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Plant production and plant product quality strongly depend on the availability of mineral
nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed
for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic
and biosynthetic functions as well as they have an important role in signaling processes
into the cell. Here, by comparing several transcriptomic data sets from plants impaired
in their respiratory function with the genes regulated under Fe or S deficiencies obtained
from other data sets, nutrient-responsive genes potentially regulated by hypothetical
mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize
that plant mitochondria could be, therefore, required for regulating the expression of key
genes involved both in Fe and S metabolisms.

Keywords: iron, mitochondria dysfunctions, nutrient-responsive genes, respiratory chain, sulfur

THE INTERACTIONS BETWEEN Fe AND S HOMEOSTASIS IN
PLANTS

Plant production and plant product quality strongly depend on the availability of mineral nutrients
(Briat et al., 2015a,b). Among them, sulfur (S) and iron (Fe) play a central role, as they are needed
for many proteins of essential metabolic processes. Indeed, Fe and S interact for the building of Fe-S
clusters, which are essential prosthetic groups for photosynthesis, respiration, and many enzymatic
reactions (Couturier et al., 2013). Fe and S interactions were documented both at physiological
and molecular levels, although the mechanisms integrating the homeostasis of these two elements
remain unknown. Leaf Fe concentration decreases in S-deficient tomato, which is consistent with
the decrease activity of the root Fe uptake system in response to S starvation in tomato (Zuchi et al.,
2009) and in Arabidopsis (Forieri et al., 2013). Reciprocally, Fe starvation modifies S homeostasis.
In Fe-deficient Arabidopsis plants, S-metabolism-related genes (among which plasma membrane
and tonoplast S transporters, and enzymes of the S assimilation pathway) are co-expressed with
Fe-deficient genes (Schuler et al., 2011). For example, the SULTRI;1 S transporter gene is down-
regulated in the absence of Fe (Forieri et al., 2013). It was not confirmed by Paolacci et al. (2014),
showing that most of the group 2 and 4, and some of the group 1, tomato S transporter genes
are up-regulated under Fe deficiency. In Graminaceous plants, S starvation decreases mugineic
acid (Fe[III]-chelators) synthesis (Kobayashi and Nishizawa, 2012) and release (Kuwajima and
Kawai, 1997; Astolfi et al., 2006). In contrast, YSI (encoding a Fe[III]-mugineic acid transporter;
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Curie et al, 2009) gene expression increases in response
to Fe deficiency (Astolfi et al, 2012). Fe deficiency-induced
modifications of S metabolism were also investigated in
durum wheat (Ciaffi et al., 2013). Genes encoding enzymes of
the S assimilation pathway (APS reductase, ATP sulfurylase,
sulfite reductase, and serine acetyltransferase), and activity of
these enzymes, are up-regulated under Fe-deficient/S-sufficient
conditions, as observed under S starvation conditions. However,
not all the genes necessary for S assimilation are regulated in
response to Fe scarcity. Some of them have their response to Fe or
S deprivation uncoupled. For example, the SULTRI.1 transporter
gene expression is strongly induced in response to S deficiency
but unaffected by Fe starvation (Ciaffi et al., 2013). Recently,
tomato plants grown under both S and Fe deficiencies were
shown to display an even more increased expression of sulfate
transporters in shoot and root than those of plant grown under a
single nutrient deprivation (Zuchi et al., 2015). Such synergistic
effect of S and Fe deficiency interaction was observed also at
the metabolic level where the content of some metabolites (i.e.,
asparagine, fumaric acid, and malic acid) changed in the roots of
plants grown under both S and Fe deficiencies comparatively to
single nutrient deprivation (Zuchi et al., 2015). The interactions
between Fe and S metabolisms have been started to be described
at a molecular level but no information is yet available about
the mechanisms regulating these cross-talks. Modulation of the
Fe-S cluster biogenesis and their relative abundance in response
to various nutritional stresses has, however, been suggested to
potentially regulate Fe-S interactions (Couturier et al., 2013;
Forieri et al., 2013).

Mitochondrion is one of the cellular compartments playing a
central role in the Fe-S§ interaction, since it is a site where Fe-S
cluster assembly takes place.

