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ABSTRACT 

Pancreatic cancer is a highly aggressive tumor, mostly resistant to the standard treatments. 

Nucleolin (NCL) is overexpressed in cancers and its inhibition impairs tumor growth. Herein 

we showed that NCL was overexpressed in human specimens of pancreatic ductal 

adenocarcinoma (PDAC) and that the overall survival significantly increased in patients with 

low levels of NCL. The NCL antagonist N6L strongly impaired the growth of primary tumors 

and liver metastasis in an orthotopic mouse model of PDAC (mPDAC). Similar anti-tumor 

effect of N6L has been observed in a highly angiogenic mouse model of pancreatic 

neuroendocrine tumor RIP-Tag2. N6L significantly inhibited both human and mouse 

pancreatic cell proliferation and invasion. Notably, the analysis of tumor vasculature revealed 

a strong increase of pericyte coverage and vessel perfusion both in mPDAC and RIP-Tag2 

tumors, in parallel to an inhibition of tumor hypoxia. NCL inhibition directly affected 

endothelial cell (EC) activation and changed a pro-angiogenic signature. Among the vascular 

activators, NCL inhibition significantly decreased Ang-2 secretion and expression in ECs, in 

the tumor and in the plasma of mPDAC mice. As a consequence of the observed N6L-induced 

tumor vessel normalization, pre-treatment with N6L efficiently improved chemotherapeutic 

drug delivery and increased the anti-tumor properties of gemcitabine in PDAC mice. 

In conclusion, NCL inhibition is a new anti-pancreatic cancer therapeutic strategy that dually 

blocks tumor progression and normalizes tumor vasculature improving the delivery and 

efficacy of chemotherapeutic drugs. Moreover, we unveiled Ang-2 as a potential target and 

suitable response biomarker for N6L treatment in pancreatic cancer. 
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INTRODUCTION 

Pancreatic cancer which include Pancreatic Ductal Adenocarcinoma (PDAC) and Pancreatic 

neuroendocrine tumors (PNETs) is the fourth most common cause of cancer deaths 

worldwide (1). PDAC is a highly aggressive cancer with a very poor prognosis and an overall 

5-year survival rate less than 5%. Current therapies in PDAC and PNET, consist solely of 

surgery followed or not by targeted or chemo therapies (2, 3). 

Nucleolin (NCL) is highly expressed in several types of cancer (4), and is a cancer specific 

target, being localized at the cell surface of tumor cells and activated endothelial cells (ECs) 

(5-7). Nucleolar NCL principally regulates rRNA transcription and ribogenesis while cell 

surface NCL acts as a low affinity receptor for specific ligands (4). Moreover, NCL stabilizes 

the mRNA of anti-apoptotic proteins (8). NCL is a novel target for anticancer therapy as 

demonstrated by the effects of several NCL-targeting molecules (9-11). We recently 

developed a multivalent synthetic pseudopeptide N6L that selectively binds to NCL (9). N6L 

strongly inhibits breast cancer growth by inducing apoptosis of tumor cells and is currently in 

preparation for phase II clinical trials (9) (IPP-204106). Interestingly, N6L as well as a NCL 

blocking antibody impairs both experimental and in vivo angiogenesis by targeting endothelial 

cells and tumor vessels (9, 12, 13). The mechanisms of regulation of tumor angiogenesis by 

NCL are poorly described, such as the effect of NCL inhibition in tumor cells and stroma of 

pancreatic cancer. 

Several molecules that regulate tumor angiogenesis are overexpressed in pancreatic cancer. In 

human PDAC, VEGF expression is increased and high levels of Ang-2 correlate with 

metastatic spread and poor survival of PDAC patients (14, 15). However, blood vessels in 

PDAC are compressed by the fibrous stroma and PDAC is poorly perfused with a consequent 

aberration in local blood flow and oxygenation (16). This contributes to the promotion of 

cancer growth, tumor hypoxia, metastasis formation and prevents an efficient delivery of 
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chemotherapeutic drugs (17, 18). PNETs, differently from PDAC are highly vascularized, but 

share the same vascular abnormality phenotype that contributes to cancer progression and 

metastatic dissemination (3). 

Based on these findings our aim was to target both cancer cells and tumor vasculature in 

pancreatic cancer. In this work, we studied NCL-targeted therapy, demonstrating that N6L, 

hampers pancreatic cancer growth and metastasis by dually targeting cancer cell growth and 

tumor vasculature, and we explored the potential mechanisms of action. 

 

MATERIALS AND METHODS 

The source of antibodies (Abs) and the experimental procedures not described herein are 

detailed in Supplementary Data. 

