

1,2-propanediol

1,2-propanediol



transmission electron microscopy (HRTEM) analysis of the AuPt catalysts was performed to 

investigate the morphology as well as the composition of the nanoparticles. The nature (Lewis 

and/or Brønsted) and acid site density were determined by a quantitative analysis of the FTIR bands 

of adsorbed 2,6 dimethyl-pyridine (2,6-DMP). The catalysts have been then tested in glycerol 

hydrogenolysis. 

 

 

1. Experimental  

1.1. Materials 

NaAuCl4•2H2O, and K2PtCl4 were from Aldrich (99.99% purity), TiO2 P25 (SA = 48 m
2
/g) was 

from Evonik and H-Mordenite (SA = 450 m
2
/g) was from Degussa. Sulphated zirconia(SA = 78 

m
2
/g) , SiO2 (SA = 148 m

2
/g) and MgO (SA = 38 m

2
/g) were from Alfa Aesar. MCM-41 (SA = 980 

m
2
/g) have been prepared following the procedure reported in ref. 22. NaBH4 of purity > 96% from 

Fluka, polyvinylalcohol (PVA) (Mw = 13,000–23,000 87–89% hydrolyzed,) from Aldrich were 

used. A 1%wt PVA solution in water was prepared. Gaseous oxygen from SIAD was 99.99% pure. 

 

1.2. Catalyst preparation 

Monometallic Pt catalyst 

Solid K2PtCl4 (0.051 mmol) and PVA (1%wt) solution (Pt/PVA 1/0.5 wt%) were added to 100 mL 

of H2O. After 5 min, H2 was bubbled (50 mL/min) under atmospheric pressure and room 

temperature for 2 h. The colloid was immobilized by adding the support under vigorous stirring. 

The amount of support was calculated as having a total final metal loading of 1 wt. %. After 2 h the 



slurry was filtered, the catalyst washed thoroughly with distilled water (neutral mother liquors) and 

dried at 80 °C for 4 h. 

Au-Pt Bimetallic catalysts 

For the sake of clarity, the main steps of the preparation of the bimetallic catalysts are summarized 

in Scheme 3. The bimetallic AuPt catalysts were prepared by sol immobilization through a 

two steps procedure, which ensures the formation of alloyed bimetallic particle [16, 17]. 

 

 

Scheme 3. Synthesis of the bimetallic catalysts. 

 

In detail, NaAuCl4•2H2O (Au: 0.031 mmol) was dissolved in 60 mL of H2O, and PVA (1%, wt%) 

was added (Au/PVA= 1:0.5 wt/wt). The yellow solution was stirred for 3 min, after which 0.1 M 

NaBH4 (Au/NaBH4= 1:4 mol/mol) was added under vigorous magnetic stirring. The ruby-red Au(0) 

sol was formed immediately. Within a few minutes of sol generation, the gold sol was immobilized 

by adding the support (acidified to pH 2 by sulphuric acid) under vigorous stirring. The amount of 

support was calculated as having a gold loading of 0.60 wt%. After 2 h, the slurry was filtered and 
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the catalyst washed thoroughly with distilled water (neutral mother liquors). The Au/support was 

dispersed in 40 mL of water, therefore K2PtCl4 (Pt: 0.021 mmol) and PVA solution (Pt/PVA= 1:0.5 

wt/wt) were added. H2 was bubbled (50 mL/min) under atmospheric pressure and room temperature 

for 2 h. After an additional 18 h, the slurry was filtered and the catalyst washed thoroughly with 

distilled water. ICP analyses were performed on the filtrate using a Jobin Yvon JV24 instrument to 

verify the metal loading on the support. The total metal loading was 1 wt%. AuPt nanoparticles 

were supported on five acidic oxides, i.e. TiO2, H-Mordenite, SiO2, MCM-41, S-ZrO2, and a 

basic support (MgO). The catalysts are listed in Table 1. 