For detailed information about Fe-S clusters, the readers can
refer to two recent reviews given by Couturier et al. (2013)
and Balk and Schaedler (2014). Fe-S clusters are prosthetic
groups composed of Fe atoms and acid-labile inorganic sulfide.
Generally, Fe atom’s coordination with the protein backbone
occurs via thiol groups of cysteinyl residues. The most common
clusters found in plant proteins are [Fe;S;] and [FesS4]
clusters. Their cellular biogenesis is not spontaneous. In both
eukaryotes and prokaryotes, Fe-S clusters are inserted co- or
post-translationally into apo-proteins through specific assembly
machineries. It allows a correct folding or stability of the
protein. Schematically, the assembly process can be divided into
two steps. First, Fe-S clusters are built on scaffold proteins
interacting with iron- and sulfur-delivery proteins. Second,
carrier proteins transfer the preformed Fe-S clusters to target
apo-proteins. The nature of the Fe donor is still a matter
of debate. Sulfur comes from cysteine through the activity of
cysteine desulfurases that are associated with specific proteins
to be fully active. A persulfide (S°) is produced onto an active
site cysteine. Since sulfur is always present in the S>~ oxidation
state in Fe-S clusters, it explains why electrons are needed to
reduce sulfane sulfur during the course of cluster assembly.
A few additional proteins including ATP-hydrolyzing proteins
or sulfur acceptors are also needed for this reaction. Fe-
S cluster assembly machineries in plants are compartmented

in three systems: the SUF (sulfur mobilization), ISC (iron-
sulfur cluster), and CIA (cytosolic iron-sulfur cluster assembly)
machineries for plastidial, mitochondrial, and cytosolic/nuclear
Fe-S proteins, respectively. In addition, export machinery
between mitochondria and the cytosol links the ISC and CIA
machineries. The export and CIA machineries are specific
to eukaryotes, whereas the SUF and/or ISC machineries are
observed in most living organisms. Fe-S clusters perform a
wide diversity of functions. It ranges from electron transfer to
(de)hydration reactions, radical-generation, or disulfide cleavage.
From biological point of view, the functionality of Fe-S proteins
is required for sulfur and nitrogen assimilation, chlorophyll
catabolism, DNA repair and replication, ribosome biogenesis,
tRNA thio-modification, or co-enzyme (biotin, lipoic acid, and
thiamine) synthesis.

THE IMPACT OF Fe AND S DEFICIENCIES
ON MITOCHONDRIAL RESPIRATION

Mitochondria contain numerous Fe-S cluster-containing
proteins participating in the respiratory chain. Indeed, one single
respiratory chain unit requires at least 10 different Fe-S clusters
corresponding to ~30 Fe atoms and 30 S atoms (Couturier et al.,
2013; Balk and Schaedler, 2014).

Among the mitochondrial metabolic processes, respiration
is of central importance. Indeed, the respiratory rate is a key
determinant of the growth decrease under a range of abiotic
stresses (Atkin et al., 2005; Atkin and Macherel, 2009; Van Aken
et al.,, 2009; Jacoby et al, 2011). Therefore, understanding the
control and regulation of the respiratory processes is vital to
improve the rate of plant growth and biomass production (Jacoby
etal, 2012).

Recently, Schwarzlinder et al. (2012) demonstrated that the
respiratory chain dysfunctions affect the expression of a great
number of genes, suggesting the importance of mitochondria
in the regulation of gene expression by retrograde signaling
pathways. Although the nature of the retrograde signal(s) was not
yet identified, the mitochondrial transport of electrons has been
considered as a potential upstream stimulus for the regulation of
nuclear gene expression (Schwarzldnder et al., 2012).

Considering the essential role of Fe and S for mitochondrial
respiration, a deficiency of these nutrients affects the function of
mitochondria.

Iron-deficient cucumber plant showed decreased root Fe
content by about 80% with respect to the control plant. In these
plants, mitochondrial function was strongly affected and the
specific activity of each respiratory chain complexes decreased as
follows: Complex I - 95%, complex II - 77%, complex IIT - 56%,
complex IV - 50%, and complex V - 52%. At the same time, the
external type II NAD(P)H dehydrogenase (ND¢) increased by
about 100% in Fe-deficient plants (Vigani et al., 2009; Vigani and
Zocchi, 2010). Similar changes were observed also in Hyoscyamus
albus (Higa et al., 2010).

In S-deficient Arabidopsis plants, S content decreased by
about 48% in leaf and 40% in root tissues. In these plants,
the total mitochondrial respiration of complex I and complex
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IV capacities decreased, whereas the activity of NDy increased.
These changes were accompanied by a lower ATP level and
a more reduced state of leaf and root cells. Particularly, in
S-deficient Arabidopsis plants, complex I capacity decreased by 40
and 25% in leaf and root tissues, respectively, whereas Complex
IV capacity decreased by about 37 and 30% in leaf and root,
respectively. At the same time, ND¢y increased by 45 and 20%
in leaf and root, respectively (Ostaszewska et al., 2014).