 

Cell culture 

Human umbilical vein endothelial cells (HUVECs) were authenticated by Lonza and 

periodically provided between 2013-2015, cultured in EGM-2 and used until the fourth 

passage. Human Brain Vascular Pericytes (HBVP) were authenticated and provided by 

ScienCell in 2014, maintained in Pericyte Medium phenol red free (PM-prf, ScienCell) 

containing appropriated growth supplements and used until the fourth passage. Murine 

pancreatic cancer cell (mPDAC), were isolated, as described in Supplementary methods, from 

tumor-bearing p48cre, KrasLSL_G12D, p53R172H/+, Ink4a/Arfflox/+ mice in 2012 and the genotype 

was verified by PCR. 

 

Tumor mouse models 

FVB/n syngenic mice were injected orthotopically in the pancreas with mPDAC cells (103 

cells/mouse in 50 µL). In this mPDAC model, we first established that the tumors reach a 
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volume of approximately 80 mm3 within a week following injection of tumor cells. We 

defined this time period as the starting point to perform a regression trial, and one week after 

cell inoculation, mice were treated 3 times a week for the duration of 3 weeks by 

intraperitoneal injections (i.p.) with either N6L (10 mg/kg) or vehicle (saline solution) as a 

control. Gemcitabine was injected in the tail vein (i.v.) (100 mg/kg) 2 times a week as 

indicated. In the combination treatment, GEM was injected 2 times (i.v.) a week and N6L 3 

times a week (i.p.) after 1 week of N6L for a total of 2 weeks to the animals. Regarding the 

measurement of metastasis, livers from PDAC mice were entirely cut and sections spaced of 

200 µm were stained by hematoxylin. Images were taken by Scanner Aperio Scanscope CS. 

The metastatic surface of each nodule in the liver sections was measured, and the total surface 

occupied by metastasis was divided by the total area of the liver section. 

The RIP-Tag2 transgenic mouse model has been previously described (19), mice were treated 

by N6L 10 mg/kg, 3 times a week for a duration of 4 weeks from 12 to 16 weeks of age. 

Mice were sacrified and total tumor burden was quantified as previously described (9). All in 

vivo experiments were carried out with the approval of the appropriate ethical committee and 

under conditions established by the European Union. 

 

TMA staining and analysis 

An immunohistochemical staining was performed with anti-nucleolin antibody 

(Supplementary methods) using standard protocol in 47 human PDAC included in a tissue-

microarray (TMA) paraffin block. Immunostaining was performed using an automatized 

technique (Streptavidin-peroxydase with an automate Bond Max, Leica), and slides were 

counterstained with hematoxylin. Images were taken by the Scanner Aperio Scanscope CS. 

Analysis of NCL staining was performed by a score determination corresponding to the 

intensity of the labeling of tumor cells from 0 to 3 (0, no staining; 1, low staining; 2, moderate 
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staining; 3, high staining) in each spot. The final score for each tumor was the average of the 

scores obtained for each spot available by tumor. 

 

Measurement of tumor delivery of doxorubicin and vessel perfusion 

To evaluate tumor vessel perfusion, 0.05 mg FITC-labeled tomato lectin (Vector laboratories, 

CA, USA) were injected i.v. into PDAC-carrying mice, as previously described (20). After 10 

minutes, the animals were euthanized, and lectin distribution was visualised by fluorescent 

confocal microscopy. 

To measure the tumor delivery of doxorubicin mice were injected with 10 mg/kg doxorubicin 

hydrochloride (Sigma-Aldrich) via the lateral tail vein 4 hours before sacrifice. Tumors and 

kidneys as controls were collected from each mouse and weighted. Samples were resuspended 

in a lysis buffer (0.25 M sucrose, 5 mM TrisHCl pH 7.6, 1 mM MgSO4, 1 mM CaCl2) and 

homogenized in an ice-cold Potter homogenizer. 200 µl of each homogenate was placed into a 

new microcentrifuge tube containing 10% Triton X-100 and 1.5 ml acidified isopropanol, 

mixed and kept at –20°C overnight. Samples were centrifuge at 15,000 g for 20 minutes. 

Doxorubicin was quantified by spectrophotometric analysis at 590 nm using TECAN Infinite 

M1000 plate reader (Tecan, Durham, NC). These values were calculated as the 

fluorescence/weight ratio of the tumor divided by the fluorescence/weight ratio of the kidney 

and expressed as µ equivalents/g tissue of doxorubicin. Data are mean ± SD of triplicate 

aliquots from tumor homogenates. 

