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Abstract

This paper investigates spatio-temporal variations in ex-post credit risk in the United
States, as a function of real estate prices, loan purchases made by government sponsored
enterprises, and a set of local characteristics during the recent housing boom and bust.
We model bank’s non-performing loans as a first-order dynamic panel data regression model

with group-specific effects and spatial autoregressive errors. To estimate this model, we develop
an ad-hoc generalized method of moments procedure which consists of augmenting moments
proposed by the panel literature to estimate short T , pure dynamic panels, with a set of
quadratic conditions in the disturbances. Results on estimation of the empirical model point
at the negative impact of real estate prices on non-performing loans. Further, our results show
that a rise in the number of real estate mortgages backed by government-sponsored enterprises
increase non-performing loans, thus deteriorating the quality of banks’loan portfolio.
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1 Introduction

Since the second half of 2007, the United States experienced a severe financial crisis that spread to
the financial sector of European and Asian economies and triggered a deep, worldwide, recession.
The US housing market and its interaction with the financial system has been pointed as the main
cause of such crisis, through the build-up of a bubble in real estate markets that eventually collapsed.
Housing booms and busts are often associated with systemic financial stress (Herring and

Wachter (1999), Reinhart and Rogoff (2008)). Among others, Reinhart and Rogoff (2008) show
that six major historical episodes of banking crises in advanced economies, since mid-1970, were
associated with housing-bust. The authors also report that this pattern was found in many emerg-
ing countries including the devastating Asian financial crisis of 1997-1998. A number of studies on
the recent housing boom in the United States emphasise the link between a decrease in lending
standards and a sharp expansion in loan delinquency in the prime and subprime mortgage market
(see, for example Dell’Ariccia and Marquez (2006), and Mayer, Pence, and Sherlund (2009)). The
rapid boom in house prices experienced over the period 1997-2005, accompanied by a reduction
in lending standards, led to the point that many people were able to purchase properties they
couldn’t afford otherwise. Over these years, an important component of the mortgage credit was
in the form of subprime lending targeted to borrowers providing little or no down payment, with
questionable and troubled credit histories, and minimal income requirement for loan origination.
Mortgages with balloon payments, variable interest rates, and/or interest-only periods, were often
sold on the presumption that individuals could refinance their mortgages at later stages. Further,
individual mortgages were put into pools of assets out of which the so-called mortgage backed se-
curities were created and sold both within the US and abroad. When house prices began to fall
below the nominal value of loans, both speculative buyers and owner-occupiers that were unable
to repay their mortgages could not roll them or sell their properties and, as a consequence, started
to default. Public opinion has also pointed at the involvement of government-sponsored enterprises
(GSEs) Fannie Mae and Freddie Mac1 in the subprime mortgage market as bearing responsibility
for the financial crisis. These agencies set affordable housing goals in order to support mortgages to
low-income borrowers and other high-risk groups, in specific neighbourhoods and geographic areas,
by purchasing and securitising mortgages in the form of mortgage-backed securities. For several
years, these GSEs have provided safe and stable means of lending to buyers who did not have access
to prime credit. However, in the more recent years, with the growth of private-label securitization,
we assist to a deterioration in mortgage underwriting standards of GSEs and excessive risk taking,
to compete with private-label securitization for market share. This has resulted in the oversupply
of underpriced housing finance that led, in 2006, to an increasing number of borrowers, often with
poor credit, who were unable to pay their mortgages, ultimately causing a rapid increase in home
foreclosures (Bolotnyy (2012)).

In this paper we investigate spatio-temporal variations in ex-post credit risk as a function of real

1In the United States, the most common securitisation trusts are Fannie Mae and Freddie Mac, US government-
sponsored enterprises. Ginnie Mae, a US government-sponsored enterprise backed by the full faith and credit of
the US government, guarantees its investors receive timely payments, but buys limited numbers of mortgage notes.
Other private institutions also securitize mortgages. These are known as "private-label" mortgage securities.
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estate prices, GSEs loan purchases, and a set of local, socio-economic characteristics in the United
States. We take non-performing loans (NPLs) as proxy for ex-post credit risk. As a proxy for real
estate prices we focus on house prices of residential properties, using data from the Federal Housing
Finance Agency on loan purchases made by the GSEs Fannie Mae and Freddie Mac. We explore
the impact of house prices on NPLs across US metropolitan areas, both in the period of housing
boom, in the years 2000 to 2005, and during the house-price bubble bursting, over the years 2006 to
2011. Dividing the sample period into two subsets is also justified by the structural break in house
prices observed towards the end of the first sub-period.
Economic theory has formulated a number of hypotheses to explain the relationship between

financial stability and real estate prices. Some authors suggest that increases in house prices reduce
the risk of real estate financing perceived by banks, thus inducing excessive lending to risky real
estate borrowers (Dell’Ariccia and Marquez (2006)). In addition, rising house prices may encourage
the riskiest investors to bet on further price increases, leading to a rise in the demand of credit.
These factors work in the same direction and tend to increase the bank exposure to risky assets, thus
suggesting a positive relationship between NPLs and real estate prices, as increasing bank loans also
increase ex-post credit risk. Other theories instead predict a negative relation. For example, the
collateral value hypothesis asserts that, in a period of rising house prices, the value of the collateral
increases thus improving borrowers’financial position, which in turn reduces the associated risk
of default (Koetter and Poghosyan (2010)). During the bursting of the bubble, theoretical models
also suggest that, when house prices start to fall below the nominal value of loans, both speculative
buyers and owner-occupiers that are unwilling or unable to repay their mortgages, find it diffi cult to
roll over their loans or sell their properties. As a consequence, default rates increase and we expect
a negative relationship between NPLs and real estate prices.
In our empirical application, we also wish to investigate how loan purchases made by the GSEs

Fannie Mae and Freddie Mac affect NPLs, both before and during the house-price bubble bursting.
These agencies had more than 40 percent of total US mortgage debt outstanding on their balance
sheets at the height of the housing bubble, and experienced a financial collapse along with the
rest of the market. Understanding the size of impact of GSEs’loan purchases on NPLs is of great
interest for institutional investors, and policy makers wishing to regulate the housing market.

Previous studies on the determinants of NPLs use data either at country- or at bank-level.
However, data at country-level do not allow to capture the heterogeneity within an economy. For
example, there is a wide range of variation in the structure and performance of the housing market
across the US territory in terms of housing values exposure to subprime loans, foreclosure rates as
well as demographic and economic factors. It is likely that these variations in housing market are
reflected in the quality of bank loan portfolios. Hence, differently from previous works, in this paper
we consider as statistical unit the Metropolitan Statistical Area (MSA). A MSA is a geographical
region in the US with a relatively high population density at its core, and close economic ties
throughout the area. Given that this unit of aggregation is the target of many policy interventions,
exploring the impact of real estate prices and other local characteristics on credit risk at MSA level
is of great interest.

Following existing literature, we adopt a dynamic specification for NPLs and focus on a first-
order dynamic panel data regression model. We condition on a set of macroeconomic indicators,
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such as personal income and unemployment, that are well known to influence borrowers’balance
sheet and their debt servicing capacity. However, we observe that other socio-economic factors may
also affect NPLs, such as the degree of urbanization, deprivation and crime, which are notoriously
diffi cult to quantify and are well known to be geographically concentrated. Accordingly, in our
empirical model we allow errors to be spatially correlated and assume that they follow a spatial
autoregressive process. Ignoring spatial dependence, when this is present in the data, leads to
ineffi cient estimates, which may cause wrong inferences. The availability of reliable models is very
important for all market participants, including institutional investors, those who regulate housing,
GSEs, mortgage lenders, and related financial institutions. In our regression specification, we
also incorporate MSA-specific effects, and control for MSA-specific heteroskedasticity, to allow for
heterogeneity in the characteristics of borrowers across different MSAs.
To estimate this model, we develop an ad-hoc generalized method of moments (GMM) procedure

which consists of augmenting moments proposed by the panel literature to estimate pure dynamic
panels, with a set of quadratic conditions in the disturbances. Recent years have witnessed an
emerging interest towards the use of GMM for estimating regression models with spatially correlated
disturbances. The proposed model is in line with the framework advanced by Mutl (2006). However,
the work in Mutl (2006) relays on the restrictive assumption of homoskedastic group-specific effects
and idiosyncratic errors, which does not apply to our empirical study. For example, it is likely
that the conditional variance of ex-post credit risk varies with characteristics such as house prices,
or income. From a computational point of view, our proposed approach is also simpler and more
parsimonious as it requires a smaller set of parameters to be estimated. This method is a general
procedure that can be used in many other areas of economics such as labour economics, health
economics or macroeconomics to name few, where the variable of interest is characterized by both
spatial and temporal patterns. We test the small sample properties of our GMM estimator by the
means of a small Monte Carlo exercise, presented in the Appendix.

In the following, Section 2 briefly reviews the literature on the determinants of NPLs. Section 3
sets out the framework of a regression model with spatially correlated disturbances, while Section 4
introduces the GMM estimator. Sections 5 and 6 describe data and empirical results, respectively.
Finally, Section 7 concludes.

2 Review of related literature

A number of studies examine the relationship between the real estate market and bank exposures.
Hilbers, Lei, and Zacho (2001) use probit and logit models to estimate the likelihood of a financial
crisis conditional on country characteristics and the real residential property price index, for 11
countries. The authors find that a downturn in residential property prices increases the probability
of financial sector distress. Koetter and Poghosyan (2010) test two competing views of the relation
between nominal estate prices and bank distress: the collateral value and the deviation hypotheses.
The former suggests a negative relation because increasing house prices rises the market value of
collateral on outstanding real estate loans, thus enhancing the financial positions of bank customers
(Kiyotaki and Moore (1997)). The deviation theory conjectures that soaring house prices can lead
to the accumulation of risks by banks due to moral hazard and adverse selection problems, inducing
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banks to lend excessively to risky real estate borrowers at unreasonably low rates (Bernanke and
Gertler (1995)). According to this view, departures of house prices from their fundamental value
increase bank’s probability of default. Using data on 78 regional real estate markets in Germany,
Koetter and Poghosyan (2010) find evidence that larger departures of house prices from their
fundamental value increase the bank’s probability of default, as stated in the deviation hypothesis.
Gimeno and Martinez-Carrascal (2010) use Spanish data and find evidence that house purchase
loans depend positively on house prices. However, they also find evidence for causality from loans
to prices when loans depart from their long-run levels. An alternative approach is taken by Mian
and Sufi (2009), who investigate the reasons for the rapid expansion in the supply of mortgage
credit and increase in house prices in the period 2001 to 2005, and the subsequent mortgage default
crisis of 2007, at zip code level, in the US. The authors wish to explore whether the rapid growth
in mortgage debt and house price are due to a greater willingness by lenders to assume risk that
led to a reduction in the risk premium (supply explanation), or rather to increases in productivity
or economic opportunities (demand explanation). They find that zip codes with high unfulfilled
demand (at the beginning of the sample period) experienced a sharp relative decrease in denial rates
and a relative increases in mortgage credit and house prices over time, despite the fact that they
also experienced negative relative income and employment growth. Results are strongly consistent
with the supply hypothesis, also pointing at the important role of securitization in credit expansion.
Endogenous developments in the financial market can greatly amplify the effect of small income

shocks, through the so-called financial accelerator mechanism (Bernanke, Gertler, and Gilchrist
(1996)). In particular, positive shocks to household income translate into wider house price increases
in geographical areas where people can borrow against a larger fraction of their housing value (thus
having a high loan-to-value) such as in the US and UK, and smaller in countries where such leverage
ratios are lower (e.g. Italy). Empirical evidence on such financial accelerator for a set of countries
can be found in Almeida, Campello, and Liu (2006).