 

1.3. Catalytic tests 

Glycerol hydrogenolysis was performed at 150 °C, using a stainless steel Parr reactor (50 mL 

capacity), equipped with heater, mechanical stirrer, gas supply system and thermometer. The 

glycerol solution (30 mL; 0.3 M) was added into the reactor and the desired amount of catalyst 

(glycerol/ metal ratio=1000, mol/mol) was suspended in the solution. The autoclave was purged 

three times with nitrogen before charging 10 bar of H2. The mixture was heated to the reaction 

temperature, 150°C, and mechanically stirred (1250 rpm). Products analysis: the reaction mixture, 

after separation from the catalysts by filtration, was analysed using high performance liquid 

chromatography (HPLC). Samples were removed periodically (0.5 mL) under stirring and analysed 

by high-performance liquid chromatography (HPLC) using a column (Alltech OA-10308, 300 mm 

x 7.8 mm) with UV and refractive index (RI) detection in order to analyse the product mixtures. 

H3PO4 0.1 wt% solution was used as the eluent. The identification of the possible products was 

done by comparison with the original samples. Activity was calculated on the total mol of metal or 

in alternative on the total amount of exposed surface atoms. Calculations of the number of exposed 

surface atoms were performed by assuming that all the nanoparticles had cub-octahedral 

morphology with cubic close-packed structure in this size range, the model of full-shell 



nanoparticles was adopted [23]. The total number (Nt) of M atoms in the cluster for a given cluster 

size can be calculated using the following equation (1): 

dsph= 1.105 datNT
1/3

 (1) 

Where dsph is the mean diameter of the Au, Pt or AuPt particles obtained from TEM analysis and dat 

is the atom diameter of Au (0.288 nm), Pt (0.256 nm) and AuPt (0.264 nm), respectively. The 

number of surface atoms (Ns) and n can be calculated from equations (2) and (3), based on the 

values of NT: 

 NT = (10n
3
 - 15n

2 
+ 11n – 3)/3  (2) 

Ns=10n
2
-20n+12 (3) 

The activity based on the surface atoms can then be calculated as follows: 

% of fraction of atoms lying at the surface:  

A= (Ns/NT) x100 

Activity based on Ns= activity (calculated for total metal mols)/A 

 

1.4. Characterisation 

a) The metal content was checked by Atomic Absorption Spectroscopy (AAS) analysis of the 

filtrate, on a Perkin Elmer 3100 instrument. 

b) Samples for transmission electron microscopy (TEM) characterization were prepared by 

depositing an ethanol suspension of the catalyst onto lacey carbon coated 300 mesh copper grids. 

The particle morphology of the supported nanoparticles, specifically the nanoparticle size, was first 

investigated by TEM using a Philips LaB6 electron microscope, operating at 200 kV and equipped 

with a Gatan CCD camera. Detailed high resolution High Angle Annular Dark Field Scanning TEM 

(HAADF-STEM) imaging and energy-dispersive X-ray spectroscopy (XEDS) analyses were carried 



out using FEI Titan3 microscope operated at 200 kV accelerating voltage for a deeper investigation 

of the AuPt alloy structure of AuPt/TiO2 catalyst. This microscope is equipped with double 

aberration correctors, providing ultrahigh-resolution HAADF-scanning TEM (STEM) images, and 

an Oxford Inca energy dispersive X-ray (EDX) spectrometer equipped with a 30 mm
2
 ultrathin 

window Si/Li X-ray detector. XEDS data were collected either as spectrum images, in which a 

focused electron probe was scanned across a region of interest during data collection, or in 

stationary spot mode, where an emitted X-ray spectrum from 0–20 kV is acquired from a specific 

point on a particle using a probe size less than 0.5 nm. Spectra were acquired with a probe current 

of approximately 0.5 nA and dwell times between 200 and 400 ms per pixel, in the case of maps, 

and 20-30 seconds per analysis in spot mode. STEM digital images were acquired using FEI TIA 

software and Oxford INCA microanalysis software was used for XEDS acquisition and analysis. 