 

 

Cell transfection and cell migration 

Cell transfection by siRNA was performed by following manufacturer instructions (Hiperfect, 

Qiagen), for siRNA sequences see Supplementary methods. 
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For pericyte motility, 9x104 HUVECs per well were seeded in 6-well plate. The day after, 

HUVECs were transfected with 10 nM siRNA or treated with 30 µM N6L. Three days later 

HUVECs were washed and medium was replaced by EBM-2. Cell supernatant was collected 

1 hour after. 20x104 HBVPs were seeded in the upper chamber (with or without 400 ng/mL 

recombinant Ang2) coated with 1.5 ug/mL collagen type I and the EC supernatant was added 

in the lower chamber. For each transwell, nuclei of cells from 5 fields were counted using 

Leica Aristoplan microscope equipped with a CoolSNAP CCD camera. 

 

Statistics 

Unless indicated otherwise, bars represent mean +/− Standard Error Mean (S.E.M.) (n≥3), p-

values have been calculated using a two-tailed or one-tailed unpaired t test using GraphPad 

Prism software. *p < 0.05; **p < 0.01; ***p < 0.001; ****p<0.00001. P values of the Kaplan-

Meier curve of survival has been calculated by using the Long-rank (Mantel-Cox) test.
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RESULTS 

NCL is a potential new target of tumor progression in PDAC. 

NCL is overexpressed in tumors and its inhibition hampers breast, prostate, and melanoma 

cancer growth and angiogenesis (4). To evaluate NCL as a potential target in human PDAC, 

we analyzed NCL protein expression levels in 47 tumors included in tissue microarray. 74.5% 

of the tumors showed a moderate (Fig. 1C) or high NCL staining (Fig. 1A and, B arrows). 

Non-tumoral pancreas, corresponding to pancreatitis (Fig. 1D), normal peritumoral tissue or 

normal ducts either around or included in the tumors (Fig. 1B, arrowheads) were not or very 

faintly stained by anti-NCL antibody. Next, we checked the correlation between NCL 

expression level and overall survival (OS) in patients with PDAC. Notably, the OS 

significantly increased in PDAC patients with low levels of NCL compared to patients with 

high levels of this protein (Fig. 1E). 

NCL protein level was analyzed in four different human pancreatic cancer cell lines 

(hPDAC), a murine PDAC cell line (mPDAC) and endothelial cells (ECs) (Supplementary 

Fig. 1A). Capan-2 and BxPC-3 showed similar protein level than non tumoral cells, ECs, 

while MIA PaCa-2, PANC-1 and mPDAC cell lines displayed higher NCL protein levels. We 

sought to investigate whether NCL inhibition affects progression of PDAC. The multivalent 

pseudopeptide N6L (9) bound to NCL in human pancreatic cancer cells PANC-1, as well as in 

ECs (Supplementary Fig. 1B). N6L inhibited pancreatic cell growth of all cell lines cited 

above (Supplementary Fig. 1C). The GI50 is in a range between 5 to 36 µM and increased with 

NCL levels, by a. Coherently, N6L significantly reduced the amount of PDAC cells in S 

phase after 24 hours of treatment (Supplementary Fig 1D), and the active caspase-3 levels 

increased after 48 hours of treatment (Supplementary Fig. 1E). Moreover, N6L strongly 

inhibited the migration of MIA PaCa2 and mPDAC cell lines by 69% and 72%, respectively, 

compared with controls (Supplementary Fig. 1F), and the invasion of mPDAC cells toward a 
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layer of matrigel, as compared to controls (Supplementary Fig. 1G). The implication of NCL 

in PDAC cell proliferation was tested by other experimental approaches. For instance, the 

viability of mPDAC cells was decreased by a NCL blocking antibody (MS3) (Supplementary 

Fig. 2A). Moreover, the knock down of Ncl in mPDAC by means of CRISP-Cas9 technology 

caused massive death of the cells  (Supplementary Fig. 2C). NCL blocking antibody pre-

treatment decreased the efficacy of the entry of Alexa546-N6L in PDAC cells 

(Supplementary Fig. 2B). In line with these results, the combination of NCL blocking 

antibody and N6L did not show a cumulative effect on cell viability (Supplementary Fig. 2A). 

These results suggested that N6L and NCL blocking antibody competed for NCL targeting in 

PDAC cells. 

 

N6L treatment hampers PDAC growth and liver metastasis. 