Empirical research also suggests that banks bad loans are closely related to the economic and
business cycle. Modelling mortgage arrears in the book building societies in United Kingdom,
Brookes, Dicks, and Pradhan (1994) find that increases in unanticipated inflation rate heavily affect
mortgage defaults. Rinaldi and Sanchis-Arellano (2006), focusing on household NPLs for a panel
of euro area countries over the years 1989 to 2004, show that disposable income, unemployment
and monetary conditions strongly affect NPLs. Berge and Boye (2007), focusing on the Nordic
banking system over the period from 1993 to 2005, show that problem loans are highly sensitive
to real interest rates and unemployment. Jappelli, Pagano, and Maggio (2008) investigate how
households arrears are influenced by household indebtness, using data on 11 European countries
and the US, and find that insolvencies tends to be associated to greater households’ indebtness,
and that institutional arrangements play an important role in determining the size and fragility of
household credit markets. Beck, Jakubik, and Piloiu (2013) study the macroeconomic determinants
of NPLs across 75 countries during the past decade, and find that real GDP growth, share prices,
the exchange rate, and the lending interest rate significantly affect asset quality.

A further strand of literature emphasises the effect of bank-specific characteristics on the quality
of loans. Factors such as bad management of banks with poor skills in credit scoring, banks’
risk attitude and diversification opportunities, or banks’size have been pointed as important in
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determining loan quality and NPLs. We refer to Louzis, Vouldis, and Metaxas (2012) for a review
of this literature.

In this paper, to study variations in NPLs over time and across territory, we extend the GMM
approach for pure dynamic panels, to allow for spatial dependence in disturbances. Hence, it is of
interest to briefly introduce the reader to the literature on GMM estimation of panels in the presence
of spatial dependence. Kelejian and Prucha (1999) first proposed GMM estimation of regression
models with spatial autoregressive (SAR) disturbances, in a single cross sectional setting. They
suggested the use of three moment conditions that exploit the properties of disturbances entailed
by a standard set of assumptions. In the last few years, a sizeable literature has been developed to
extend this procedure. Liu, Lee, and Bollinger (2012) and Liu, Lee, and Bollinger (2010) suggested
a set of linear and quadratic conditions in the error term, where the matrices appearing in the
linear and quadratic forms have bounded row and column norms (see also Lee (2007)). These
moments can be robustified against unknown heteroskedasticity by assuming that the diagonal
elements of the inner matrices are zero (see Lin and Lee (2010)). Lee and Liu (2010) have extended
this framework to estimate SAR models with higher-order spatial lags. Kelejian and Prucha (2009)
have generalized their work to incorporate spatial lags in the dependent variable as well as unknown
heteroskedasticity. This setting has been further extended to estimate a spatial panel regression
model with group-specific coeffi cients, both under the random effects and fixed effects assumptions
(Kapoor, Kelejian, and Prucha (2007), Mutl and Pfaffermayr (2011), and Moscone and Tosetti
(2011)). Druska and Horrace (2004) have introduced the Keleijan and Prucha GMM within the
framework of a panel with SAR disturbances, time dummies and time-varying spatial weights, while
Fingleton (2008a) and Fingleton (2008b) have extended it to the case of a regression model with
spatial moving average disturbances.
While GMM estimation of spatial panel data models with strictly exogenous regressors has

been widely investigated, little work has been undertaken so far on the estimation of panel data
models that include both spatial and temporal dynamics. Lee and Yu (2010a) considered GMM
estimation of a panel with fixed effects, a time lagged dependent variable, and a spatially lagged
dependent variable among the regressors. The authors suggest to eliminate individual effects by
applying an orthonormal transformation and then use linear and quadratic conditions to estimate
the unknown parameters. Korniotis (2010) have proposed a bias-corrected least squares dummy
variable estimator of a time-space recursive model, and compare its small sample properties with
those of an instrumental variables-type estimator, showing a worse performance for the latter.
Maximum likelihood estimation of a dynamic, stationary panel with fixed effects and spatial lags
in the dependent variable and error is considered in Yu, de Jong, and Lee (2007), Yu, de Jong, and
Lee (2008), and Lee and Yu (2010b).

3 The empirical model

As mortgage arrears are likely to be persistent over time, in our empirical study we adopt a dynamic
specification for NPLs. In particular, let yit be the NPL on the ithMSA at time t, and suppose that it
is generated by the following first-order dynamic panel data model, for i = 1, 2, ..., N, t = 1, 2, ..., T ,
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with T > 2,
yit = αi + λyi,t−1 + β′xit + uit, (1)

where αi are the group-specific effects, xit is a k-dimensional vector of determinants of NPLs,
possibly correlated with αi, λ is a scalar parameter of the lagged dependent variable, β is a k-
dimensional parameter vector. We assume that xit is made up of the following sets of variables:

xit = (HPit |GSEi,t−1|MACROit |BANKit ) .

In the above, HPit and GSEi,t−1 are our key variables explaining NLPs. More specifically, HPit
is a measure of real house prices in the ith MSA at time t,2 while GSEi,t−1 is the number of real
estate mortgages backed by government-sponsored enterprises Fannie Mae and Freddie Mac at time
t− 1. There exists a large literature suggesting that the sharp increase in subprime lending played
an important role in the creation of recent US housing bubble (Mian and Sufi (2009); Bolotnyy
(2012)). Although most of this increase was due to non-agency serviced private label mortgage-
backed securities, during the height of the housing bubble, almost 40 per cent of newly issued
private-label subprime securities were purchased by Fannie Mae and Freddie Mac. It is plausible
to think that it is the GSE purchase in the year of origination of the loan rather than the GSE
purchase in the year of default that affect credit risk. As a proxy of this temporal lag in the effect
of the GSE purchases, we have included GSE purchased loans lagged by one period in the model.

In our regression, we also control for a set variables reflecting the state of the local economy and
social conditions, MACROit. These are real per-capita personal income (INCOMEit), unemploy-
ment rate (UNEMPit), mortgage interest rate (IRATEit), and population density (POPDENSit).
A growing economy is likely to be associated with rising incomes and reduced financial distress.
Accordingly, we expect growth in real per-capita personal income and decline in unemployment
rate to diminish NPLs. A rise in mortgage interest rate weakens borrowers’debt servicing capacity,
particularly if loan rates are variable. Therefore, in general, we would expect NPLs to be posi-
tively related with mortgage interest rate. We include population density as a proxy of regional
deprivation which may positively affect NPLs.
Finally, we incorporate in our regression a vector of variables related to the financial sector

(BANKit), computed at aggregate level for each MSA. We have selected these variables with the
aim to control for differences across MSAs in the concentration of banks, and riskiness of banks’loan
portfolios. In particular, BANKit includes the concentration of assets within the MSA (HHIit),
the equity-to-assets ratio (EQASSit), bank size (SIZEit) and the number of branches within the
MSA (BRANCHESit). The variable HHIit is measured as an Herfindahl index of assets, which
is equal to the sum of the squared bank shares of assets, calculated each year and for each MSAs
in the sample. Some papers associate a higher concentration of assets to an increase in banking
system fragility (concentration-fragility hypothesis), given that large banks may be more diffi cult
to monitor than small banks. On the contrary, other studies support the view that banking system
concentration enhance stability (concentration-stability hypothesis), as it signals less competition
and hence greater market power and profits, thus reducing incentives for bankers to take excessive

2Some studies (see, for example, Koetter and Poghosyan (2010)), rather than using real house prices, focus on
nominal house prices, i.e., without accounting for the variation in underlying macroeconomic fundamentals. We have
also tried estimating our model using nominal house prices and obtained very similar results.
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risk (see Beck (2007) for a review of the literature). The variable equity-to-asset ratio represents
a key measure of the level of banks’capitalisation, indicating a bank’s ability to cover unexpected
losses. Under the current Basel I and II regulations banks are required to meet a minimum 8 per
cent capital buffer. Most banks hold a capital buffer above the legally required value, but this is
subject to individual banks. The equity-to-asset ratio reflects the “moral hazard”hypothesis, first
discussed by Keeton and Morris (1987). Banks with relatively low capital, measured by a small
equity-to-assets ratio, tend to make riskier loans, which in turn results in higher non-performing
loans on average. Bank size is a proxy for diversification opportunities and in this paper is measured
as the average total assets held by banks within the MSA. Empirical evidence supports a negative
relationship between NPLs and bank size, as larger banks have better risk management practices
which eventually lead to lower credit risk and NPLs (Salas and Saurina (2002)). Finally, coming to
the variable BRANCHESit, the branching deregulation in the US has significantly expanded the
supply of mortgage credit; increase in mortgage credit is expected to have a significant, positive,
impact on loan losses (Favara and Imbs (2011)).
We recognise that, in addition to these variables, many other bank-specific factors can be related

to NPLs. However, in order to keep the model tractable and parsimonious, we have only included
for few key variables, and rely in our econometric approach to deal with potential omitted-variable
problems. It is also important to observe that that some of the above regressors may be endogenously
determined. For instance, markets with increasing defaults may experience depreciation in house
prices and land value due to lower expected returns on investment properties. In our empirical work
we will deal with the problem of potential endogeneity of house price and the financial variables by
following the suggestion by Blundell, Bond, and Windmeijer (2000). Specifically, as explained in
Section 5, we exclude from the set of instruments that are adopted for estimation, those that use
contemporaneous and one-period lagged values of the endogenous regressors.

Most empirical works investigating the determinants of NPLs do not take into consideration
that disturbance are likely to be spatially correlated. Socio-economic factors may also affect NPLs,
such as degree of urbanization, deprivation and crime, which are notoriously diffi cult to quantify
and are well known to be spatially correlated. We refer to Triki and Maktouf (2012) for further
discussion. Spatial correlation among NPLs in neighbouring MSAs may also occur as the conse-
quence of measurements errors. Given the above discussion, we assume that the error term, uit, is
generated by the following SAR process

uit = δ

N∑
j=1

wijujt + εit, (2)

where wij are elements of a N ×N spatial weights matrix, W.

In the next section, we introduce a GMM estimator for the unknown parameters λ, β and δ in
equations (1)-(2).

4 Methods

In the following, we focus on consistent estimation of λ, β and δ via GMM. In order to distinguish
the true parameters from other possible values in the parameter space, we denote by λ0, β0, δ0,
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and σ2
0i the true parameters, which generated an observed sample.

4.1 Moment conditions

Consider model (1)-(2) and assume that the following assumptions hold:

Assumption 1 : εit are independently distributed random variables with zero mean, variance 0 <
E (ε2

it) = σ2
0i ≤ σ2

max < ∞, and such that E |εit|4+η ≤ K < ∞ for some η > 0 and for i =
1, 2, ..., N ; t = 1, 2, ..., T .

Assumption 2 The group-specific effects, αi, and the errors, εit, satisfy:

E (αi) = 0, E (εit) = 0, i = 1, 2, .., N ; t = 1, 2, ..., T, (3)

E (εisεit) = 0, i = 1, 2, .., N ; s 6= t = 1, 2, ..., T, (4)

E (αiεit) = 0, E (xitεit) = 0, i = 1, 2, .., N ; t = 1, 2, ..., T. (5)

Assumption 3 The main diagonal elements of W are zero. The row and column norms of the
matrices W and (IN − δW)−1 are bounded.

Assumption 4 δ0 ∈ [cl, cu], with −∞ < cl, cu < ∞, and (IN − δW)−1 is non-singular for all
δ ∈ [cl, cu].