The atomic fractions of gold and platinum were quantified by the Cliff-Lorimer method on relative 

intensities of the Pt-Lα and Au-Lα peaks using k-factors provided by the XEDS system 

manufacturer. The AuPt particle size distribution and the total metal dispersion were determined by 

counting 250 particles in HAADF-STEM images using GAUSS software. 

c) FTIR spectra were taken on a Perkin-Elmer 2000 spectrometer (equipped with a MCT 

detector) with the samples in self supporting pellets introduced in cells allowing thermal treatments 

in controlled atmospheres and spectrum scanning at room temperature (r.t.) in vacuum or in the 

presence of probe gases. The 2,6-dimethylpyridine (2,6-DMP) adsorption/desorption experiments 

were performed on the samples after activation in vacuum at 393 K for 1 hour. The following 

procedure was adopted: (i) inlet of an excess dose of 2,6-DMP vapor (̴2 Torr), and equilibration at 

r.t. for 10 min; (ii) evacuation at r.t. for 30 min. From each spectrum, the spectrum of the sample 

before the inlet of the probe was subtracted. The spectra have been normalised with respect to the 

weight of the pellets and to the surface areas of the different supports. 

The processing of the FTIR spectra of adsorbed 2,6-DMP was performed by using Fityk 0.9.8, an 

open-source curve-fitting and data analysis software, that allows to obtain the accurate curvefits 



(either Gaussian or Lorentzian curves were used). As output files, the software permits the 

realisation of one figure each time containing the files related to one specific sample in the 

optimised spectral range, therefore it was not possible to plot all files in the same figure.  

 

 

2. Results and Discussion 

The catalysts were evaluated in glycerol hydrogenolysis (0.3 M glycerol, 

glycerol/metal=1000 mol/mol, 10 atm H2, T= 150 °C) and both activity and selectivity, at 

isoconversion (60%) are reported for each system in Table 1.  

 

Table 1. Catalytic evaluation in the glycerol hydrogenolysis
a 

 

Catalyst Activity
b 

(h
-1

) 

𝒎𝒐𝒍

𝒎𝒐𝒍 ⦁ 𝒉
 

Activity 

A
c 

𝒎𝒐𝒍

𝑵 ⦁ 𝒉
 

Selectivity (%)
d
 AuPt size 

(nm) 1,2-PD 1-PrOH 2-PrOH EG MeOH 

AuPt/MgO 34 176 93 - - 3 2 6.9 

AuPt/TiO2 56 165 90 - - 4 2 3.7 

AuPt/MCM-41 22 111 52 - - 22 16 6.7 

AuPt/SiO2 21 117 35 - - 28 22 7.5 

AuPt/H-Mordenite 14 65 30 8 12 20 16 6.2 

AuPt/S-ZrO2 10 52 31 10 11 18 15 6.9 

Pt/TiO2 41 119 86 - - 3 4 3.6 

Au/TiO2 1 2 - - - - - 3.5 

 
a
 Reaction conditions: Glycerol = 0.3M, pH2= 7 bar, T= 150°C, metal/glycerol = 1/1000 

mol/mol. EG= ethylene glycol, 1,2-PD = 1,2 propandiol, 1-PrOH = 1-propanol 
b
 Mol of glycerol converted per hour per mol of metal, calculated after 0.5 hour of reaction 

c
 Mol of glycerol converted per hour per fraction of atoms lying at the surface, A 

(A=(Ns/NT) x100)  after 0.5 hour of reaction. 
d
 Selectivity at 60% of conversion 

 



The activity was calculated firstly basing on the moles of glycerol converted per hour per 

total mol of metal. By using this approach, AuPt/TiO2 showed a high activity (56 converted 

mol of glycerol (AuPt mol)
-1

 h
-1

), superior than AuPt supported on MgO (34 converted mol of 

glycerol (AuPt mol)
-1

 h
-1

) and the other acidic oxides (<22 mol of glycerol (AuPt mol)
-1

 h
-1

 

for AuPt/MCM41, AuPt/SiO2, AuPt/H-Mordenite, AuPt/S-ZrO2, accordingly). Moreover, 

monometallic Pt/TiO2 and Au/TiO2 were also tested as reference catalysts: it was found that 

monometallic Pt showed intermediate activity (41 converted mol of glycerol (Pt mol)
-1

 h
-1

), 

whereas monometallic Au was inactive (1 converted mol of glycerol (Au mol)
-1

 h
-1

). These 

findings indicate that Au has a synergist effect on the activity of Pt, maximized in the case 

of TiO2 support. 