Based on the high levels of NCL found in human PDAC, and according to the observation 

that N6L inhibited hPDAC and mPDAC cell proliferation, we decided to assess the anti-

tumor effect of N6L in an orthotopic mouse model of PDAC. The model was obtained by 

injecting mPDAC tumor cells orthotopically into the pancreas of a cohort of FVB/n syngenic 

mice (from here the model will be called mPDAC model). This model recapitulated many 

features of the human PDAC, showing a malignant epithelial neoplasm with ductal 

differentiation (Supplementary Fig. 3A) or sarcomatoid carcinoma (Supplementary Fig. 3B) 

(21). Tumor tissues in mPDAC model were highly hypoxic (Supplementary Fig. 3C) and 

fibrotic (Supplementary Fig. 3E, arrows), and showed a high heterogeneity of vessel density 

as in human patients (22), with poorly vascularized regions (arrows in Supplementary Fig. 

3D) and regions with a higher vessel density (arrowheads in Supplementary Fig. 3D). 

Notably, carbonic anhydrase 9 (CA9) expression significantly increased in parallel with 

enhanced synthesis of collagen I during cancer progression in mPDAC (Supplementary 
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Figure 3E, F and G). These data suggest that, similarly to the human disease, hypoxic level 

well correlated with increased fibrosis in PDAC tumors. Similarly to human samples (Fig. 1 

A-D), NCL was expressed in the nuclei of pancreatic acinar cells (Supplementary Fig 3K) but 

highly expressed in tumor tissues compared to healthy pancreas (Supplementary Fig. 3H, I, K 

and L), in particular in ducts and sarcomatoid regions of the tumor (Supplementary Fig. 3H 

and I). In addition, NCL was significantly expressed in the tumor vasculature of mPDAC 

model (Supplementary Fig. 3J). 

The treatment of mPDAC mice with 10 mg/kg of N6L significantly decreased the tumor 

volume by 43.4% (Fig. 2A). The rate of proliferative cells decreased in PDAC tumors treated 

by N6L compared with controls (Fig. 2B and C) while, N6L treatment enhanced apoptosis in 

tumor cells (Fig. 2B and D). Since NCL expression is coupled to tumor cell proliferation (6), 

we analyzed the effect of N6L on NCL protein (Fig 2B and E) and mRNA levels of tumors 

(Fig. 2F). Consistently, both NCL mRNA and protein were decreased in N6L-treated mPDAC 

(Fig. 2B, E and F). 

Two ways of dissemination to the liver are described in PDAC patients, through vessels and 

through a peritoneal dissemination. mPDAC model developed liver metastasis prominently in 

the liver at close contact to the peritoneal surface (Fig. 2G, arrows). The total metastatic area 

was quantified (Fig. 2H). Remarkably, N6L strongly reduced liver metastasis area by 67% 

(Fig. 2G and H). These findings are further supported by our data describing a strong effect of 

N6L in blocking the motility and the invasion of mouse and tumor cell lines (Supplementary 

Fig. 1F and G). 

 

NCL targeting by N6L normalizes tumor vessels and counteracts tumor hypoxia in 

PDAC and PNET. 

Since NCL targeting inhibits EC growth and NCL is significantly expressed in the vasculature 
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of mPDAC, we investigated the effect of N6L on tumor blood vessel density and morphology. 

Vessel density and vessel branching were significantly decreased in N6L-treated mPDAC by 

42% and by 62%, respectively (Fig. 3A, B and C). Therefore, the effect of N6L on tumor 

vessel normalization in mPDAC tumors was studied by analyzing the changes in pericyte 

vessel coverage, perfusion, and hypoxic levels, all hallmarks of vessel normalization in cancer 

(23). In mPDAC model, tumor blood vessels typically had low pericyte coverage, detected 

with two different markers of pericytes (24). The treatment of mPDAC tumors with N6L 10 

mg/kg resulted in an increase of pericyte coverage of tumor blood vessels. NG2+ pericytes 

increased by 71% (Fig. 3A and D) and PDGFR-β+ pericytes by 77% of (Fig. 3A, and E). The 

treatment with N6L 2 mg/kg resulted in an increase of NG2+ pericyte coverage of tumor 

blood vessel by 52% (Supplementary Fig. 4A), supporting a dose effect of N6L. Then, we 

sought to evaluate the effect of the inhibition of stromal NCL vs tumoral cell NCL on tumor 

vascularization. We evaluated the tumor vascularization and pericyte coverage in an 

orthotopic mouse model of pancreatic tumor generated by injecting PDAC cells (Panc-02) 

into the pancreas of wild type (Nclwt/wt;Cre+/-) mice or in animals in which NCL was deleted 

in one allele (Nclflwt;Cre+/-) (Supplementary Fig. 4B and C). Remarkably, we observed reduced 

tumor vascularization (Supplementary Fig. 4D and E) and increased pericyte coverage in 

Ncl+/- (Supplementary Fig. 4F and G), compared with Ncl+/+ mice. 