The existence of moments of order higher than four stated in Assumption 1 is needed for ap-
plicability of the central limit theorem for triangular arrays by Kelejian and Prucha (2001). In
Assumption 2, conditions (4) require serially uncorrelated errors, while (5) exclude the xit process
to be endogenously determined. We observe that this assumption allows the group-specific effects
to be correlated to the included regressors, xit. The following assumptions concerning the initial
conditions are also taken

E (yi0εit) = 0, i = 1, 2, ..., N, t = 1, 2, ..., T. (6)

We observe that (3)-(5) and (6) are standard in the literature on GMM estimation of dynamic
panels, and refer to Arellano and Bond (1991) and Blundell, Bond, and Windmeijer (2000) for
further discussion. Under (3)-(6), and focusing on the equation expressed in first difference, Arellano
and Bond (1991) suggest the following T (T − 1)/2 population moment conditions:

E [yis (∆yit − λ0∆yi,t−1 − β′0∆xit)] = 0, s = 0, 1, ..., t− 2, t = 2, 3, ..., T. (7)

If, in addition to condition (5), xit are strictly exogenous, i.e. if E (xisεit) = 0, for all s and t, then
the following T (T − 1) additional moments can be used

E [xis (∆yit − λ0∆yi,t−1 − β′0∆xit)] = 0, for s = 1, 2, ..., T ; t = 2, ..., T, (8)

while in the case xit are weakly exogenous, namely if E (xisεit) = 0, for s = 1, 2, .., t and for all t,
then there are only T (T − 1)/2 additional moments available:

E [xis (∆yit − λ0∆yi,t−1 − β′0∆xit)] = 0, for s = 1, 2, ...., t− 1; t = 2, ..., T. (9)
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Under no spatial error dependence, and in absence of extra information about the dynamic process,
a GMM estimator based on conditions (7) and (8) (or (9)) is asymptotically normal and effi cient
in the class of estimators based on linear moment conditions (Hansen (1982), Chamberlain (1987)).
However, as shown by Blundell and Bond (1998), its performance deteriorates as the variance of
the group-effects is large relative to the variance of the idiosyncratic error, or when the parameter
attached to the lagged dependent variable is close to one. Indeed, in these cases it is possible to
show that the instruments are only weakly related with the endogenous differences (see also Binder,
Hsiao, and Pesaran (2005) and Kiviet (2007)). To deal with this problem, Arellano and Bover
(1995), Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2000) proposed to focus
on the dynamic equation expressed in levels rather than in first-differences, and suggested a set of
instruments valid under certain assumptions on the initial conditions of the dynamic process. In
particular, suppose that, in addition to (3)-(6), the conditions

E (∆yi1αi) = 0, (10)

hold. Then the following (T − 1)2 /2 moment conditions are available for the equation in levels, (1):

E [∆yis (yit − λ0yi,t−1 − β′0xit)] = 0, for s = 1, ..., t− 1; t = 2, 3, ..., T. (11)

Further, if regressors, xit, satisfy
E (∆xi1αi) = 0, (12)

then, under strict exogeneity, the T 2 conditions

E [∆xis (yit − λ0yi,t−1 − β′0xit)] = 0, s = 1, 2, ..., T ; t = 1, 2, ..., T, (13)

can also be used, while under weak exogeneity, we have the T 2/2 moments

E [∆xis (yit − λ0yi,t−1 − β′0xit)] = 0, for s = 1, 2, ...., t− 1; t = 1, 2, ..., T. (14)

We observe that, if (7)-(8) (or (9)) and (11), (13) (or (14)) are used jointly, then some of the
conditions in (11)-(14) are redundant. In this case, in addition to (7)-(8), only the (T − 1) conditions

E [∆yi,t−1 (yit − λ0yi,t−1 − β′0xit)] = 0, for t = 2, 3, ..., T, (15)

and, under either strictly or weakly exogenous regressors,

E [∆xit (yit − λ0yi,t−1 − β′0xit)] = 0, for t = 1, 2, ..., T, (16)

can be used. Conditions (7)-(8) and (15)-(16) yield the so-called system GMM, first proposed by
Blundell and Bond (1998) in the context of a pure autoregressive panel data model. It is convenient
to rewrite moments (7)-(16) in the compact form:

E [Z′ (q−Gγ0)] = 0, (17)

where γ0 = (λ0,β
′
0)
′, q = (q′1.,q

′
2., ....,q

′
N.)
′, Z = (Z′1.,Z

′
2., ...,Z

′
N.)
′ G = (G′1.,G

′
2., ...,G

′
N.)
′. The

vectors qi. and the matrices Zi., Gi. i = 1, 2, .., N , depending on the three possible sets of conditions
(and under the further assumption of strictly exogenous regressors), are given by:
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(i) Under the difference moment conditions (7) and (8):

Zi. = Zd
i.

(T−1)×(1+2k)T (T−1)/2

=


yi0,x

′
i1, ...,x

′
iT 0 ... 0

0 yi0, yi1,x
′
i1, ...,x

′
iT ... 0

. . . ...
0 0 ... yi0, ..., yi,T−2,x

′
i1, ...,x

′
iT

 , (18)

qi. = qdi.
(T−1)×1

=

 ∆yi2
...

∆yiT

 ,Gi. = Gd
i.

(T−1)×(k+1)

=

 ∆yi1 ∆x′i2
...

...
∆yi,T−1 ∆x′iT

 . (19)

(ii) Under the level moment conditions (11) and (13):

Zi. = Z`
i.

(T−1)×[2kT+(T−1)](T−1)/2

=


∆yi1,∆x′i1, ...,∆x′i,T 0 ... 0

0 ∆yi1,∆yi2,∆x′i1, ...,∆x′i,T ... 0
. . . ...

0 0 ... ∆yi1, ...,∆yi,T−1,∆x′i1, ...,∆x′i,T

 ,(20)

qi. = q`i.
(T−1)×1

=

 yi2

yiT

 ,Gi. = G`
i.

(T−1)×(k+1)

=

 yi1 x′i2

yi,T−1 x′iT

 . (21)

(iii) Under both difference and level moment conditions:

Zi. = Zsys
i.

2(T−1)×(T−1)[(1+2k)T/2+(1+k)]

=


Zd,i 0 0
0 ∆yi1,∆x′i2 0 ... 0
... ∆yi2,∆x′i3

... 0
0 0 0 ... ∆yi,T−1,∆x′iT

 ,(22)

qi. = qsysi.
2(T−1)×1

=

(
q`i.
qdi.

)
,Gi. = Gsys

i.
2(T−1)×(k+1)

=

(
Gd
i.

G`
i.

)
. (23)

In addition to moments (17), following Kelejian and Prucha (1999), Liu, Lee, and Bollinger
(2010), and others, we propose the following r quadratic conditions in the error term for estimation
of the spatial parameter:

1

2N (T − 1)
E [∆ε′ (A` ⊗ IT−1) ∆ε] = 0, ` = 1, 2, ..., r, (24)

where
∆ε = [(IN − δ0W)⊗ IT−1] ∆u = [(IN − δ0W)⊗ IT−1]

(
∆y −∆Gdγ0

)
,
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∆y = (∆y′1.,∆y′2., ...,∆y′N.)
′ with ∆yi. = (∆yi2,∆yi3, ...,∆yiT )′, Gd =

(
Gd′

1.,G
d′
2., ...,G

d′
N.

)′
with

Gd
i. provided in (19), and A` are N × N non-stochastic matrices with generic elements aij,`, and

having bounded row and column norms. Following the work by Liu, Lee, and Bollinger (2010), to
render estimation robust against unknown heteroskedasticity we assume that the matrices inside
the quadratic form have zero diagonal elements, i.e., aii,` = 0, for i = 1, 2, ..., N and ` = 1, 2, ..., r.
We refer to Moscone and Tosetti (2011) for a discussion on various possible choices for the inner
matrices in (24). In the Appendix, we describe the GMM estimator of the SAR coeffi cient based
on moments (24). We next introduce a two-step GMM estimator of the slope parameters in (1),
that accounts for spatial dependence.

4.2 Two-step estimation of the slope parameters

Estimation of γ0 can proceed adopting the following two-step procedure. First, compute the con-
ventional one-step GMM estimator, which ignores spatial error dependence, and is given by:

γ̂ =
(
S′ZWD−1

u SZW
)−1

S′ZWDu
−1SZq, (25)

where

SZW = Z′G,SZq = Z′q, (26)

Du = Z′ (IN ⊗P) Z, (27)

with P being

P = Pd

(T−1)×(T−1)
=


2 −1 ... 0

−1 2
...

...
. . . −1

0 ... −1 2

 , (28)

P = Pl

(T−1)×(T−1)
= IT−1, (29)

P = Psys

2(T−1)×2(T−1)
=

(
Pd 0
0 Pl

)
, (30)

for the three sets of moments, respectively. Hence, calculate the residuals:

∆ûit = ∆yit − γ̂ ′∆gdit, (31)

which can be used in the minimization problem (A.10), set out in the Appendix, to obtain δ̂. Finally,
apply to the variables a Cochrane-Orcutt-type transformation to get, in the case of difference or
level moment conditions,3 Z̃ =

[(
IN − δ̂W

)
⊗ IT−1

]
Z, q̃ =

[(
IN − δ̂W

)
⊗ IT−1

]
q, and G̃ =[(

IN − δ̂W
)
⊗ IT−1

]
G and compute a two-step estimator that accounts for spatial correlation:

γ̂II =
(
S̃′ZW D̃−1

u S̃ZW

)−1

S̃′ZW D̃−1
u S̃Zq, (32)

3In the case both difference and level conditions are taken the appropriate transformations are Z̃sys =[(
IN − δ̂S

)
⊗ I2(T−1)

]
Zsys, q̃sys =

[(
IN − δ̂S

)
⊗ I2(T−1)

]
qsys, and W̃sys =

[(
IN − δ̂S

)
⊗ I2(T−1)

]
Wsys.
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where now

S̃ZW = Z̃′G̃, S̃Zq = Z̃′q̃, (33)

D̃u = Z̃′ (IN ⊗P) Z̃, (34)

and P being one of the three matrices (28)-(30). In the following, we provide a theorem for consis-
tency and asymptotic normality of GMM estimators (25) and (32) based on difference conditions
(7) and (8). Suppose that the following assumption holds:

Assumption 5 The matrix 1
N(T−1)

(S′ZWD−1
u SZW ) has finite elements and is non-singular; the

matrix 1
N(T−1)

S′ZWD−1
u Zd′ has finite elements and is full rank.

Theorem 1 Suppose the Assumptions 1-5 are satisfied. Then the one-step estimator γ̂, given by
(25) and based on conditions (7) and (8), is consistent and asymptotically normal for N →∞ and
fixed T with

γ̂ − γ0
a∼

N
(
0,
(
S′ZWD−1

u SZW
)−1

S′ZWD−1
u Zd′ [R0ΣR′0 ⊗Pd

]
ZdD−1

u SZW
(
S′ZWD−1

u SZW
)−1
)
. (35)

with R0 = (IN − δ0W)−1. Further, let δ̂ be the solution of (A.10) based on residuals (31). Then
the two-step estimator γ̂II , given by (32) and based on conditions (7) and (8), is consistent for γ0,
and asymptotically normal for N →∞ and fixed T , with

γ̂II − γ0
a∼ N

(
0,
(
S∗′ZWD∗−1

u S∗ZW
)−1

S∗′ZWD∗−1
u Z∗′

(
Σ⊗Pd

)
Z∗D∗−1

u S∗ZW
(
S∗′ZWD∗−1

u S∗ZW
)−1
)
,

(36)
where S∗ZW = [(IN − δ0W)⊗ IT−1] SZW , D

∗
u = [(IN − δ0W)⊗ IT−1] Du, and Z∗ = [(IN − δ0W)⊗ IT−1] Z.

Proof. Consider

γ̂ − γ0 =
(
S′ZWD−1

u SZW
)−1

S′ZWD−1
u Z′∆u, (37)

γ̂II − γ0 =
(
S̃′ZW D̃−1

u S̃ZW

)−1

S̃′ZW D̃−1
u Z̃′∆ũ. (38)

Note that (37) can be written as

γ̂ − γ0 =
(
S′ZWD−1

u SZW
)−1

S′ZWD−1
u Z′

[
(IN − δ0S)−1 ⊗D

]
ε.