Interestingly, such functional changes of the respiratory
pathway observed under Fe or S deficiencies were associated to
changes occurring at the ultrastructural level (Ostaszewska et al.,
2014; Vigani et al,, 2015a). Indeed, both nutrient deficiencies
lead to a lower mitochondrial matrix density as well as to a
lower cristae number compared to the control mitochondria.
Particularly, such morphological changes were quantified in
Fe-deficient plants: the number of cristae per mitochondria
decreased by 56% and the relative intracristae space decreased by
46% in Fe-deficient mitochondria compared to the control ones.
Such impaired ultrastructure might reflect the metabolic status
of mitochondria with a decreased respiration rate (Vigani et al.,
2015a).

An important question aroused when taking into
consideration that (i) respiratory chain dysfunctions might
be a source of retrograde signaling pathways and that (ii) Fe
and S deficiencies affect respiratory chain: Are mitochondria
involved in the regulation of Fe- and S-responsive genes?

In yeast, mitochondria play an important role in the regulation
of Fe-responsive genes (Ueta et al., 2012). Indeed, Fe homeostasis
in Saccharomyces cerevisae is controlled primarily by the
transcriptional activator Aftlp (Rutherford and Bird, 2004). The
activation/inactivation of Aftlp relies on its interaction with
extra-mitochondrial monothiol glutaredoxins Grx3p and Grx4p.
The Aftlp-Grxps complex senses the status of the mitochondrial
Fe-S cluster biogenesis, and in turn regulates S. cerevisae genes
required for Fe uptake and storage. Indeed, during Fe starvation,
Fe-S cluster assembly in mitochondria as well as dimeric Grx3/4p
with bound Fe-S clusters is limited, thereby decreasing the
interaction of Grx3/4p with Aftlp. Therefore, Aftlp is able to
bind its target promoters in order to increase the expression level
of the iron regulon. In contrast, in the presence of Fe, Grx3/4p
binds Fe-S clusters that require functional mitochondria in
order to be correctly assembled. As a result, the Grx3/4p-Fe-S
complex interacts with Aftlp, leading to its disassociation from
its target promoters and to a down-regulation of the iron regulon
(Ueta et al., 2012). These findings suggest that, at least in yeast,
mitochondria play a central role in the regulation of cellular Fe
homeostasis. However, these mechanisms do not seem to occur
in plants (Bernard et al., 2009; Knuesting et al., 2015).

Although very few data are available concerning mitochondria
retrograde signaling pathway in plants (Schwarzlinder and
Finkemeier, 2013), an involvement of mitochondria in such a
pathway has been suggested to regulate Fe and S homeostasis
(Wirtz et al., 2012; Vigani et al., 2013).

Indeed, under Fe-deficiency conditions, activities of Fe-
containing enzymes are down-regulated, and the corresponding
metabolite pools could be consequently modified. Therefore,
organelle retrograde signals could be produced from

post-transcriptional and/or post-translational-mediated
metabolic changes, and transduced for subsequent regulation
of nuclear genes important for Fe uptake and homeostasis
(Vigani et al., 2013). Recently, it has been observed that knocking
down Mitochondrial Iron Transporter (MIT) reprograms the
transcriptome and the metabolome of rice plants, suggesting that
a local induction of Fe deficiency in mitochondrial compartment
affects the expression of several nuclear genes (Vigani et al.,
2015b). Considering S, the crucial step of its assimilation in plant
cells is the synthesis of cysteine. Such reaction occurs in cytosol,
plastid, and mitochondria, since O-acetylserine-thiol lyase
(OASTL) is localized in all these three compartments (Takahaschi
et al,, 2011). Interestingly, the mitochondrial isoform of OASTL
is likely involved in the sensing of the cysteine status, and in
turn in the sensing of S status (Wirtz et al., 2012). Therefore,
a mitochondrial retrograde feedback signal(s) has also been
proposed for the S assimilatory pathway (Forieri et al., 2013).