Blood vessel perfusion is a parameter of vessel homeostasis and correlates with pericyte 

coverage and oxygenation (25). Interestingly, the treatment of mPDAC with N6L enhanced 

the perfusion of the tumor vasculature, compared with controls (Fig. 3F and G). Next, we 

assessed whether the tumor oxygenation levels were affected by N6L. In line with its 

normalizing effect, N6L reduced the hypoxic area, detected by pimonidazole staining (Fig. 

3H). In addition, N6L strongly inhibited the expression of carbonic anhydrase 9 (CA9), a 

marker of hypoxia (26) (Fig. 3I and J).  
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To better assess the effects of N6L on tumor vessel normalization and the related anti-tumor 

properties, we employed a transgenic mouse model of pancreatic neuroendocrine tumor 

(PNET) RIP-Tag2. This model has been widely used to assess the efficacy of several anti-

angiogenic compounds and to evaluate the effect of vessel normalization to block tumor 

growth and invasion (19, 24). To this aim, we performed a regression trial (24), treating a 

cohort of tumor-bearing RIP-Tag2 mice with N6L. This treatment showed an inhibition of 

tumor growth by 40% (Fig. 4A) and an increase of tumor cell apoptosis by 90% (Fig. 4B), 

compared with controls. Similarly to PDAC, N6L significantly induced tumor vessel 

normalization by increasing pericyte coverage (by 42%) (Fig. 4C and F), and enhanced the 

perfusion of the tumor vasculature (Fig. 4G and H). In line with these vessel normalization 

effects N6L-treated tumors showed reduced vessel number and branching (Fig. 4C, D and E).  

All together these results demonstrate that the inhibition of NCL induces vessel normalization 

in two different mouse models of pancreatic cancer by increasing pericyte coverage, vessel 

perfusion and reducing intra-tumoral hypoxia. 

 

NCL inhibition affects EC activation and Ang-2 secretion. 

The mechanisms of tumor inhibition and vessel normalization by N6L were further studied. 

N6L does not induce apoptosis of ECs (15), and did not change the viability value of 

confluent ECs (Supplementary Fig. 5A), suggesting that NCL inhibition specifically target 

proliferating and activated ECs. N6L significantly decreased the percentage of ECs in S phase 

when compared to control-treated cells (14% vs 27%) and increased the percentage of cells in 

G1 (64% vs 47%) (Fig. 5A). The involvement of NCL in EC cycle progression was further 

confirmed by depleting NCL in ECs. In fact, NCL depletion by siRNA significantly decreased 

the percentage of ECs in S phase, and increased the amount of cells in G1 phase when 

compared to control ECs (4% vs 32% and 86% vs 42%, respectively) (Fig. 5B). 
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Another feature of EC activation is the secretion of pro-angiogenic molecules by ECs (27). 

Therefore, we evaluated the effect of N6L on the basal secretion of angiogenic-related 

molecules by ECs by using a proteome angiogenesis antibody array (R&D). Interestingly, 

among the different secreted pro-angiogenic factors, we observed that Ang-2, shown to 

promote tumor progression and whose inhibition induces vessel normalization (28-32), was 

inhibited by N6L treatment (Supplementary Table 1). Based on this screening we analyzed 

the effect of N6L on the secretion of Ang-2 by ECs. Ang-2 level decreased in the EC 

supernatant upon 5 hours of N6L treatment but not in EC lysates (Fig. 5C). Ang-2 is stocked 

in Weibel and Palade bodies (WPBs) and basally secreted by WPB exocytosis in activated 

ECs (33). Ang-2 colocalized with the WPB protein vWF in ECs (Fig. 5D, inset). Interestingly, 

5 hours of N6L treatment enhanced Ang-2 content (Fig 5D and E), indicating that N6L 

interferes with the turnover of Ang-2 secretion, accumulating this protein into ECs. The 

importance of NCL in Ang-2 secretion inhibition under N6L was tested (Fig 5F). While 

significant inhibition of secreted Ang-2 has been observed in siControl ECs treated with N6L, 

no detectable differences in Ang-2 levels were measured in siNCL-EC supernatants, 

compared with their respective controls (Fig. 5F). The effect of longer N6L treatment (72 

hours) on Ang-2 expression was analyzed (Fig 5H an I). Ang-2 level decreased in EC lysates 

at the protein level (Fig 5H) and at the mRNA level (Fig 5I) under N6L treatment. 