Result (35) follows by applying the central limit theorem provided in Kelejian and Prucha (1998) (see
page 112), since under Assumption 5 it is easily seen that the matrix (S′ZWD−1

u SZW )
−1

S′ZWD−1
u Z′

[
(IN − δ0S)−1 ⊗D

]
has finite elements and bounded row and column norms. Now consider (38), and note that, given
the
√
N -consistency of δ,(

S̃′ZW D̃−1
u S̃ZW

)−1

−
(
S∗′ZWD∗−1

u S∗ZW
)−1

= O

(
1√
N

)
, (39)

S̃′ZW D̃−1
u Z̃′∆ũ− S∗′ZWD∗−1

u Z∗′∆ε = O

(
1√
N

)
(40)
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It follows that (36) holds.
Similar results can be obtained using level moments under analogous conditions. An estimator

of the asymptotic variance of γ̂II , robust to heteroskedasticity in errors is

̂V ar
(
γ̂II
)

=
(
S̃′ZW D̃−1

u S̃ZW

)−1

S̃′ZW D̃−1
u Z̃′ (IN ⊗Pe) Z̃D̃−1

u S̃ZW

(
S̃′ZW D̃−1

u S̃ZW

)−1

, (41)

with

Pe =
1

N

N∑
i=1

(
q̃i. − G̃i.γ̂

II
)(

q̃i. − G̃i.γ̂
II
)′
. (42)

The two-step GMM estimator γ̂II can be computed using optimal weights (see Arellano and Bover
(1995)) as follows:

γ̂IIe =
(
S̃′ZW D̃−1

e S̃ZW

)−1

S̃′ZW D̃−1
e S̃Zq, (43)

where S̃ZW and S̃Zq are given by (33), and D̃e = Z̃′ (IN ⊗Pe) Z̃, with Pe given by (42). An
estimator of the variance of γ̂IIe robust to heteroskedasticity in errors is

̂V ar
(
γ̂IIe
)

=
(
S̃′ZW D̃−1

e S̃ZW

)−1

. (44)

In the appendix we provide a small Monte Carlo exercise to investigate the properties of the above
estimators.

5 Data and descriptive statistics

Data on NPLs and the other bank-related variables are collected from the database Statistics on
Depository Institutions maintained by the Federal Deposit Insurance Corporation (FDIC). This
database contains detailed information on all FDIC-insured commercial banks and saving institu-
tions, which represents the great majority in the US. In this paper, bank-related variables for each
MSA are computed as sums of quantities associated to branches located within the MSA. By doing
this, we are implicitly assuming that all mortgage borrowers live in the MSA of the branch offi ce
where they take the loan. However, it is important to observe that a branch located in a MSA
could also lend to customers residing in other MSAs for example through brookers. According to
Xu and Zhang (2012), evidence from Home Mortgage Disclosure Act data suggests that less than
half of mortgage loans made during 2005-2008 were originated by banks chartered in the borrower’s
state with a branch offi ce in the same MSA where the borrowers reside, the remaining were either
originated by a bank chartered outside of the borrower’s state, or by a bank without a branch offi ce
in the borrower’s MSA. To mitigate this problem of misallocation of loans to MSAs, we have decided
to drop from our sample all inter-States banks, operating across several US States. By doing this,
the amount of loans for which the borrower and lender are located in the same MSA rises to over
72 per cent of total loans (see Xu and Zhang (2012) for details). After this cleaning procedure, our
sample includes between 6,700 and 9,600 institutions located in 366 MSAs, over the period 2000 to
2011.4

4We note that the number of MSAs or which we have financial information reduces to 357 towards the end of the
sample period.

14



Bank NPLs (NPLit) are defined as the sum of loans that are in arrears, i.e. borrowed money
upon which the debtor has not made her scheduled payments, for at least 90 days. Technically, we
measure arrears as the sum of 90 days or more past due loans for 1-to-4 family residential properties
plus their loans that are past due in nonaccrual status. We then divide the sum of all arrears held
by any bank belonging to the MSA, by total gross loans held by banks belonging to the MSA.
Given that the ratio of non-performing loans to total loans takes values in the range [0, 1], in the
regression we use as dependent variable its logit transformation yit = ln [NPLit/ (1−NPLit)].
The variable EQASSit is calculated as the ratio of equities divided by total assets owned by

any banks within the MSA, while HHIit is the Herfindahl index of total assets in the ith MSA at
time t.

Data on NPLs and other bank-related variables are then matched with data at MSA level for
the same period on house prices, GSE loan purchases, and local socio-economic conditions. House
prices and data on GSE purchases are collected from the Federal Housing Finance Agency (FHFA).
Specifically, HPit refers to the average house price of single-family properties within the ith MSA
whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac.5 Similarly,
GSEit is the number of single-family mortgages purchased by Fannie Mae or Freddie Mac within the
ith MSA. In our regression analysis, we have divided this variable by total population in the MSA.
Data on per capita-personal income, unemployment and mortgage rate are gathered from Bureau of
Economic Analysis, Bureau of Labor Statistics and FHFA, respectively. Finally, population density
is taken from the Census. We observe that data on mortgage interest rate are at State level.
As discussed in Section 1, to investigate the effect of housing price and GSE loan purchases

on NPLs, the sample is split into two sub-samples, with the first sub-sample covering the years
2000-2005, preceding the bust of the real estate bubble, and the second sub-period covering the
house-price bubble bursting, over the years 2006 to 2011. In addition, to take into account for
possible endogeneity of house price and the financial variables, in estimation we follow Blundell,
Bond, and Windmeijer (2000) and for these variables we excluded from the set of instruments in
(9) and (14) those for s = t− 1.

Table 6 reports the descriptive statistics for the variables under study in the two sub-periods.
The statistics indicate a deterioration in the financial and economic conditions in the second period,
characterised, on average, by larger NPLs and unemployment rates, and a real income only slightly
growing. Mortgage interest rates decrease in the second period. Such decrease can be explained by
the monetary policy response to the financial crisis, which has reduced considerably interest rates
with the aim to inject liquidity in the system. On the other side, GSE loan purchases decrease
dramatically in the second period. Such reduction is probably due to the US government policy
response to the financial meltdown after 2005. GSEs were placed under conservatorship in 2008
in order to prop up their mortgage activities and the number of government backed mortgages
decreased. While descriptive statistics indicate a rise in average real house prices between the two
sub-periods, the dynamic of this variable can be better appreciated by looking at Figure 1, which
shows the temporal pattern of average house prices, total GSE loan purchases and average NPLs

5We observe that, since HPit only includes houses with conforming, conventional loans, it does not include
information on house prices purchased via jumbo mortgages, i.e., in an amount above conventional conforming loan
limits.
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in the US. This figure shows that the rapid rise in house prices experienced in the first half of
the sample period is followed by a decrease in the second half. At the same time, NPLs show an
initial stable pattern below 1 per cent, while blowing up to above 3 per cent towards the end of the
sample period. As for GSE loan purchases, these grow consistently until 2003, year in which they
fall precipitously, remaining low for the following years.
Figure 2 and 3 show the quantile distribution of house prices and NPLs, respectively, in the

two sub-periods and across metro areas. The two figures indicate a marked heterogeneity in these
variables across the US. Also, it is interesting to observe that, when passing from boom to bust
sub-period, both variables show a sharp increase in their geographical concentration. In particular,
during the housing bust, NPLs and house prices tend to distribute in clusters, with the East and
West coasts showing the highest values, and the Midwest region characterised by clusters of values
belonging to the lowest quantiles.

6 Estimation results

Tables 7 and 8 present the estimated parameters for the two sub-periods. In both tables, the upper
panel presents the estimated parameters for the model using conventional GMM estimation with
no spatial errors, whereas the estimation results using the proposed GMM approach are reported
in the bottom panel. Following our Monte Carlo experiments, we report three alternative GMM
estimators, the GMM estimator using difference conditions (7)-(8) (column I, GMM-DIF), using
level conditions (11), (13) (column II, GMM-LEV) and the GMM estimator based on a combination
of these two sets (column III, GMM-SYS). Given the high degree of heterogeneity across MSAs, we
report standard errors that are robust to heteroskedasticity in errors.

Looking at the results, from the top and the bottom panels in Table 7, as expected NPLs are
characterised by significant temporal dynamics, with λ̂ ranging between 0.23 and 0.42, depending
on the set of moments considered for estimation. Results also show that house prices negatively
affect NPLs for all estimators. This result seem to be in line with the collateral hypothesis outlined
in Koetter and Poghosyan (2010), according to which real estate price appreciation prevents (sub-
prime) mortgage borrowers from defaulting (see also Daglish (2009)). The estimated coeffi cient
for GSEi,t−1 is not significant for all estimators. As for the covariates on the economic and social
conditions, Table 7 shows that, after controlling for spatial dependence, growth in personal income
reduces NPLs. Unemployment rate, by negatively impacting on the cash flow streams of households
and increasing the debt burden, has a positive effect on NPLs. These results confirm that a rising
income and decreasing unemployment rate is associated with reduced financial distress, and lower
probability rates of default (Lawrence (1995)). In general, our results corroborate evidence in
Rinaldi and Sanchis-Arellano (2006) on the impact of current income and unemployment rate on
the probability of default. The coeffi cient attached to interest rate is positive for most estimators,
but, after controlling for spatial dependence, statistically insignificant. We observe that our data
on the interest rate is at State level, and thus our estimates for this coeffi cient may not capture well
the relationship between NPLs and mortgage interest rate. Finally, as expected, population density
has a positive impact on NPLs, although the effect is significant only when controlling for spatial
dependence. Moving to the bank-specific variables, the estimated coeffi cient of the equity ratio,
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although showing the correct sign, is in general not significant. Focusing on HHI, it is interesting to
observe that the estimated coeffi cient attached to this variable is positive and significant, supporting
the concentration-fragility view in the period of housing boom. Coming to the variable SIZEit,
from Table 7 it appears that small banks suffer from higher NPL levels during boom period. This is
probably due to the fact that smaller banks have less market power, less economies of scale, and less
diversification opportunities among their customers and products (Salas and Saurina (2002)). The
variable BRANCHESit has a negative sign although not significant, no matter the model under
consideration.

Results on the estimation on the second sub-period are reported in Table 8, and confirm a
temporal dynamic in NPLs similar to the first sub-period, and a negative effect of real estate prices
on NPLs. Such negative coeffi cient relative to a period characterised by house prices depreciating
rapidly, may be explained by the fact that speculative buyers and owner-occupiers that are unwilling
or unable to repay their mortgages, find it diffi cult to roll over their loans or sell their properties,
and hence start to default. Contrary to the first sub-period, the estimated coeffi cient for GSEi,t−1

is now positive and significant once controlled for spatial dependence, indicating that a rise in the
number of real estate mortgages backed by government-sponsored enterprises grows NPLs, thus
deteriorating the quality of banks’loan portfolio. Such result has interesting policy implications.
The activity of GSEs, directed to enhance home-ownership opportunities for the population, should
not have such effect on financial stability, which is known to have an negative impact on real
economy thus offsetting the primary goals of GSEs.
As for the covariates on the economic and social conditions, results are very similar to those

in the first sub-period, for disposable income unemployment rate and population density. The
coeffi cient attached to interest rate is in most cases positive, but, after controlling for spatial depen-
dence, statistically insignificant. This is probably due to the aggressive monetary policy response
to the financial crisis, which adopted several measures to inject liquidity in the system, including
exceptionally low interest rates. Finally, as expected, population density has a positive impact
on NPLs, although the effect is significant only when controlling for spatial dependence. Coming
to the bank-specific variables, the estimated coeffi cient of the equity ratio turns to be significant,
indicating that during housing bust, MSAs with high proportion of thinly capitalized banks are
exposed to greater financial instability. Indeed, banks with low capitalization may invest more on
high-risk assets, resulting in an impaired loan quality. In this respect, our result is in line with Davis
and Zhu (2005) who find that capital ratio reduce NPLs, while positively influencing bank margin,
the loan provision and return on assets. The authors find that banks with high NPLs typically
have low capital ratios. Focusing on HHI, it is interesting to observe that the estimated coeffi cient
attached to this variable, while positive and significant in the first sub-period, is now negative and
significant. Hence, our results seem to support the concentration-stability hypothesis in the years
during the bubble bust. Empirical evidence in favour of the concentration-stability view can be
found in several studies (see Beck (2007) for a review), although these are mostly carried at country
level. Finally, the variable SIZEit has the expected negative sign, while BRANCHESit has no
significant effect on NPLs.
Table 7 and 8 also show strong and significant spatial effects in NPLs both in the period of

housing boom and bust, indicating that some unobservable affecting NPLs are geographically con-
centrated. It is interesting to observe that the spatial coeffi cient rises between the first and the
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second sub-periods from around 0.4-0.5 in the first sub-period to over 0.7. Such growth in the
spatial effects confirms the increased geographical concentration in NPLs observed in Figure 3, and
may be explained by the deterioration in the economic and social conditions experienced in the
second sub-period, which is also likely to be accompanied by a higher geographical concentration
of unobservables, such as poverty and criminality.
It is important to observe that the three estimators DIF, LEVEL and SYS yield sometimes

different results in terms of signs and size of estimated coeffi cients. Given the high degree of
heterogeneity that we expect in this study, and the temporal persistence in the variable of our
model, in general we believe that the GMM-SYS is more appropriate in this application. Our
specification tests indicate the validity of the instruments used for estimation in all cases, and the
absence of second order error serial correlation.