In addition, the comparison of the reaction profile of the two most active catalysts put in 

evidence that AuPt/TiO2 showed a better resistance to deactivation than AuPt/MgO (Figure 

1). Interestingly, AAS analysis revealed the presence of Au, Pt and Mg in the reaction media 

as for AuPt/MgO, whilst AuPt/TiO2 did not show any leaching. Moreover, the performance 

of bimetallic AuPt compared to monometallic Pt on TiO2 (Table 1) showed not only the 

better activity of the bimetallic sample but also its better resistance to deactivation (Figure 

1). Therefore, these results demonstrate that the addition of Au to Pt is beneficial in terms 

either of activity or of stability in glycerol hydrogenolysis when TiO2 is used as support, 

similarly as previously observed for glycerol oxidation [16,17]. Similar findings were 

achieved by some of us when Au was added to Ru supported on active carbon (AC), with 

AuRu/AC displaying a higher activity than Ru/AC in glycerol hydrogenolysis to 1,2-PD 

[15].  

As for the obtained selectivity, also reported in Table 1, it was found that AuPt supported on 

MgO and TiO2 were extremely selective toward the formation of 1,2-PD (93 and 90%, 

respectively. All the other catalysts showed a lower selectivity to 1,2-PD (30-50%). In 

particular, these catalysts produced high amounts of EG and methanol deriving from the C-



C cleavage (see Scheme 1 and Table 1). Moreover, 1-propanol and 2-propanol, deriving 

from the over-hydrogenolysis of 1,2-PD (Scheme 1, Table 1) were produced in the presence 

of the AuPt/H-Mordenite and AuPt/S-ZrO2 catalysts.  

A combined HRTEM and FTIR characterization was considered out to unravel on one hand, 

the influence of both AuPt morphology and size and, on the other hand, to focus on the 

effect of the nature of the support on the catalytic activity and selectivity. For the latter 

reason, due to the low stability of MgO based catalyst during the reaction, the attention will 

be entirely focused on the acid catalysts which all presented a pretty good stability as shown 

for TiO2. 

A detailed HRTEM characterization of the bimetallic AuPt catalysts has been previously 

reported in ref. 25 for AuPt/TiO2 and in ref 16 for all the other catalysts. In all cases, TEM 

images revealed a good AuPt dispersion and EDS analysis performed showed the exclusive 

presence of AuPt alloyed nanoparticles [16, 25].   HAADF images of AuPt/TiO2 catalyst are 

shown in Figure 2 for the sake of clarity. A representative STEM-HAADF image of 

AuPt/TiO2 and the corresponding XEDS elemental analysis are also reported in Figure 3, 

sections a and section b, respectively. It is clearly shown that both Pt and Au are present in 

the same nanoparticle. Moreover, the distribution profiles of the metals shown in section c 

confirmed the coexistence of Pt and Au within the nanoparticle, suggesting the formation of 

a random gold-platinum alloy structure.  

Despite the same alloy nanostructure, however the AuPt bimetallic nanoparticles differ in 

term of size, as restored in Table 1. Indeed, AuPt/TiO2 average diameter is 3.7 nm whereas 

for all the remaining supports larger AuPt nanoparticles with mean diameter of about 6-7.5 

nm were observed. The two metals have been deposited on the different support by 

following the same synthetic procedure summarized in Scheme 3: it is evident that the main 

difference in the particle size was observed when Pt and Au were supported on TiO2. Therefore in 

the case of AuPt/TiO2, the support played an active role during the metal insertion. Indeed, a 



combined scanning tunnelling microscopy and density functional theory study demonstrated that 

bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2 (110) 

surface [26]. In particular, by monitoring the temperature dependence of the cluster size distribution 

and the oxygen vacancy density, it was found that a single Au atom-vacancy complex is stable up to 

room temperature and a single oxygen vacancy can bind 3 Au atoms on average. For larger clusters, 

the Au-substrate interface contains a high density of oxygen vacancies, which enhances the binding 

of Au particles to the substrate. A synthesis model involving the gold nucleation and growth on the 

oxygen vacancies of titania during the preparation (Scheme 3) can be proposed. These preformed 

nanoparticles will act themselves as nucleation sites for the Pt precursor, according to the EDS 

findings showing exclusively the presence of AuPt alloyed nanoparticles on all the catalysts 

[17, 25]. 