GENES DIFFERENTIALLY EXPRESSED IN
BOTH Fe- AND S-DEFICIENT PLANTS AND
IN MITOCHONDRIAL-IMPAIRED PLANTS

Considering the strong impact that Fe or S deficiencies have on
mitochondrial functions, several biochemical processes related to
this organelle might be a source to produce retrograde signals.
In this context, the meta-analysis of transcriptomic data sets
from Arabidopsis plants displaying mitochondrial dysfunction
revealed interesting observations (Schwarzlinder et al., 2012).
This study considered 11 transcriptomic data sets from plants
having either their mitochondrial functions genetically impaired
or the mitochondrial respiratory chain inhibited with drugs at
different points. The data sets from plants genetically impaired
in their mitochondrial function corresponded to the following
genetic backgrounds: aoxla (Giraud et al., 2008); ndufs4 and
ndufal (Meyer et al., 2009); mshlxrecA (Shedge et al., 2010);
AP3:u-ATP9 and AP9:u-ATP9 (Busi et al., 2011); msd1-RNAi and
prxIl F (Schwarzldnder et al., 2012). On the other hand, some
data sets were obtained from plants having their mitochondrial
respiratory chain inhibited by the following chemical treatments:
olygomicyn A and rotenone (Clifton et al., 2005), and Antimycin
A (Schwarzlander et al.,, 2012).

Among the numerous genes affected in their expression in
response to the various mitochondrial dysfunctions genetically
or pharmacologically induced as mentioned above, many genes
known to be regulated by Fe or S deficiencies can be observed.

Several genes exhibiting similar expression (up- or
down-regulation) under Fe-deficiency (see list reported
in Stein and Waters, 2012) conditions or under various
mitochondrial dysfunction conditions were revealed. They are
the transcription factor POPEYE (PYE, at3g47640); ZINC-
INDUCED FACILITATOR (ZIF1, at5g13740); glutamate
ammonia ligase (GLNI1;4 at5gl6570); a kelch repeat-
containing protein (at3g07720); COPPER CHAPERONE
(CCH, at3g56240); FERULIC ACID 5-HYDROXYLASE
1(FAHI, at4g36220); NICOTIANAMINE SYNTHASE 1
(NAS1, at5g04950); FERRITIN3 (FER3, at3g56090); BHLH039

Frontiers in Plant Science | www.frontiersin.org

January 2016 | Volume 6 | Article 1185


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Mitochondrial Role for Nutrient Homeostasis

Vigani and Briat

‘pau Uy 8Je seusb pajeinbal-umop pue usalb Ul eje seusb payeinbal-dn (z10z e 1e
Japueziemyds) (vy) v uoAuwnuy pue (Gooz e 10 uouo) (LOY) euousiol pue (NT0) v uAdiwobAjo :sjuswiee.; [ealusyo Buimojol ey Aq pauqiyul ureyd Aiojeldsa. feLpuoyooyw ey} buiney siueid wodj sjes eep 8yl (2102 ‘e 12
Japueiziemyas) (ji1 xeidwoa jo uoniqiyul) o jxid pue (uepoid ‘| gSy ‘eseinwisip apixosedns essuebuBW [BLPUOYIO}W JO SSO)) IYNY- L PSW (3SBYIUAS 1Y/ [BLPUOYI0HU JO SSO)) 641 Y/-N:64Y PUB 64.LY-N:E4Y (HOW ‘1uewebue.ies swousb
BLIPUOYD0}IW) “Yo8.IX | YSW (] Xa|dwod JO SSO)) | BjNpU PUB SINpU (BSEPIXO 8AjBUIS e JO SSOj) ‘B[ X0k :Spunoibyoreq oeush BuImojjo) 8yl O] papuodse.LI0d UoOUN [eLIpUOYD0)W 1Y} Ul pairedw) Ajeonaush siueid woyy sies ejep eyl