Coherently, Ang-2 basal secreted levels (Fig. 5F) and Ang-2 protein level in ECs (Fig. 5G) 

were also decreased in NCL-depleted cells. These data suggest that NCL inhibition affects 

Ang-2 secretion and expression. In line with the observed pro-normalizing effect of N6L, 

among angiogenic-related secreted molecules in ECs, we observed that PDGFβ, a factor 

mediating pericyte recruitment (34), was also upregulated by N6L, (Supplementary Table 1) 

and its mRNA was significantly increased under N6L treatment (Supplementary Fig. 5B). 
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Together these data demonstrate that NCL depletion or inhibition by N6L affects EC 

activation by decreasing the percentage of cells in S phase and regulating angiogenic 

molecules involved in pericyte recruitment. 

 

NCL inhibition decreases plasma Ang-2 level in PDAC model. 

In human cancers Ang-2 is highly expressed by ECs in tumor blood vessels and tumor cells 

(35, 36). Notably, Ang-2 is expressed mostly in tumor blood vessel of PDAC model 

(Supplementary Fig 5D). Pilot studies aimed to measure the time-course of plasmatic Ang-2 

amount showed that the levels of Ang-2 in the plasma were unchanged until the second week 

of PDAC growth and increased then after (Supplementary Fig 5E). Based on these 

preliminary data, we next analyzed plasmatic Ang-2 level of different mice injected by PDAC 

cells or saline solution after three weeks of inoculation (Fig 6A). As expected from our 

previous observation, Ang-2 was significantly increased in tumor bearing mice (Fig. 6A). To 

evaluate the effect of N6L-treatment on secreted Ang-2 levels in vivo, we checked the plasma 

of control and N6L-treated mPDAC at the end of the treatment. Remarkably, Ang-2 was 

significantly decreased by 68% in the plasma of N6L-treated mice compared with control 

(Fig. 6B), while PDGFβ level did not change (Supplementary Fig. 5G). In parallel, Ang-2 

expression was evaluated in tumors. Since tumor vessel density was decreased in N6L-treated 

mPDAC (Fig. 3A and B), Ang-2 expression was normalized to the tumor vessel gene 

MECA32 and Fig 6C shows that Ang-2 expression decreased under N6L treatment. Notably, 

VEGF signaling was not affected by N6L, since VEGF-A expression (Supplementary Fig. 5F) 

was unchanged in N6L-treated PDAC tumors, and VEGFR2 levels was not affected in N6L-

treated ECs (Supplementary Fig. 5C). 

To better assess the role of secreted Ang-2 in vessel normalization, we sought to investigate 

whether decreased Ang-2 secretion by Ang-2-depleted or N6L-treated ECs was sufficient to 
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induce pericyte recruitment. Pericyte migration toward the supernatants of Ang-2-depleted 

ECs was strongly increased compared with control (Fig. 6D). Moreover, pericyte migration 

towards the supernatant of ECs treated with N6L was similarly increased (Fig 6E). Since 

pericytes express the Ang-2 receptor Tie-2 and Ang-2 induces dose-dependent pericyte loss 

on retina vessels (37), we investigated if Ang-2 could directly affect pericyte migration. Ang-

2 functions are dependent to the context of angiogenic cytokines or factors regulating pericyte 

response (37). Recombinant Ang-2 did not affect alone the migration of control pericytes, as 

previously shown (37). However, recombinant Ang-2 significantly reduced the increased 

pericyte migration towards the supernatants of Ang-2-depleted ECs (Fig. 6D) or N6L-treated 

ECs (Fig 6E). Together these data demonstrate the crucial involvement of Ang-2 in the pro-

normalizing effect induced by N6L. 

 

N6L enhances drug delivery in PDAC treatment. 

It has been shown that tumor vessel normalization represents a remarkably advantageous anti-

cancer strategy, being also able to enhance drug delivery and, consequently, chemotherapy 

efficacy (23). To first assess whether the enhanced perfusion induced by N6L could also 

increase drug delivery, doxorubicin was injected in the tail vein of control or N6L-treated 

mice at the end of the trial and the amount of drug present into the tumor tissues was 

quantified. In line with the normalized vessel phenotype, N6L treatment increased by 3.5 

times the efficacy of the doxorubicin delivery to the tumors of mPDAC, compared to controls 

(Fig. 7A). The resistance of PDAC tumors to chemotherapies, and consequently the extremely 

bad prognosis for PDAC patients is at least partly due to the extremely poor perfusion of 

blood vessels and drug delivery (38, 39). Increasing drug delivery represents a key strategy to 

treat PDAC patients. To evaluate whether the effect observed in mouse tumors was also 

observed in human cancers, both human BxPC-3-derived orthotopic (Fig. 7B) and 
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subcutaneous (Supplementary Fig. 5H) xenograft tumors were treated with N6L and 

doxorubicin was injected and quantified at the end of the treatment. N6L-treatment 

significantly increased the delivery of the drug into the tumor similarly to the mPDAC (Fig. 