It is well known that smaller nanoparticles are more active than larger ones in liquid phase 

reactions, probably due to the higher amount of exposed atoms [1-3]. Keeping this 

observation in mind, in order to rule out the effect of the particle size and to focus on the 

support effect, the activity was calculated normalizing by the fraction of exposed atoms 

(Table 1). In that case, the most active catalyst was AuPt/MgO, in agreement with what 

reported in the literature, i.e. that metal nanoparticles on basic supports are more active than 

on acid ones for this reaction [7-9, 27]. The AuPt/MgO catalyst resulted also very selective 

toward the formation of 1,2-PD (93%) with a small amount of EG and methanol produced 

(Table 1). Under basic conditions, it was reported that the formation of 1,2-PD proceeded 

via dehydrogenation of glycerol to glyceraldehyde as firs step (Scheme 2) [7-8]. The limited 

formation of EG can be due to the difficulty for the retrol-aldol reaction of glyceraldehyde to 

take place under alkaline conditions [7].  

To be noted that the value obtained for AuPt/TiO2 is very closed to the one of AuPt/MgO 

(Table 1). 



The normalized activity seems to decrease by increasing the support activity. Therefore, to 

elucidate the effect of the nature of the support on the catalytic performance, a detailed 

characterization of the surface properties of the catalysts has been performed, in particular 

by focusing on the acid supports.  

The normalised FTIR spectra collected on the different catalysts exposed to 2 mbar 2,6-

DMP at r.t. and after 30 min outgassing at the same temperature are shown in the 

wavenumber range 1500–1700 cm
-1

, (dotted curves in Figures 4-8). It is worth noting that 

the use of 2,6-DMP allowed to characterise both Lewis and Brønsted acidic centers present 

at the surface and offered the advantage to distinguish Lewis and/or Brønsted sites of 

different acidic strength [28, 29].  

The former species, together with H-bonded species, gave rise to three bands in the 1620-

1580 cm
-1 

range, where the 8a and 8b ring stretching modes can be observed [30]. The 

presence of the latter species, i.e. Brønsted sites, was revealed by the formation of the 2,6-

dimethylpyridinium species (2,6-DMPH
+
), that presented the 8a-8b bands of the ring 

stretching modes, at 1640-1655 cm
-1

 and about 1630 cm
-1

, respectively. A careful 

deconvolution of the normalised spectra collected upon interaction with 2,6-DMP and after 

outgassing at r.t. for 30 minutes was carried out (see Figures 4-8) and the calculated 

integrated areas of the produced absorption bands (normalized to the weight of the pellets 

and to the SSA) are reported in Table 2. This allowed us to compare the obtained 

quantitative information about the different acidic sites present on the catalysts and to afford 

structure-activity correlations with the catalytic results reported in Table 1. 

Complex bands related to liquid like and H-bonded 2,6-DMP were produced upon 2,6-DMP 

adsorption at r.t.. (see Figures 4-8). Therefore, the 2,6-DMP interaction was given mainly 

via H bonding with the OH groups exposed on the surface of the samples, suggesting that 

OH groups with weak acid strength play a role in the C-C cleavage to produce EG and 

methanol (see Tables 1 and 2). This is not true in the case of AuPt/TiO2, which exposed 



almost exclusively Lewis sites, according to the residual intensities of the bands after 

outgassing (given by the integrated areas in Table 2). 

No Lewis and Brønsted acidity was observed in the case of AuPt/MCM-41 and AuPt/SiO2 

(the total normalised area of the bands related to H-bonded & physisorbed species was 

12.783 and 18.91, respectively). The higher stability to the outgassing shown by the bands 

related to AuPt/MCM-41, with respect to those detected on AuPt/SiO2, was due to the 

presence of mesopores, where the H-bonded 2,6-DMP can be removed only by prolonging 

the outgassing time (data not shown for the sake of brevity).  