|

voau-Lysw

IVNY-IPSW  6d1V-niedV 6d.lV-ni6dy eixoe vy +djixid 10

HOW

ISnpu  pspu 1OH 94—

AOSUn aseypufs d1v Xov 111 x3jdwod

| xa|dwod

suoioUNSAp [BLIPUOYOIOHIN

anend ‘UiNpoN Oy k1gblie

(@ DOT0NOH 3SVYAIXO 1SdNd AHO1VHIdS3d) aHOgd 0l6.¥0gre

uleloid UmouNUN  052S00S1e

(¢ 3SVHIT YOO I1VHVYINNOD-1) 210% ovzlzbere

Joyoey uonduosue./Buipuig YNQ ‘6E0HTHEIEDHO ‘6E0HTHE 086950¢1E

uigjoid UMmousun 000610611

(€ unpue)) e434lv  060956EIE

(v ISVAISOONTO vI3d) evN19g9  0689eb5Ie

uielold parejas-abull4 0/G10611e

urelold umousun ce66202Z1Ie

(£ eseooe) LOV1  Ocze0bere

(¥ NI3LOYd JONVHITOL W.LIN) 2vd LA 01885bere

(1 ISYHLINAS ININYNVILOOIN) FSYN 05670051

LINVAN 0e8080 118

uleloid Umousun 098950881

(€ NI7LOYd A31YINDIL-NOYI) €934ILY 0z89z0ge

uisj0id AjiLe) JOJOW UISaUry 0568611

(1 ISVIAXOHAAH-S IOV ONNY3) FHvd  Ocgoebyie

suoiadeyo 4eddod (INOYIdYHO HIdd0D) HOO  0vz9sbere

urelold umousun 0.8/,96G1e

aueIquiawsuel} uol ouiz/sdnolb |As0oA|B Bullsisuel) ‘eselsysuel) (gd(zZ 02s6sbsEe

ueiold ey esedly exil- D4y 067086y

Jepodsuel} sueiquIsWISUBI} Ul J8ddod ‘Z1d0D  0069+Bee

Bulpuiq uol uoa/Buipuiq uol oWey LH34 009 L0BSKe

ulejoud Buiureluoo-jeades Yoy  0zg//0Bge

uisjold Ajiwey eseuny uisjold/uisiold Ajiwey yeadal you-aurona 09/6v06g1E

(ISV.LIHLNAS ININOIHLIWIASONIAV-S) LAVS 00520611

osef| eluowwe-sewrind HINTD  0.6916S1e

(HALHOJSNVYL 3AILd3JOOMNO0) €140 0289 1Br1e

(3A3dOd) IAd uieroid Ajiey (HTHA) Xijey-dooj-xijey oiseg  0v9.¥bBere

{(I susb eAisuOdsal-64d0) 1DHO  0Gesbsie

asejonpal ejejeyd-ole) ‘c0d4 0z0gzb e

Buipuiq uol oulz/Bulpulq uplold 016816 1L1e

(I HOLV.LMIOY4 AFONANI ONIZ) L4IZ|LHIZ ov.e1bgre

(SN.LNYg) S1a Buipuig uol ouz/Buipulg uislold ¥SyZaNIlrSTZaNT 06z816¢eE
uonduosag uoISSa29yY

*sjuswiedwl [eLIPUOYD0IW JUSISYIP JSPUN PUE (ZL0Z ‘SI91BM PUB uisls) Aousiolep a4 Japun passaldxs Ajjenuaieyip ssuay | | 31gvL

January 2016 | Volume 6 | Article 1185

Frontiers in Plant Science | www.frontiersin.org


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Mitochondrial Role for Nutrient Homeostasis

Vigani and Briat

(penupuo)

‘(7 ISYHLNAS ININYNVILODIN) ¥SYN 0956 L1

(90TONOH | ISYIVXOATD) EXTDLY ov8li1ble

Buipuig uol oulz 0e210Brre

glix3d oer.vybere

uieyoid Ajwey aseuny ugiold unoa ovLeobgie

uieyoid Bulureluoo-readal (Hdd) epndadoouieiusd 002G 16ere

ueyoid /| Ajlwie) 8sejoIpAy |ASO0AID oepgsbere

aneind Yapodsuely ereydsoyd-g-|01eoAlD 0zi.vybere

asejeydsoyd sujuoaiyy/auies uelold ‘(isiebisyod) 10d 026916z1e

uigjo.d Bulureluod uelold Ajiwe) Jeades uiusreo-e1ag/o||ipew.y 0e0ezb e

(Hvg) ABojowoy Jusdelpe-owolg ulelold Bulurejuoo-urewop uaby 08689618

usjoid Ajwey (1YND) eselsjsuelAjooe-N pelelel-GNDD  0600e0zie

anieINd ‘esels)sejAleoeunoed 0e69t06218

95e}AX0q80 \YOO-|A0U0I0I0AUIBW YOOW|VOOW :SIOQWAS  060£06 118

uier04d Ajiwuey peeioosse uxny/Aouewloq 022956 11e

uie104d UMoUNUN 58500011

aseuny| uelold sueiquIsWSUBI) Jeadal Uou-auionaT 09v2/0611.