7 Concluding remarks

This paper has investigated spatio-temporal variations in ex-post credit risk as a function of real
estate prices, loan purchases made by GSEs, and a set of local characteristics, using data on US
metropolitan statistical area over the period 2000 to 2011. We have given a number of contributions
to existing empirical literature on nonperforming loans. Differently from previous work, we have
used data at metro level, to properly capture the effect of local social, economic and financial
conditions on financial stability. Our results point to a significant negative impact of real estate
prices on ex-post risk, both during and before the bust of the bubble. In a period of house prices
rising fast, this result corroborates the hypothesis that wealth can play the role of a buffer in case of
unexpected shocks or that housing wealth can be used as collateral to ease access to credit. During
the bursting of the bubble, when house prices start falling below the nominal value of loans, the
negative impact of real estate prices on NPLs is explained by an increase in default rates due to
speculative buyers and owner-occupiers that are unwilling or unable to repay their mortgages and
have diffi culties in selling their properties. Our results also indicate a significant positive impact of
GSE loan purchases on ex-post risk, only in the period during the bust of the bubble. Hence, in a
period of crisis, the activity of GSEs seems to contribute to enhancing financial fragility, rather than
working as a economic cushion to mortgage markets. We also found a marked spatial concentration
of unobservables, that rises consistently during the bubble bust. Such result may be explained by
the worsening of social and economic conditions, which in turn may have accentuated the spatial
clustering of poverty and deprivation across the territory in this period.
Another major contribution of this paper has been to extend existing econometric methods

adopted to study the determinants of NPLs, to account for possible spatial dependence present
in the data. To this end, we have developed an ad-hoc GMM procedure to estimate a fist-order
dynamic panel data regression model with group-specific effects and spatial autoregressive errors.
This procedure may be adopted to investigate a large number of economic problems characterised by
both spatial and temporal patterns. For instance, they may be useful for estimating cross-country
growth regressions as in Caselli, Esquivel, and Lefort (1996), studying spatio-temporal patterns in
consumption behaviour (see, for example, Browning and Collado (2007)), or exploring the dynamics
in the production of firms as in Blundell and Bond (2000).
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Appendices
In these appendices we first introduce the GMM estimator of the SAR coeffi cient, and prove its consistency
and asymptotic normality. We then provide results for a small Monte Carlo exercise. For our statistical
derivations, it is useful to introduce the following lemma.

Lemma 1 Let ∆ε = (∆ε′1.,∆ε
′
2., ...,∆ε

′
N.)
′, ∆εi. = (∆εi2, ...,∆εiT )′, be a N (T − 1)-dimensional vector

with εit satisfying Assumption 1, and let A`, for ` = 1, 2, ..., r, be non-stochastic matrices with zero diagonal
elements. We have, for ` = 1, 2, ..., r,

1

2N (T − 1)
E
[
∆ε′ (A` ⊗ IT−1) ∆ε

]
= 0, (.45)

V ar

[
1

2N (T − 1)
∆ε′ (A` ⊗ IT ) ∆ε

]
=

6 (T − 2) + 4

4N2 (T − 1)2Tr
[
(ΣA`)

2 + ΣA`A
′
`Σ
]

(.46)

Cov

[
1

2N (T − 1)
∆ε′ (A` ⊗ IT ) ∆ε,∆ε′ (Ah ⊗ IT ) ∆ε

]
=

6 (T − 2) + 4

4N2 (T − 1)2Tr
(
ΣA`ΣAh + ΣA`A

′
hΣ
)
,

(.47)

E

[
1

2N (T − 1)
∆ε∆ε′ (A` ⊗ IT ) ∆ε

]
= 0. (.48)

Proof. The above can be proved using results on moments of quadratic forms (see Moscone and Tosetti
(2011))6 and noting that we can rewrite ∆ε as follows:

∆ε
N(T−1)×1

= (IN ⊗D) ε
NT×1

,

where ε = (ε′1., ε
′
2., ..., ε

′
N.)
′ , with εi. = (εi1, ..., εiT )′, and D is a rectangular matrix given by:

D
(T−1)×T

=


−1 1 0 0 0
0 −1 1
0 −1 ...
... ... 1 0
0 ... −1 1

 , (.49)

so that we can rewrite the quadratic form as follows:

1

2N (T − 1)
∆ε′ (A` ⊗ IT−1) ∆ε =

1

2N (T − 1)
ε′
(
A` ⊗D′D

)
ε,

where the elements of the NT -dimensional vector, ε, are independently distributed, and

D′D
T×T

=



1 −1 0 0 0
−1 2 −1
0 −1 2 ...
... ...
0 ... 2 −1

−1 1

 .

6A detailed proof is available upon request.
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A Estimation of the SAR coeffi cient
Suppose that we can find an estimator, γ̂, consistent for the unknown parameters, γ0. This can be obtained
by computing the GMM estimator based solely on the set of moments (17). In a non-spatial setting (i.e.,
under δ0 = 0), this estimator is unbiased and consistent for N tending to infinity, and T fixed (see
Arellano and Bond (1991) and Alvarez and Arellano (2003)). As it will be shown below (see, in particular,
Theorem 1), this is true also when errors are spatially correlated. Let M (δ) = [M1 (δ) , ...,Mr (δ)]′ be
a vector containing the r conditions (24), and consider their empirical counterpart given by MNT (δ) =
[MNT,1 (δ) , ...,MNT,r (δ)]′, where:

MNT,` (δ) =
1

2N (T − 1)
∆ε̂ (δ)′ (A` ⊗ IT−1) ∆ε̂ (δ) ,

with
∆ε̂ (δ) = [(IN − δW)⊗ IT−1] ∆û = [(IN − δW)⊗ IT−1]

(
∆y −Gdγ̂

)
,

The following proposition holds.

Proposition 1 Under Assumptions 1-4 we have, for all δ ∈ [cl, cu],

1

2N (T − 1)

(
∆ε̂ (δ)′ (A` ⊗ IT−1) ∆ε̂ (δ)−∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ)

)
= Op

(
1

N

)
, (A.1)

1

2N (T − 1)

[
∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ)− E

(
∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ)

)]
= Op

(
1√
N

)
. (A.2)

Proof. We now sketch the proof, and refer to Liu, Lee, and Bollinger (2010), Lee (2007), Kapoor, Kelejian,
and Prucha (2007), Kelejian and Prucha (2009), and Moscone and Tosetti (2011) for further details on the
convergence of quadratic forms. First, consider

∆ε̂ (δ) = [(IN − δW)⊗ IT−1] ∆û = [(IN − δW)⊗ IT−1]
(

∆y −Gdγ̂
)

= [(IN − δW)⊗ IT−1]
[
Gd (γ̂ − γ0) + (IN − δ0W)−1 ∆ε

]
= [(IN − δW)⊗ IT−1] Gd (γ̂ − γ0) +

[
(IN − δW) (IN − δ0W)−1 ⊗ IT−1

]
∆ε,

Noting that (IN − δW) (IN − δ0W)−1 can be also written as

(IN − δW) (IN − δ0W)−1 = (IN − δ0W + δ0W − δW) (IN − δ0W)−1

= IN + (δ0 − δ) W (IN − δ0W)−1 = P (δ) , (A.3)

we can rewrite ∆ε (δ) and ∆ε̂ (δ) as follows

∆ε (δ) =
[
(IN − δW) (IN − δ0W)−1 ⊗ IT−1

]
∆ε =

[(
IN + (δ0 − δ) W (IN − δ0W)−1 ⊗D

)]
ε

= [P (δ)⊗ IT−1] ∆ε (A.4)

∆ε̂ (δ) = [(IN − δW)⊗ IT−1] Gd (γ̂ − γ0) + [P (δ)⊗ IT−1] ∆ε. (A.5)
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To prove (A.1), note that

1

2N (T − 1)
∆ε̂ (δ)′ (A` ⊗ IT−1) ∆ε̂ (δ)

=
1

2N (T − 1)
(γ̂ − γ0)′Gd′ [(IN − δW)′A` (IN − δW)⊗ IT−1

]
Gd (γ̂ − γ0)

+
2

2N (T − 1)
(γ̂ − γ0)′Gd′ [(IN − δW) ′A`P (δ)⊗ IT−1

]
∆ε

+∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ)

=
1

2N (T − 1)
(γ̂ − γ0)′Gd′ (B` ⊗ IT−1) Gd (γ̂ − γ0)

+
2

NT
(γ̂ − γ0)′Gd′ (C` ⊗ IT−1) ∆ε+ ∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ) .

where B` = (IN − δW)′A` (IN − δW), C` = (IN − δW)′A`P (δ). Under Assumptions 3-4 B` and C`,
have row and column norms that are uniformly bounded. Given the

√
N -consistency of γ̂, it is easily seen

that

1

2N (T − 1)
(γ̂ − γ0)′Gd′ (B` ⊗ IT−1) Gd (γ̂ − γ0) ≤ K

1

2N (T − 1)
(γ̂ − γ0)′Gd′Gd (γ̂ − γ0)

= Op

(
1

N

)
,

2

2N (T − 1)
(γ̂ − γ0)′Gd′ (C` ⊗D) ε =

1

N (T − 1)

N∑
i=1

N∑
j=1

c`,ij (γ̂ − γ0)′Gd′Dεj.

= Op

(
1

N

)
.

It follows that

1

2N (T − 1)
∆ε̂ (δ)′ (A` ⊗ IT−1) ∆ε̂ (δ) =

1

2N (T − 1)
∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ) +Op

(
1

N

)
,

which proves (A.1). As for (A.2), using (A.4) we have

1

2N (T − 1)
∆ε (δ)′ (A` ⊗ IT−1) ∆ε (δ) =

1

NT
ε′
[
P (δ)′A`P (δ)⊗D

]
ε (A.6)

where P (δ) is given by (A.3), and has uniformly bounded row and column norms. Using Lemma 1, the
mean of (A.6) satisfies

E

{
1

2N (T − 1)
ε′
[
P (δ)′A`P (δ)⊗D

]
ε

}
=

1

2N (T − 1)
Tr
(
ΣP (δ)′A`P (δ)

)
Tr
(
D′D

)
=

1

N
Tr
(
ΣP (δ)′A`P (δ)

)
= O(1).