On the contrary, both Lewis and Brønsted acid sites were observed on AuPt/S-ZrO2 (total 

normalised areas 1.831 and 8.368, respectively) and AuPt/TiO2 (total normalised areas 4.401 

and 8.472, respectively), whereas AuPt/H-Mordenite showed almost exclusively Brønsted 

acidity (2.38). Interestingly, as revealed by the deconvolution of the spectra collected after 

outgassing for 30 minutes at r.t., the amount of Lewis sites present on AuPt/TiO2 was higher 

than that obtained for AuPt/S-ZrO2, where the sulphate groups are occupying these sites. 

Moreover, the apparent absence of Lewis sites on the AuPt/H-Mordenite catalyst was 

ascribed to the presence of residual water molecules adsorbed on H-Mordenite activated by 

simply outgassing at 120 °C for 1 hour.  

 

Table 2. Position and integrated areas of the bands observed upon 2,6-DMP dosage at r.t.. 

 

  Band integrated areas of adsorbed 2,6-DMP 

Brønsted acid sites H-bonded  physisorbed  H-bonded & 

physisorbed  

Position (cm
-1

) 1648 1640 1632 1603 1595 1581 

AuPt/MCM-41    2.404 5.256 5.123 

AuPt/SiO2    5.169 2.022 11.719 

 Brønsted acid sites Lewis acid sites 

& H-bonded  

physisorbed H-bonded & 

physisorbed 

AuPt/S-ZrO2
a 

3.480 3.186 1.702 2.384 2.318 6.609 

6.444  5.832 1.046  0.785 



AuPt/TiO2
a 

3.621 3.808 1.043 5.318 7.073 14.738 

 0.377 2.111 0.429 2.443 0.632 1.326 

AuPt/H-Mordenite
a 

0.365 0.107 1.908 0.9286 0.200 1.616 

1.334  1.688    

a
 The deconvolution was performed also on the spectra collected after 30 minutes outgassing 

at r.t. (refer to  the second line for each catalyst). 

 

On the basis of the IR results, it has been related the low selectivity to 1,2-PD displayed by 

both AuPt/S-ZrO2 and AuPt/H-Mordenite to the presence of Brønsted sites, that are able to 

give over-hydrogenolysis of 1,2-PD, forming 1-propanol and 2-propanol. Very recently, a 

high 1,3-PD selectivity (48.6 %) in the presence of a 2 wt % Pt/H-mordenite catalyst at 94.9 % 

glycerol conversion was also reported [18]. The selectivity to 1,3-PD was influenced by the Pt 

dispersion (around 4 nm) and by the Brønsted acidity of the support. In our case, for the AuPt/H-

Mordenite catalyst, an effect on the selectivity to 1,2-PD due to the additional presence of 

gold, that acts on the electronic properties of Pt, can be inferred. 

Interestingly, Brønsted sites are also present at the surface of AuPt/TiO2, i.e. the most active 

catalyst (according to Table 1). Our results gave precise indication that despite the amount 

of these sites is comparable to that detected on AuPt/S-ZrO2 and higher than that observed 

for AuPt/H-Mordenite, the behaviour towards the outgassing at r.t. is completely different. 

Indeed, on both AuPt/S-ZrO2 (Figure 6) and AuPt/H-Mordenite (Figure 7) the amount of 

Brønsted sites is enhanced after outgassing (the integrated area values move from 8.368 up 

to 12.276 and from 2.38 up to 3.022, respectively) indicating that at low coverages a 

rearrangement of the 2,6-DMP molecules on the most acidic sites has occurred. On the 

contrary, a decrease in intensity of the bands related to the Brønsted sites is observed in the 

case of AuPt/TiO2 (from 8.472 down to 2.917, see Figure 8), giving evidence of the 

presence of less strong Brønsted sites on this catalyst.  