(Il ISYAISONNYN-YHI TV 15709) IND 0561 1651

Aliwey zpsay/Aliue; g uieloid salosep Yreays-spung 059/vbere

uigjoId umouNun 0L¥SyBsIe

asejonpal a)Ns/(UIXopallay) aselonpal alNs ‘YIS 065706518

Jojoe} uonduosuel :(g vVIv.13dV) edv 0z69cbvIe

(¢ INTFDSTHAY IHOW HO OML) 2OVINL ovlLzobere

JoyenBas asuodsas Jusuodwoo-omy/ioreinBes uonduosuel} GHHJY|SHHd 0/¥12bc1e

Aliwey Jo0joe} uonduosuel) BuURIUOO-UBLIOP ZdV 0L/ecbz1e

aAeind ‘uieiold Buipuig-vyNyY 00.e1bgre

onAeren 0612611

3SYIATY perejel-iepodsues; 8sojoeeb-dan|zdLn 010ezbrie

Buipuig YNQ ‘(7 HO.LOVH VINDIS) 79IS oeLe1Bbgre

uigj0Id umouNun 0lLzeobsre

Jojoey uonduosues/Buipuiq YNG (¢ IMIM-4¢3-da) 2713d 0961 LBgre

Buipuiq unpoweo ‘zydgyd ov9lgbere

3ISY3IA3H 96522/ (ST 1saLie Juswidojersp oes oliquie) Ggvad ovve/Blie

8sB1oNpal 81ejeyd-oLls) :c0d4 020echlie

(¢ H3LHOdSNVHL INIAILSIH INISAT) 2LH1 00vreble

QHVMHOA 899 Jauodnue (11 L1 HOLVLIMIOV4 A3ONANI ONIZ) HH1Z ov.e1bgre

voau-Lysw

IYNY-Lpsw

6dLV-n:edy 6dLV-n:6dy eixoe yy+dixid N0  kSinpu psinpu 1OH

HONW

aosun

aseyiuAs d1v XOov

111 xejdwod | xojdwod

suonouNysAp |eLPUOYIOUIN

uonduosag  UOISS@IIY

‘(2102 “Ie 10 Jepug|ziemyog) sjusuuredw [eupuoydonw Aq paroaye (0102 “|e 10 buoT) seusb 1obiel IAd | 2 31aVL

January 2016 | Volume 6 | Article 1185

Frontiers in Plant Science | www.frontiersin.org


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Vigani and Briat

Mitochondrial Role for Nutrient Homeostasis

M
msh1-recA

MnSOD

ATP synthase
AP9:u-ATP9 AP3:u-ATP9 msd1-RNAi

AOX
aox1a

Mitochondrial dysfunctions

complex
OLM  prxlIF + AA

complex |
ROT ndufs4 ndufs1

The data sets from plants genetically impaired in their mitochondrial function corresponded to the following genetic backgrounds: aox1a, (loss of alternative oxidase); ndufs4 and ndufal (loss of complex I); mshixrecA, (mitochondrial

£
o}
e 2
=
> &
E 3 £ £ ¢
& PRSI SRS
c c 8 990
S E g ocaoo
2 3 =55 ¢S
= [0} c
3|5 s v o8 228
s | 8 S WL 5 X X x
:0 = C £ £ < <
= 0o G oa S>>
c
o
O | €
~ B £2888¢
2 =)
w8 SHILY 8
- | O 0 — < N O <
m | o [ B« Jie) e Mo ) Mie))
< < e s e s R
= T © ® ©® ®© ©

genome rearrangement, MGR); AP3:u-ATP9 and AP9:u-ATP9 (loss of mitochondrial ATP synthase); msd1-RNAI (loss of mitochondrial manganese superoxide dismutase, MSD1, protein) and prxll F (inhibition of complex Ill) (Schwarzlénder

et al, 2012). The data sets from plants having their mitochondrial respiratory chain inhibited by the following chemical treatments: olygomicyn A (OLM) and rotenone (ROT) (Clifton et al., 2005), and Antimycin A (AA) (Schwarzlénder et al.,

2012). Up-regulated genes are in green and down-regulated genes are in red.

(at3g56980); nodulin (at1g21140), and some genes encoding
for unknown functions (at5g05250 and at3g56360) (Table1).
Furthermore, general mitochondrial dysfunctions affected
other important Fe-responsive genes. They are BRUTUS
(BTS at3g18290); FRO3 (at1g23020); OBP3-responsive gene
(ORG1, at5g53450); OLIGOPEPTIDE TRANSPORTER (OPT3,
at4gl6370); S-ADENOSYLMETHIONINE  SYNTHETASE
(SAM1, at1g02500); METAL TOLERANCE PROTEIN A2
(MTPA2, at3g58810) (Table 1).