25



Let B` = P (δ)′A`P (δ) with elements bij,`, and note that the diagonal elements of (B` ⊗D) are 2bii,`, for
i = 1, 2, ..., N, t = 1, 2, ..., T . Then the variance of (A.6) satisfies

V ar

[
1

2N (T − 1)
ε′
(
B` ⊗D′D

)
ε

]
=

1

4N2 (T − 1)2

N∑
i=1

4b2ii,`
[
E
(
ε4
it

)
− 3σ4

0i

]
+

1

2N2 (T − 1)2Tr
[(

D′D
)2]

Tr
[
(ΣB`)

2 + ΣB`B
′
`Σ
]

= O

(
1

N

)
, (A.7)

which proves (A.2).
Let

V (θ0) = lim
N→∞

E
[
NMNT (δ0) MNT (δ0)′

]
, (A.8)

where θ0 =
(
δ0, σ

2
01, ..., σ

2
0N

)′. Given Lemma 1 (see in particular result (.46)), the above matrix has generic
(`, h)th element, v`h, given by

v`h = lim
N→∞

6 (T − 2) + 4

4N (T − 1)2 Tr
[
ΣA`ΣAh + ΣA`A

′
hΣ
]
. (A.9)

We observe that the factor 6(T−2)+4

4N(T−1)2
appears in the above expression because Tr

[
(D′D)2

]
= 6 (T − 2) + 4

enters in the expectation (where D is given in (.49)). Under the assumption of bounded row and column
norms of the matrices A` and Ah, it is easily seen that v`h = O (1). We take up the following assumptions
needed for identificability of parameters (see also Moscone and Tosetti (2011)):

Assumption 6 The matrix V (θ0) is non-singular, i.e. we assume λr (V (θ0)) ≥ K > 0.

Assumption 7 There exists at least one moment condition, the `th, for which we have either Tr
[
ΣA`W (IN − δ0W)−1

]
6=

0, or Tr
[
Σ
(

(IN − δ0W
′)−1 W′A`W (IN − δ0W)−1

)]
6= 0.

The GMM estimator δ̂ of δ0 is the solution to the following optimization problem

δ̂ = arg min
δ∈[cl,cu]

{
MNT (δ)′QNTMNT (δ)

}
, (A.10)

where [cl, cu] is the parameter space (see Assumption 4), and QNT is a r × r, positive definite, weighting
matrix, such that

QNT
p→Q.

The following theorem states that δ̂ is consistent for δ0 and establishes its asymptotic distribution.

Theorem 2 Under Assumptions 1-7, δ̂ in (A.10) is consistent for δ as N →∞ and for T fixed. Further,
we have √

N
(
δ̂ − δ0

)
a∼ N

(
0,
(
d′Qd

)−1
d′QVQd

(
d′Qd

)−1
)
, (A.11)

where d = d (θ0) = − lim
N→∞

E
[
∂
∂δMNT (δ)

∣∣
δ=δ0

]
.
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Proof. Consistency and asymptotic normality of δ̂ can be proved using results from Proposition and
following the same lines of reasoning as in Moscone and Tosetti (2011). See also Kelejian and Prucha
(1999), Liu, Lee, and Bollinger (2010), Lee (2007), and Kelejian and Prucha (2009) for further details on
consistency of GMM estimators of spatial models.

The effi cient GMM estimator can be obtained by imposing, in (A.10), the optimal weights given by
Q = Q∗ = V−1 (see Greene (2002) on this). Notice that the `th element of d is (see Appendix A.1)

d` = lim
N→∞

1

N
Tr
(
Σ
(
A` + A′`

)
W (IN − δ0W)−1

)
. (A.12)

Since Q∗ and d depend on θ0, they can be proxied by Q∗ = Q∗
(
θ̂
)
, and d = d

(
θ̂
)
, where θ̂ =(

δ̂, 1
2(T−1)

∑T
t=1 (∆ε̂1t)

2 , ..., 1
2(T−1)

∑T
t=1 (∆ε̂Nt)

2
)′
.

A.1 The elements of d

We now show that
[
∂
∂δMNT (δ)

∣∣
δ=δ0

]
p→ lim
N→∞

E
[
∂
∂δMNT (δ)

∣∣
δ=δ0

]
, and derive the elements of the vector

d, introduced in Theorem 2. First note that

∂

∂δ
∆ε (δ) =

[
∂

∂δ

(
IN + (δ0 − δ) W (IN − δ0W)−1 ⊗ IT−1

)]
∆ε

= −
[
W (IN − δ0W)−1 ⊗ IT−1

]
∆ε.

Hence, following similar lines of reasoning as in Moscone and Tosetti (2011), we obtain for the `th empirical
moment

∂

∂δ
MNT,` (δ) = − 1

2N (T − 1)
∆ε (δ)′

[
A`W (IN − δ0W)−1 ⊗ IT−1

]
∆ε

− 1

NT
∆ε′

[(
IN − δ0W

′)−1
W′A` ⊗ IT−1

]
∆ε (δ)

= − 1

2N (T − 1)
∆ε′

[(
IN + (δ0 − δ)

(
IN − δ0W

′)−1
W′
)

A`W (IN − δ0W)−1 ⊗ IT−1

]
∆ε

− 1

2N (T − 1)
∆ε′

[(
IN − δ0W

′)−1
W′A`

(
IN + (δ0 − δ) W (IN − δ0W)−1

)
⊗ IT−1

]
∆ε.

Thus, at δ0,

∂

∂δ
MNT,` (δ0) = − 1

2N (T − 1)
∆ε′

{[(
A` + A′`

)
W (IN − δ0W)−1

]
⊗ IT−1

}
∆ε,

The mean of − ∂
∂δMNT,` (δ0) is

d` = −E
[
∂

∂δ
MNT,` (δ0)

]
=

1

2N (T − 1)
E
{
ε′
[((

A` + A′`
)
W (IN − δ0W)−1

)
⊗D′D

]
ε
}

=
1

N
Tr
[
Σ
(
A` + A′`

)
W (IN − δ0W)−1

]
.

Further, following similar lines of reasoning as in (A.7), it is possible to show that the variance of

V ar
[
− ∂
∂δMNT,` (δ0)

∣∣
δ=δ0

]
= O

(
1
N

)
. It follows that − ∂

∂δMNT (δ)
∣∣
δ=δ0

p→ d, where d = (d1, d2, ..., dr)
′ .
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B Monte Carlo evidence
We consider the following data generating process

yit = αi(1− λ) + λyi,t−1 + βxit + uit, t = −m+ 1,−m+ 2, .., 0, 1, ..., T, (B.1)

yi,−m = αi + βxi,−m + ui,−m, (B.2)

with

uit = δ
N∑
j=1

wijujt + εit, t = −m,−m+ 1,−m+ 2, .., 0, 1, ..., T, (B.3)

and εit ∼ IIDN(0, σ2
i ), σ

2
i ∼ IIDU(0.05, 0.95), t = −m,−m + 1, ..., 0, 1, ..., T . We assume the spatial

weights matrix W is a row standardised regular lattice of 1st order, with elements wij = 1 if units i and j
are contiguous and wij = 0 otherwise. The spatial weight matrix is defined in a circular fashion, whereby
the first cross section unit is placed adjacent to the last unit. We discard the first m observations, using
the observations t = 0 through T for estimation. We assume that the regressor, xit, is generated by

xit = αi + ζit, t = −m,−m+ 1, .., 0, 1, ..., T. (B.4)

where

ζit = φζi,t−1 + εit, t = −49−m,−48−m, ..., 0, 1, ..., T (B.5)

εit ∼ IIDN(0, σ2
i,ε), εi,−m−50 = 0, (B.6)

σ2
ε,i is fixed such that R

2
∆yi

= 0.4 under no spatial error dependence (i.e., δ = 0) (see, in particular, formula
(8.5) in Hsiao, Pesaran, and Tahmiscioglu (2002)). We discard the first 50 observations of ζit and use the
remaining (T + 1 +m) observations for generating xit and yit. The individual-specific coeffi cients are fixed
across experiments and set to:

αi =
qi − 1√

2
, qi ∼ χ2

1, (B.7)

In the simulations, we set β = 1, and try λ = 0.3, 0.7, δ = 0.0, 0.3, 0.7. We consider N = 300, 500, keeping
T = 5, fixed, and running 1, 000 replications for each experiment.

We provide results for the conventional GMM estimators with optimal weights for λ and β ignoring
spatial dependence (see, for example, equation (3.2) in Arellano and Bover (1995)), and for the two-step
estimator (43)-(44), using either difference conditions (7)-(8) (GMM-DIF), or level conditions (11), (13)
(GMM-LEV), or a combination of these two sets (GMM-SYS). Since it is known that the conventional
GMM estimators with optimal weights has size distortions in small samples, we also report results for the
conventional one-step GMM-DIF estimators for λ and β ignoring spatial dependence (see equation (25)),
and for the estimator given in equations (32), (41). Finally, we provide the small sample properties of the

estimator for δ obtained from (A.10) and using optimal weights, with Q∗
(
θ̂
)
and d

(
θ̂
)
as proxies for Q∗

and d. In the computation of δ̂, we adopt for moments (24) the inner matrices suggested by Kelejian and
Prucha (2009), and set r = 2 with A1 = W, A2 = W′W − diag(W′W). This choice is made merely for
computational convenience, since A1 and A2 do not depend on unknown parameters and minimization of
(A.10) in the first step does not require a preliminary estimation of the unknown parameters.

We assess the performance of estimators by computing their bias, RMSE, size and power. In computing
size and power, we adopt a significance level of 5 per cent; the power of the estimator of a parameter, π0,
is calculated under the alternative hypothesis to H1 : π = π0 − 0.1.
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B.1 Results
Table 1 shows results for the conventional, one-step GMM-DIF estimator of λ and β, for the GMM-DIF
estimator corrected for spatial correlation using formulas (32), (41), and for the corresponding estimated
SAR parameter. The bias and RMSE of conventional GMM-DIF are small, and decrease as N gets large,
for all values of δ, corroborating the theoretical results provided in the first part of Theorem 1. When
δ = 0, the conventional GMM-DIF for λ and β is correctly sized for all choices of N , while it is subject
to size distortions when δ > 0. The over-rejection tendency is due to the use of inappropriate standard
errors, and appears to be substantial in the case where the true value of spatial parameter is relatively
large (δ = 0.7). In contrast, the GMM-DIF estimator corrected for spatial dependence is correctly sized,
reflecting the fact that the estimated variance is a consistent estimator of the true variance.

Tables 2, 3 and 4 provide results for the conventional GMM-DIF, GMM-LEV and GMM-SYS estimators
using optimal weights, for the GMM-DIF, GMM-LEV and GMM-SYS estimators corrected for spatial
correlation using formulas (43)-(44) (i.e., γ̂IIe ), and for the corresponding estimated SAR parameters. The
first panel of these tables shows that, when δ = 0, the conventional GMM estimators with optimal weights
for λ and β are correctly sized for large N . However, they show some size distortions when N = 300. This
result is in line with existing findings in the literature, indicating that the estimated asymptotic standard
errors of the conventional two-step GMM estimator are downward biased in small samples. The second
and third panels in Tables 2-4 show that, when δ > 0, the conventional GMM estimators, ignoring spatial
dependence, are severely oversized even when N is large. In contrast, the empirical sizes of the GMM
estimators corrected for spatial dependence are very close to the nominal size, for all values of the spatial
parameters, for large N . Tables 1-4 also show that the GMM estimators for δ are always correctly sized,
for any sets of moments taken to compute the slope parameters, and for all choices of N .