7B and Supplementary Fig. 5H). The time course of N6L treatment necessary to increase 

doxorubicin delivery induced by N6L was evaluated by a treatment of one or two weeks in 

subcutaneous BxPC-3 (Supplementary Fig. 5H). The improvement of the doxorubicin 

delivery by N6L was clearly improved by kinetics between the first and the second week of 

treatment (Supplementary Fig. 5H). Stemming from these data we sought to investigate 

whether the pre-treatment of N6L was able to enhance the anti-tumor effect of gemcitabine, 

the standard of care for PDAC human patients. Our preliminary data in mPDAC showed that 

the dose of 2 mg/kg N6L impaired tumor growth with less efficacy compared to the dose of 

10 mg/kg, but was still able to induce pericyte coverage of tumor vessels (Fig 7C and 

Supplementary Fig. 4A). This suboptimal anti-tumor dose was therefore used to test the 

effects of the combination of N6L and gemcitabine in mPDAC model. Gemcitabine and N6L 

used as single agents had a similar effect in reducing tumor growth. Remarkably, the pre-

treatment of mPDAC with N6L and the subsequent treatment with the combination of N6L 

with gemcitabine showed a greater effect in decreasing tumor volume in mPDAC, by 75% 

compared to the single treatments and by 82% compared to the control (Fig. 7C). 

 

DISCUSSION 

NCL inhibition is known to reduce tumor growth, and different strategies of NCL-targeted 

therapy are in development for clinical application in renal cell cancer and breast cancer (10, 

11). In this study we described for the first time NCL-targeted therapy in pancreatic cancer. 

We used a highly aggressive and invasive orthotopic mouse PDAC model and RIP-Tag2 

transgenic mouse model and demonstrated the antitumoral and anti-metastatic potential of the 
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N6L pseudopeptide on pancreatic cancer. Besides the effect of NCL on tumor cell 

proliferation, N6L targets also the tumor microenvironment reducing blood vessel area and 

promoting tumor vessel normalization that, in turn, impairs hypoxia and improves drug 

delivery. 

PDAC is one of the most lethal cancers. The analysis of PDAC from human patients reveals 

that 74.5% of patients have a higher NCL level when compared with non-tumoral tissues. 

Importantly low level of NCL in PDAC correlates with increased survival of patients and may 

be a good prognostic factor. N6L exerts a potent anti-tumor and anti-metastatic effect in 

mPDAC, by inhibiting tumor proliferation and invasion, and inducing tumor apoptosis as 

previously described in breast and prostate xenograft tumors (9, 40). Conversely, since the 

complete knock down of Ncl in cells and adult animals was not viable, the side effects of 

NCL inhibition by a target therapy have to be carefully verified. The dose of N6L was 

recommanded by the results of the clinical trial phase I. NCL expression is regulated by cell 

proliferation (10) and the anti-proliferative activity of N6L was accompanied by a decrease of 

50% of NCL expression in PDAC tumors.  

Together, these findings, along with the OS observed in patients with low NCL level, suggest 

that the down-modulation of NCL levels in human patient by N6L treatment could contribute 

to the improvement of the survival in patients with pancreatic cancer. 

Importantly, in PDAC, N6L induced tumor vessel normalization improving vessel perfusion 

and drug delivery. In addition, N6L efficiently affected tumor growth and tumor vasculature 

in RIP-Tag2, a mouse model highly vascularized in which anti-angiogenic therapies and 

vessel normalization has been demonstrated to be an efficient strategy to inhibit tumor growth 

(20). The strong effect of N6L on vessel normalization also in this model that displays a 

different angiogenic pattern compared to PDAC, further corroborates the selective effect of 

NCL inhibition on tumor stroma in pancreatic cancer. To further understand the importance of 
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NCL inhibition in the tumor vessel compartment, cancer vascularization was studied in a 

model of orthotopic PDAC developed in Ncl+/+ or Ncl+/- background. This approach allowed 

us to clearly show that the single allele deletion of the stromal NCL is sufficient to impact the 

tumor vascularization, and that the tumor vessel normalization induced by NCL inhibition is 

not a secondary effect due to a reduced tumoral cell proliferation.  