Among genes identified as similarly regulated under Fe
deficiency and mitochondrial dysfunctions, PYE and BTS are of a
particular interest. They characterize a transcriptional regulatory
network to control Fe homeostasis in Arabidopsis (Long et al.,
2010). PYE is a transcription factor necessary for the distribution
of already imported Fe, whereas BTS, a functional RING E3
ubiquitin ligase, could be a post-translational regulator of the
transcriptional regulatory network involved in the Fe-deficiency
response (Selote et al., 2015). Among the potential targets of
PYE identified in Long et al. (2010), 42 genes exhibited an
expression level affected in the data sets from mitochondrial-
impaired plants (Table2). These observations underline the
link between mitochondrial dysfunctions and the PYE/BTS
regulatory system controlling Fe homeostasis. Interestingly, the
expression of PYE and BTS is up-regulated when complex I is
impaired. As Fe deficiency strongly affects complex I activity and
protein synthesis (Vigani et al., 2009), mitochondria might be
involved in the induction of such genes that are crucial for Fe
homeostasis in plants.

Similar to what was observed for Fe, several S-responsive
genes (Maruyama-Nakashita et al,, 2006) were also strongly
up-regulated under mitochondrial dysfunctions. These genes
are encoding for S transporters SULTRI1;2 (at1g78000),
SULTR3;4 (at3g15990), SULTR4;2 (at3gl2520), and other
crucial S-responsive genes such as LSU1 (at3g49580), BGLU28
(at2g44460), and SDI1 (at5g48850) (Table 3).

SULTRI1;2 is a high affinity SOi_ transporter from Arabidopsis
(group 1), which mediates sulfate uptake into roots (Gigolashvili
and Kopriva, 2014). SULTR 3;4 is a member of group 3
of S-tranporters, which are likely to be involved in SOi_
translocation from root to shoot, whereas SULTR4;2 (group 4)
functions in vacuolar export of SO3 ™.

BGLU28 and SDI1 have received considerable attention.
BGLU28 is the most strongly up-regulated gene characterized
in several of the studies related to S deficiency. It encodes a
protein hypothesized to act by releasing S from glucosinolates, a
major potential S storage compound in the vacuole (Maruyama-
Nakashita et al., 2003, 2006; Dan et al., 2007). SDI1 is annotated
as a protein similar to male sterility family protein MS5, and
recent evidences suggested that its expression level could act as
a biosensor of S nutrient status (Howarth et al., 2009).

Interestingly, these S-responsive genes are strongly up-
regulated under a specific mitochondrial impairment: rotenone
treatment, which inhibits complex I activity (Schwarzlinder
et al., 2012). As recently reported, S deficiency affects complex
I activity (Ostaszewska et al., 2014) likely because this complex
has a high need of Fe-S cluster-containing proteins. Therefore,
an inhibition of complex I might trigger the expression of
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Regulation of expression of
some Fe-responsive genes
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FIGURE 1 | Schematized model of the possible role of mitochondria in the regulation of nutrient-responsive genes. As Fe and S are essential elements for
Fe-S cluster-containing proteins, deficiencies of such nutrients trigger mitochondrial dysfunctions mainly at the respiratory chain level. Through the comparison of
different data sets (mitochondrial dysfunctions vs. Fe- and/or S-responsive genes), nutrient-responsive genes have been identified as potential candidates of
hypothetical retrograde signaling pathways (PYE, BTS, FRO3; OPT3, SAM1 for Fe homeostasis and SULTR1;2 SULTR3;4, SULTR4;2, LSU1, BGLU28, SDI1 for S
homeostasis). Mitochondrial impairments occur in long term of Fe and S starvations; therefore, such retrograde signaling would occur in a second phase of the
regulation of nuclear gene expression, whereas the first phase (gray arrows) involved a more direct nutrient-sensing mechanisms.
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S-responsive genes. Interestingly, such genes are crucial for
S-sensing and signaling. Indeed SULTR1;2 has a major role in
SOf transport, and it has been recently suggested to act as
a possible S-transceptor (Zheng et al., 2014). Furthermore, the
transcriptional regulation of the SULTRI;2, BGLU28, and SDI1
genes is under the control of SLIM1, a central transcription factor
regulating the S-response in plants. Therefore, under S deficiency,
the affected complex I activity might participate in the regulation
of such genes through an unknown retrograde signaling
pathway.