Table 5 provides results for a set of experiments where data have been generated as in our previous
experiments, with the only difference that we now adopt as spatial weights matrix that we have used for
our empirical application, based on the inverse of the geographical distance between MSAs (N = 366 and
T = 6). To save space, we only report the output for λ, δ = 0.3, 0.7. Results seem to be robust to the choice
of the spatial weights matrix, whether this is irregular, or based on contiguity or geographical distance.
To conclude, our results indicate that, for the combination of N and T in our empirical study, and using a
spatial weights matrix based on geographical distance, the proposed GMM estimators performs quite well.
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Table 1: Monte Carlo results for the conventional GMM-DIF estimator and the two-step GMM-DIF
estimator corrected for spatial correlation

λ0= 0.3 λ0= 0.7
N Par. Bias RMSE Size Power Bias RMSE Size Power

δ0= 0.0 δ0= 0.0
300 λ̂ -0.026 0.063 0.053 0.583 -0.040 0.081 0.053 0.530

500 -0.013 0.054 0.057 0.650 -0.022 0.063 0.053 0.600

300 λ̂
II

-0.025 0.063 0.050 0.580 -0.039 0.081 0.057 0.533

500 -0.012 0.054 0.057 0.643 -0.022 0.063 0.053 0.590

300 β̂ 0.034 0.184 0.050 0.573 -0.025 0.186 0.050 0.457

500 0.028 0.158 0.050 0.593 0.004 0.139 0.050 0.450

300 β̂
II

0.033 0.184 0.050 0.573 -0.024 0.186 0.053 0.463

500 0.028 0.158 0.053 0.593 0.004 0.139 0.057 0.450

300 δ̂ -0.002 0.047 0.033 0.593 -0.001 0.047 0.043 0.557

500 0.002 0.038 0.056 0.747 0.003 0.038 0.050 0.750

δ0= 0.3 δ0= 0.3
300 λ̂ -0.027 0.065 0.097 0.597 -0.043 0.086 0.127 0.537

500 -0.014 0.055 0.093 0.697 -0.024 0.066 0.113 0.587

300 λ̂
II

-0.024 0.062 0.053 0.590 -0.038 0.080 0.050 0.523

500 -0.012 0.053 0.050 0.643 -0.022 0.062 0.050 0.597

300 β̂ 0.037 0.196 0.080 0.580 -0.025 0.198 0.083 0.647

500 0.031 0.165 0.077 0.593 0.002 0.147 0.077 0.640

300 β̂
II

0.029 0.180 0.053 0.560 -0.026 0.185 0.050 0.663

500 0.027 0.155 0.053 0.580 0.004 0.137 0.053 0.650

300 δ̂ -0.007 0.041 0.047 0.750 -0.006 0.040 0.043 0.733

500 -0.002 0.032 0.057 0.917 0.000 0.032 0.060 0.903

δ0= 0.7 δ0= 0.7
300 λ̂ -0.034 0.086 0.223 0.693 -0.065 0.122 0.290 0.650

500 -0.019 0.064 0.223 0.727 -0.037 0.086 0.230 0.630

300 λ̂
II

-0.024 0.062 0.053 0.603 -0.037 0.079 0.057 0.510

500 -0.012 0.052 0.050 0.643 -0.022 0.060 0.050 0.613

300 β̂ 0.055 0.300 0.130 0.517 -0.040 0.320 0.120 0.763

500 0.049 0.236 0.110 0.513 -0.008 0.233 0.100 0.727

300 β̂
II

0.025 0.169 0.050 0.580 -0.026 0.176 0.053 0.767

500 0.025 0.146 0.055 0.597 0.002 0.129 0.053 0.760

300 δ̂ -0.007 0.025 0.053 1.000 -0.006 0.024 0.057 1.000

500 -0.003 0.019 0.080 1.000 -0.001 0.019 0.053 1.000

We compute γ̂ =
(
λ̂, β

)′
using equation (25), and γ̂II =

(
λ̂
II
, βII

)′
using formula (32),

and (41) for its variance. We compute δ̂ using residuals ∆ûit = ∆yit − γ̂ ′∆wd
it.
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Table 2: Monte Carlo results for the conventional GMM-DIF estimator using optimal weights and
the two-step GMM-DIF estimator corrected for spatial correlation

λ0= 0.3 λ0= 0.7
N Par. Bias RMSE Size Power Bias RMSE Size Power

δ0= 0.0 δ0= 0.0
300 λ̂e -0.025 0.067 0.080 0.567 -0.037 0.086 0.110 0.507

500 -0.012 0.055 0.050 0.630 -0.020 0.064 0.073 0.580

300 λ̂
II

e -0.024 0.068 0.057 0.557 -0.036 0.088 0.060 0.503

500 -0.012 0.055 0.053 0.623 -0.019 0.064 0.063 0.580

300 β̂e 0.034 0.186 0.060 0.593 -0.019 0.187 0.070 0.640

500 0.028 0.158 0.063 0.580 0.009 0.138 0.057 0.607

300 β̂
II

e 0.034 0.188 0.060 0.590 -0.017 0.189 0.063 0.650

500 0.028 0.159 0.050 0.580 0.010 0.138 0.053 0.603

300 δ̂ -0.002 0.047 0.053 0.593 -0.001 0.047 0.043 0.557

500 0.002 0.038 0.057 0.747 0.003 0.038 0.050 0.750

δ0= 0.3 δ0= 0.3
300 λ̂e -0.027 0.070 0.103 0.577 -0.040 0.092 0.143 0.517

500 -0.012 0.056 0.107 0.660 -0.021 0.066 0.097 0.563

300 λ̂
II

e -0.024 0.067 0.060 0.550 -0.036 0.088 0.080 0.507

500 -0.011 0.054 0.050 0.627 -0.019 0.063 0.057 0.567

300 β̂e 0.038 0.197 0.073 0.593 -0.018 0.198 0.073 0.650

500 0.028 0.165 0.073 0.593 0.006 0.146 0.047 0.617

300 β̂
II

e 0.031 0.185 0.057 0.583 -0.019 0.187 0.063 0.630

500 0.028 0.155 0.053 0.580 0.009 0.136 0.057 0.613

300 δ̂ -0.007 0.041 0.047 0.750 -0.006 0.040 0.043 0.733

500 -0.002 0.042 0.057 0.917 0.000 0.032 0.050 0.903

δ0= 0.7 δ0= 0.7
300 λ̂e -0.035 0.089 0.257 0.663 -0.064 0.131 0.300 0.643

500 -0.016 0.065 0.213 0.700 -0.033 0.088 0.207 0.607

300 λ̂
II

e -0.024 0.066 0.063 0.540 -0.039 0.088 0.063 0.490

500 -0.012 0.053 0.053 0.630 -0.021 0.062 0.057 0.567

300 β̂e 0.062 0.306 0.143 0.753 -0.024 0.326 0.140 0.650

500 0.041 0.240 0.107 0.707 -0.004 0.237 0.083 0.613

300 β̂
II

e 0.032 0.177 0.057 0.770 -0.022 0.181 0.057 0.630

500 0.027 0.147 0.054 0.793 0.006 0.130 0.053 0.610

300 δ̂ -0.007 0.025 0.053 1.000 -0.006 0.024 0.060 1.000

500 -0.003 0.019 0.050 1.000 -0.001 0.019 0.053 1.000

We compute γ̂e =
(
λ̂e, βe

)′
using equation (3.2) in Arellano and Bover (1995),

and γ̂IIe =
(
λ̂
II

e , β
II
e

)′
using equation (43), and (44) for its variance.

We compute δ̂ using residuals ∆ûit = ∆yit − γ̂ ′e∆wd
it.
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Table 3: Monte Carlo results for the conventional GMM-LEV estimator using optimal weights and
the two-step GMM-LEV estimator corrected for spatial correlation

λ0= 0.3 λ0= 0.7
N Par. Bias RMSE Size Power Bias RMSE Size Power

δ0= 0.0 δ0= 0.0
300 λ̂e 0.000 0.065 0.100 0.467 0.002 0.045 0.063 0.713

500 0.012 0.047 0.057 0.517 0.005 0.031 0.057 0.860

300 λ̂
II

e -0.002 0.066 0.090 0.490 0.001 0.046 0.067 0.717

500 0.011 0.047 0.053 0.513 0.005 0.032 0.050 0.853

300 β̂e -0.001 0.173 0.060 0.647 -0.003 0.138 0.060 0.783

500 -0.017 0.133 0.050 0.663 0.000 0.105 0.047 0.703

300 β̂
II

e 0.004 0.175 0.060 0.637 -0.002 0.140 0.060 0.780

500 -0.015 0.133 0.053 0.663 0.001 0.105 0.047 0.710

300 δ̂ -0.001 0.047 0.053 0.580 -0.001 0.047 0.040 0.567

500 0.003 0.038 0.057 0.747 0.003 0.038 0.057 0.750

δ0= 0.3 δ0= 0.3
300 λ̂e -0.002 0.065 0.097 0.487 0.001 0.046 0.090 0.723

500 0.011 0.047 0.090 0.567 0.005 0.032 0.077 0.857

300 λ̂
II

e -0.002 0.065 0.070 0.490 0.001 0.046 0.067 0.710

500 0.011 0.047 0.063 0.523 0.005 0.032 0.047 0.873

300 β̂e 0.003 0.180 0.083 0.640 -0.002 0.145 0.080 0.780

500 -0.014 0.141 0.067 0.667 0.002 0.111 0.063 0.700

300 β̂
II

e 0.004 0.170 0.063 0.630 0.001 0.139 0.080 0.780

500 -0.016 0.131 0.053 0.670 0.000 0.104 0.057 0.710

300 δ̂ -0.007 0.041 0.057 0.740 -0.004 0.040 0.057 0.733

500 -0.001 0.033 0.057 0.903 0.001 0.032 0.057 0.900

δ0= 0.7 δ0= 0.7
300 λ̂e -0.009 0.080 0.230 0.583 -0.004 0.058 0.180 0.690

500 0.005 0.055 0.177 0.667 0.004 0.044 0.160 0.803

300 λ̂
II

e -0.001 0.062 0.060 0.467 0.002 0.045 0.060 0.693

500 0.012 0.047 0.050 0.500 0.006 0.032 0.050 0.880

300 β̂e 0.022 0.249 0.143 0.777 0.011 0.214 0.113 0.747

500 0.000 0.186 0.113 0.773 0.007 0.161 0.093 0.757

300 β̂
II

e 0.000 0.162 0.050 0.730 0.002 0.134 0.057 0.783

500 -0.016 0.128 0.057 0.773 -0.001 0.100 0.043 0.720

300 δ̂ -0.007 0.025 0.050 1.000 -0.004 0.023 0.053 1.000

500 -0.002 0.019 0.053 1.000 0.000 0.019 0.057 1.000

We compute γ̂e =
(
λ̂e, βe

)′
using equation (3.2) in Arellano and Bover (1995),

and γ̂IIe =
(
λ̂
II

e , β
II
e

)′
using equation (43), and (44) for its variance.

We compute δ̂ using residuals ∆ûit = ∆yit − γ̂ ′e∆wd
it.
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Table 4: Monte Carlo results for the conventional GMM-SYS estimator using optimal weights and
the two-step GMM-SYS estimator

λ0= 0.3 λ0= 0.7
N Par. Bias RMSE Size Power Bias RMSE Size Power

δ0= 0.0 δ0= 0.0
300 λ̂e -0.002 0.034 0.120 0.920 -0.002 0.031 0.130 0.950

500 0.005 0.026 0.073 0.973 0.002 0.024 0.090 0.993

300 λ̂
II

e -0.001 0.034 0.120 0.907 -0.001 0.032 0.140 0.940

500 0.005 0.026 0.073 0.967 0.002 0.024 0.083 0.993

300 β̂e 0.000 0.058 0.083 0.867 0.000 0.055 0.073 0.933

500 -0.001 0.046 0.073 0.860 0.000 0.042 0.057 0.917

300 β̂
II

e 0.000 0.059 0.083 0.873 0.001 0.056 0.083 0.927

500 -0.001 0.047 0.077 0.850 0.000 0.042 0.067 0.913

300 δ̂ -0.001 0.048 0.040 0.560 -0.001 0.048 0.040 0.557

500 0.003 0.039 0.057 0.733 0.003 0.039 0.063 0.737

δ0= 0.3 δ0= 0.3
300 λ̂e -0.003 0.035 0.063 0.910 -0.004 0.032 0.060 0.950

500 0.005 0.026 0.063 0.970 0.002 0.024 0.063 0.990

300 λ̂
II

e -0.001 0.034 0.063 0.923 -0.001 0.032 0.057 0.940

500 0.005 0.026 0.050 0.977 0.002 0.023 0.060 0.993

300 β̂e -0.001 0.061 0.063 0.843 0.000 0.059 0.060 0.997

500 -0.001 0.048 0.050 0.823 0.000 0.044 0.053 0.997

300 β̂
II

e -0.001 0.059 0.057 0.860 0.001 0.055 0.057 0.920

500 -0.001 0.046 0.053 0.867 0.000 0.041 0.050 0.940

300 δ̂ -0.001 0.040 0.057 0.707 -0.001 0.040 0.057 0.700

500 0.002 0.032 0.053 0.890 0.002 0.032 0.053 0.883

δ0= 0.7 δ0= 0.7
300 λ̂e -0.008 0.051 0.240 0.850 -0.011 0.049 0.230 0.893

500 0.002 0.035 0.167 0.920 -0.001 0.035 0.170 0.950

300 λ̂
II

e 0.000 0.033 0.060 0.913 -0.001 0.030 0.067 0.940

500 0.005 0.025 0.057 0.980 0.002 0.023 0.053 0.993

300 β̂e -0.001 0.087 0.117 0.837 -0.003 0.098 0.167 0.970

500 -0.002 0.064 0.077 0.840 -0.001 0.069 0.113 0.967

300 β̂
II

e -0.002 0.059 0.063 0.800 -0.001 0.055 0.063 0.847

500 0.000 0.044 0.050 0.873 0.001 0.040 0.053 0.980

300 δ̂ -0.001 0.023 0.045 0.997 -0.001 0.023 0.049 0.997

500 0.001 0.018 0.053 1.000 0.001 0.018 0.057 1.000

We compute γ̂e =
(
λ̂e, βe

)′
using equation (3.2) in Arellano and Bover (1995),

and γ̂IIe =
(
λ̂
II

e , β
II
e

)′
using equation (43), and (44) for its variance.