On the contrary, the FTIR spectroscopic characterisation indicated that the superior activity 

as well as the high selectivity displayed by AuPt/TiO2 can be related to the presence of 



Lewis sites with moderate strength. More acidic supports present a lower activity. Similar 

results were reported in the literature by Zhang et al. [31]. Indeed, they reported that Cu 

immobilized on alumina with moderate acid sites is more active than more acidic zeolite 

supports.   

 

Conclusion 

Bimetallic AuPt catalysts were tested in the glycerol hydrogenolysis, using supports with 

different acid-base properties. It was found that the smallest AuPt nanoparticles (with 

average diameter equal to 3.7 nm) showed a better activity than largest ones (6-7 nm).  

However, normalizing the activity (conversion) for the number of exposed atoms, it appears 

clearly that the activity and the selectivity were significantly influenced by the acid base 

properties of the support. AuPt on MgO, as expected, appears the most active even it 

deactivates quite rapidly. The order of activity in the case of acidic support (AuPt/TiO2) > 

(AuPt/MCM41 ≥ AuPt/SiO2) > (AuPt/H-Mordenite> AuPt/S-ZrO2) can be directly related to 

the acid character of the support: the higher the strength of the acidic sites, the lower the 

activity. In particular, the presence of Lewis sites is required for achieving good catalytic 

performances. Moreover, it was shown that the nature of the acidic sites plays also an 

important role in tailoring the selectivity, by lowering the production of 1,2-PD and by 

directing the glycerol hydrogenolysis reaction to EG and methanol by C-C cleavage and/or 

1-propanol and 2-propanol by over-hydrogenolysis of 1,2-PD. Moreover it has been shown 

that the intermediate acidic character of TiO2 leads to an improved 
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Figure 1 Reaction profile of AuPt catalysts 

 

 

  



Figure 2. HAADF images of AuPt/TiO2. Images, (a) and (b), show the presence of nanoparticles ca. 

3.7 nm in size.  

a)  b)  

  



Figure 3 (a) STEM-HAADF image (b) and the corresponding XEDS spectra taken from the AuPt 

nanoparticle. (c) The corresponding Au Lα and Pt Lα linescan profile taken across the diameter of 

the same AuPt nanoparticle (dashed orange harrow in section a).  



   

 

Figure 4. FTIR difference spectrum reported in the spectral region of 8a-8b ring modes of 

2,6-DMP collected exposed to 2,6- DMP (2 mbar) at r.t. on AuPt/MCM-41 (blue dotted 

curve), curvefit of the spectrum (orange curve) and deconvoluted bands (grey curves). 

 
 

 

  



Figure 5. FTIR difference spectrum reported in the spectral region of 8a-8b ring modes of 

2,6-DMP collected after the inlet of 2,6- DMP (2 mbar) at r.t. on AuPt/SiO2 (blue dotted 

curve), curvefit of the spectrum (orange curve) and deconvoluted bands (grey curves). 

 

 

 

 

  



Figure 6. FTIR difference spectrum reported in the spectral region of 8a-8b ring modes of 

2,6-DMP collected after the inlet of 2,6- DMP (2 mbar) at r.t. and (inset): after 30 minutes 

outgassing, on AuPt/S-ZrO2 (blue dotted curves), curvefits of the spectra (orange curves) and 

deconvoluted bands (grey curves). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7. FTIR difference spectrum reported in the spectral region of 8a-8b ring modes of 

2,6-DMP collected after the inlet of 2,6- DMP (2 mbar) at r.t. and (inset): after 30 minutes 

outgassing, on AuPt/H-Mordenite (blue dotted curves), curvefits of the spectra (orange 

curves) and deconvoluted bands (grey curves). 

 

 

 

  



Figure 8. FTIR difference spectrum reported in the spectral region of 8a-8b ring modes of 2,6-DMP 

collected after the inlet of 2,6- DMP (2 mbar) at r.t. and (inset): after 30 minutes outgassing, on 

AuPt/TiO2 (blue dotted curves) , curvefits of the spectra (orange curves) and deconvoluted bands 

(grey curves). 

 

 

 

 

 

 

 