CONCLUSION AND PERSPECTIVE

It has been suggested that Fe and S deficiencies might trigger
retrograde signaling pathways to regulate the expression of genes.
However, no clear evidence demonstrating such hypothesis has
been reported so far. Considering that both Fe and S deficiencies
affect mitochondrial respiration, it can be hypothesized that
the impaired respiratory chain might be at the origin of
putative retrograde signals under such nutritional deficiencies.
In agreement with such a hypothesis, we observed that the
expression of several Fe- and S-responsive genes was affected in
plants with an induced mitochondrial dysfunction, as reported
in the study by Schwarzldnder et al. (2012). Interestingly, these

genes exhibited a similar regulation (up or down) under Fe
or S deficiencies and respiratory chain impairments. These
observations underline the possible role of the respiratory chain
impairment under Fe and S deficiencies in the regulation of
some Fe and S-responsive genes. Here, we hypothesize that Fe
and S deficiencies, by triggering mitochondrial impairments,
promote the generation of specific signal(s) targeted from
this organelle to the nucleus, leading to the up-regulation of
nuclear-encoded genes involved in the establishment of Fe and
S homeostasis, respectively (Figure 1). However, mitochondria
might be considered only as one of the players in the complex
nutrient-sensing and signaling mechanisms, as other more direct
regulations occur (Figure 1). Indeed, it has been proposed that
direct binding of Fe to transcriptional regulators would be
the primary Fe-sensing event in plant cells (Kobayashi and
Nishizawa, 2014, 2015). Putative retrograde signaling pathways
might, therefore, occur in a second time of nutrient sensing.
Considering that mitochondrial impairments should occur on
the long-term in response to Fe or S starvation, we suggest
that mitochondria might come into the regulation of nutrient-
responsive genes at a later stage. Plant responses to nutrient
deficiencies, such as Fe or S, are more complex than the simple
activation of nutrient uptake/translocation mechanisms. Indeed,
a complex metabolic reprogramming occurs in the cell in order
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to adapt itself to the low nutrient availability, as in the case of Fe
(Vigani, 2012).

Interestingly, among the Fe-responsive genes reported
by Stein and Waters (2012), 45% of them were similarly
regulated under Fe deficiency and mitochondrial dysfunctions.
Furthermore, the expression of 45% of the PYE-regulated genes
was affected by mitochondrial dysfunctions. Whereas among
the S-responsive genes considered (Maruyama-Nakashita et al.,
2006), 38% of them were similarly regulated under S deficiency
and mitochondrial dysfunction. Complex I impairments seem
to induce a differential expression of the majority of Fe- and
S-responsive genes (Tables 1-3). It is well known that complex
I deficiencies dramatically impact on cellular physiology, and
numerous diseases have been linked with the impairment of
complex I (Kithn et al., 2015). In humans, complex I is the main
origin of diseases resulting from mitochondrial dysfunction
(Nouws et al., 2012). However, in plants, the absence of complex
I does not cause premature death as it occurs in humans
(Kithn et al., 2015 and reference therein). Indeed, in plants,
bypasses do exist for complex I (i.e., NDey), allowing even more
metabolic flexibility than in human mitochondria. Recently, a
central role of ND¢y in the regulation of cellular metabolism
has been suggested. Suppression of the external mitochondrial
NADPH dehydrogenase NDB1 affects global gene expression in
Arabidopsis plants (Wallstrom et al., 2014), thereby suggesting
that changes in nicotinamide redox level can selectively affect
particular process of the cell. In fact, the existence of a NAD(P)H
signaling process in plants has been suggested (Noctor, 2006).
Under both Fe and S deficiencies, the increased activity of ND¢x
along with the decreased activity of complex I might indicate
that both nutrient deficiencies affect the nicotinamide redox level
of the cell. Therefore, a possible NAD(P)H signaling pathway
might be involved in the regulation of such nutrient-responsive
genes. In this case, the metabolic status of mitochondria
might produce non-specific signals. Therefore, the regulation
of nutrient-responsive genes might result from integrated
signaling pathways, involving specific and non-specific
signals.

However, it cannot be ruled out that the above-reported
overlap in the gene expression response to mitochondria
dysfunctions or to Fe or S deficiencies could be simply be random
and due to transcriptional noise, rather than indicative of a
specific induction of nutrient starvation responses. Indeed, it
is important to keep in mind that transcription is intrinsically
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