We compute δ̂ using residuals ∆ûit = ∆yit − γ̂ ′e∆wd
it.
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Table 5: Monte Carlo results for GMM-DIF, GMM-LEV and GMM-SYS estimators using a real
world, distance based, spatial weights matrix

Par. Bias RMSE Size Power Bias RMSE Size Power

λ0= 0.3, δ0= 0.3 λ0= 0.7, δ0= 0.3
GMM-DIFF λ̂e -0.028 0.091 0.076 0.268 -0.030 0.096 0.086 0.270

λ̂
II

e -0.022 0.096 0.054 0.274 -0.023 0.082 0.044 0.288

β̂e 0.009 0.183 0.068 0.290 -0.027 0.127 0.068 0.280

β̂
II

e 0.014 0.169 0.044 0.284 -0.014 0.110 0.044 0.282

δ̂ 0.016 0.099 0.048 0.402 0.019 0.085 0.042 0.396

GMM-LEV λ̂e 0.023 0.052 0.078 0.792 0.011 0.031 0.126 0.944

λ̂
II

e 0.011 0.043 0.056 0.778 0.005 0.029 0.056 0.922

β̂e 0.012 0.063 0.136 0.628 0.005 0.041 0.070 0.800

β̂
II

e 0.007 0.052 0.056 0.620 0.003 0.039 0.058 0.814

δ̂ 0.014 0.087 0.045 0.398 0.013 0.085 0.044 0.398

GMM-SYS λ̂e -0.002 0.032 0.082 0.912 -0.003 0.029 0.076 0.936

λ̂
II

e -0.003 0.029 0.074 0.940 -0.003 0.027 0.052 0.958

β̂e 0.001 0.057 0.104 0.588 -0.001 0.045 0.078 0.728

β̂
II

e 0.001 0.049 0.074 0.610 0.000 0.041 0.048 0.736

δ̂ 0.013 0.094 0.049 0.408 0.012 0.095 0.048 0.370

λ0= 0.3, δ0= 0.7 λ0= 0.7, δ0= 0.7
GMM-DIFF λ̂e -0.032 0.078 0.246 0.272 -0.032 0.070 0.274 0.266

λ̂
II

e -0.021 0.091 0.042 0.374 -0.021 0.071 0.052 0.284

β̂e 0.029 0.188 0.140 0.376 -0.040 0.128 0.186 0.294

β̂
II

e 0.020 0.166 0.046 0.272 -0.008 0.132 0.042 0.282

δ̂ -0.040 0.093 0.048 0.488 -0.033 0.087 0.046 0.486

GMM-LEV λ̂e 0.031 0.066 0.328 0.862 0.019 0.036 0.224 0.964

λ̂
II

e 0.006 0.039 0.054 0.802 0.002 0.028 0.058 0.932

β̂e 0.020 0.064 0.154 0.676 0.001 0.037 0.092 0.814

β̂
II

e 0.004 0.046 0.046 0.644 0.009 0.043 0.054 0.820

δ̂ -0.024 0.098 0.052 0.530 -0.023 0.097 0.044 0.532

GMM-SYS λ̂e -0.004 0.041 0.160 0.850 -0.007 0.039 0.146 0.874

λ̂
II

e -0.003 0.028 0.056 0.950 -0.003 0.026 0.052 0.962

β̂e 0.001 0.067 0.144 0.594 -0.002 0.057 0.126 0.708

β̂
II

e 0.000 0.046 0.058 0.634 -0.001 0.040 0.058 0.754

δ̂ -0.024 0.076 0.048 0.528 -0.024 0.076 0.044 0.526
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Table 6: Descriptive statistics

2000-2005 2006-2011

Mean Std.err. Mean Std.err.

NPL (%) 0.71 0.80 1.78 2.13

HP 145.42 28.43 180.13 34.23

GSE (1,000s) 203.73 439.97 125.99 286.01

INCOME ($) 15,640 2,510 16,460 2,660

UNEMP (%) 5.195 1.74 7.06 3.11

IRATE 6.51 0.83 5.67 0.78

POPDENS (people per km2) 226.04 200.64 240.64 210.76

EQASS 0.10 0.03 0.10 0.03

HHI 0.42 0.26 0.44 0.27

SIZE (1,000$) 343,455 416,350 440,257 685,448

BRANCHES (n.) 10.59 15.19 9.20 13.45

Figure 1: Temporal pattern of average real house price, total GSE loan purchases (in 100,000s) (left
axis), and average nonperforming loans (right axis)
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Figure 2: Quantile distribution of real house prices in US MSAs, in the years 2000 to 2005 (left)
and 2006 to 2011 (right)

Figure 3: Quantile distribution of non performing loans in US MSAs, in the years 2000 to 2005
(left) and 2006 to 2011 (right)

1
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Table 7: Determinants of non-performing loans in the period pre-bubble (2000 to 2005)
(I): GMM-DIF (II): GMM-LEV (III): GMM-SYS

CONVENTIONAL GMM

Par. S.E. Par. S.E. Par. S.E.

NPLi,t−1 0.286∗ 0.071 0.424∗ 0.642 0.327∗ 0.061

HP it -1.618∗ 0.656 -1.483∗ 0.359 -1.476∗ 0.344

GSEi,t−1 0.216 0.171 0.017 0.032 0.014 0.030

INCOMEit -4.118∗ 2.493 -0.702∗ 0.245 -1.482∗ 0.532

URATEit 0.699∗ 0.313 0.241 0.225 0.366∗ 0.124

POP it 2.776 2.841 0.175 0.190 0.129 0.150

IRATEit 0.937∗ 0.405 0.320 0.330 0.337 0.316

EQASSit -0.977 0.474 -0.147 0.309 -0.299∗ 0.092

HHI it 1.357∗ 0.997 0.881 0.505 0.595∗ 0.390

SIZEit -0.366∗ 0.108 -0.035∗ 0.016 -0.043∗ 0.015

BRANCHESit -0.529 0.541 -0.069 0.106 -0.056 0.094

SPATIAL GMM

NPLi,t−1 0.233∗ 0.086 0.425∗ 0.064 0.256∗ 0.051

HP it -0.456∗ 0.744 -1.543∗ 0.382 -1.562∗ 0.609

GSEi,t−1 -0.198 0.279 0.021 0.032 0.184 0.115

INCOMEit -3.437∗ 3.068 0.398 0.651 -1.027∗ 0.340

URATEit 0.649∗ 0.284 0.992∗ 0.237 1.406∗ 0.287

POP it 1.940∗ 0.932 0.185∗ 0.095 0.208∗ 0.098

IRATEit 1.183 0.623 0.347 0.342 0.276 0.231

EQASSit 0.797 0.585 -0.121 0.314 -0.516 0.304

HHI it 1.366∗ 0.465 0.784∗ 0.224 0.678∗ 0.197

SIZEit -0.307∗ 0.274 -0.201∗ 0.088 -0.166∗ 0.031

BRANCHESit -0.719 0.803 -0.085 0.118 -0.379 0.177

δ̂ 0.262∗ 0.247 0.358∗ 0.231 0.318∗ 0.187

AR(1) -3.15∗ [0.00] -4.04∗ [0.00] -4.13∗ [0.00]

AR(2) -0.98 [0.33] -0.40 [0.69] -0.36 [0.72]

Hansen 124.66 [0.34] 156.16 [0.11] 189.70 [0.12]

Notes: (∗) denote 5 per cent significance level respectively.
Standard errors are reported in in round brackets, while p-value are shown
in square brackets
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Table 8: Determinants of non-performing loans in the period of the bubble bursting (2006 to 2011)

(I): GMM-DIF (II): GMM-LEV (III): GMM-SYS

CONVENTIONAL GMM

Par. S.E. Par. S.E. Par. S.E.

NPLi,t−1 0.290∗ 0.037 0.441∗ 0.055 0.350∗ 0.036

HP it -1.526∗ 0.354 -0.739∗ 0.271 -0.872∗ 0.268

GSEi,t−1 0.241∗ 0.109 0.527∗ 0.128 0.434∗ 0.085

INCOMEit -2.820∗ 1.105 -1.176∗ 0.321 -1.000∗ 0.311

URATEit 1.339∗ 0.194 1.184∗ 0.176 1.033∗ 0.141

POP it 2.718 1.681 0.110 0.091 0.502 0.462

IRATEit 0.454∗ 0.151 0.452∗ 0.207 0.407∗ 0.127

EQASSit -0.621∗ 0.231 -0.129 0.332 -0.523∗ 0.174

HHI it -0.430 0.584 -0.526 0.905 -0.157 0.439

SIZEit -0.195∗ 0.064 -0.109∗ 0.028 -0.078∗ 0.019

BRANCHESit -0.267 0.249 -0.302 0.171 -0.193∗ 0.090

SPATIAL GMM

NPLi,t−1 0.240∗ 0.055 0.269∗ 0.050 0.260∗ 0.051

HP it -0.840∗ 0.986 -0.713∗ 0.479 -0.750∗ 0.264

GSEi,t−1 0.231∗ 0.091 0.365∗ 0.108 0.380∗ 0.114

INCOMEit -2.367∗ 2.451 -1.029∗ 0.337 -1.031∗ 0.339

URATEit 1.268∗ 0.304 1.214∗ 0.187 1.337∗ 0.249

POP it 2.441∗ 0.935 0.196∗ 0.095 0.197∗ 0.087

IRATEit 0.350 0.236 0.341 0.228 0.418 0.227

EQASSit -0.701∗ 0.051 -0.503∗ 0.194 -0.514∗ 0.101

HHI it -0.736 1.230 0.673∗ 0.076 0.684∗ 0.091

SIZEit -0.469∗ 0.219 -0.149∗ 0.024 -0.161∗ 0.078

BRANCHESit -0.193 0.872 -0.320∗ 0.155 -0.362 0.272

δ̂ 0.406∗ 0.1917 0.558∗ 0.231 0.551∗ 0.227

AR(1) -3.84∗ [0.00] -4.23∗ [0.00] -4.74∗ [0.00]

AR(2) -0.34 [0.73] -0.29 [0.77] 0.07 [0.94]

Hansen 294.55 [1.00] 270.10 [1.00] 308.40 [1.00]
Notes: (∗) denote 5 per cent significance level respectively.
Standard errors are reported in in round brackets, while p-value are shown
in square brackets
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