NCL is a marker of angiogenic vessels (7) and our data support an autocrine effect of the 

NCL inhibition on ECs. During angiogenesis, EC activation induces loss-of-quiescence of 

ECs (33) and the secretion of pro-angiogenic molecules (33). NCL inhibition by N6L starts a 

program of EC loss-of-activation through the induction of EC quiescence and promotion of an 

anti-angiogenic balance. Indeed, based on our proteome assay, N6L decreased the level of 

secreted pro-angiogenic molecules (Ang-2, FGF-2, VEGF-C and IL1β)  (41) (42, 43) while 

enhanced anti-angiogenic molecules (Thrombospondin-1, Pentraxin-3 and Platelet factor 4) 

(44-46). Between the molecules regulated by N6L, Ang-2 and PDGFβ regulate pericyte 

recruitment (34). Remarkably, Ang-2 plasma levels were significantly reduced after N6L 

treatment together with its expression in the tumors, while plasma PDGFβ and VEGFA 

mRNA levels did not change. In addition, we demonstrated that NCL is involved in 

maintaining an active basal secretion of Ang-2 regulated by Weibel and Palade body 

exocytosis in activated ECs in vitro. While short-term NCL inhibition decreases Ang-2 

secretion in ECs, longer NCL inhibition decreased the expression of Ang-2. This last effect is 

probably associated to the induction of EC quiescence, because Ang-2 is only expressed in 

vivo in remodeling and activated vessels (28). It is known that the Angiopoietins/TIE2 system 

regulates vascular development and maturation (41). Ang-1 activates TIE2 receptor and 

promotes vessel stabilization, while Ang-2, produced by activated ECs, promotes 

angiogenesis by inducing blood vessel destabilization and sprouting (41). Ang-2 blockade 

induces tumor vessel stabilization, decreases angiogenesis and slows the growth of several 
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tumor models (28-32). Based on these observations, we can argue that the observed pro-

normalizing effect of N6L on tumor vasculature could be in part mediated by the inhibition of 

Ang-2 during the treatments. Notably, we observed that the depletion of Ang-2 and the 

inhibition of secretion by N6L in ECs are sufficient to promote pericyte migration. Since 

recombinant Ang-2 is able alone to rescue these effects, we could argue that the regulation of 

Ang-2 expression and secretion by ECs is crucial for pericyte recruitment. These findings 

suggest that the arrest of the EC cell cycle, along with the reduction of Ang-2 level in vivo, 

could contribute to the anti-angiogenic and pro-normalizing effect of NCL inhibition observed 

in mPDAC and RIP-Tag2 mice. 

Single-agent gemcitabine is the standard-of-care treatment for PDAC patients, but the 

addition of targeted therapies to chemotherapy failed to show any improvement (47). One 

possible novel strategy to improve the current therapy in PDAC is to enhance drug delivery 

by targeting tumor microenvironment (39, 48, 49). However, decrease of PDAC solid stress 

by Shh deletion or Smoothened inhibition, increased vascular density, which in turn 

accelerated tumor growth and promoted metastasis (48). Interestingly, while the anti-

angiogenesis therapies fail to improve PDAC survival, VEGFR inhibition was capable to 

counteract tumor angiogenesis induced by reduction of stroma stiffness (48). There is a 

growing body of evidences highlighting, both in pre-clinical and clinical settings, the 

importance of tumor vessel normalization, described by Jain and colleagues (23, 50). It has 

been demonstrated that the strong reduction of tumor hypoxia and the enhancement of vessel 

perfusion, accompanied by improved drug delivery, is a great advantage of using a pro-

normalizing agent in anti-cancer therapies in the clinic (23). Remarkably, N6L treatment 

increased tumor vessel perfusion, strongly reduced tumor hypoxia and enhanced 

chemotherapeutic drug delivery in vivo. Consistently with the observed improved vessel 

perfusion and drug delivery to the tumor, pre-treatment of tumors with N6L strongly 
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enhanced the effect of gemcitabine on tumor growth in mPDAC. Further experiments will be 

needed to better assess the combinatorial effects of N6L and chemotherapeutic treatments on 

metastasis.  

In conclusion, this work highlights a new therapeutic strategy that selectively targets NCL by 

dually targeting both cancer cells and tumor vessels in pancreatic cancer. We uncovered, for 

the first time, the inhibition of Ang-2 as a pro-normalizing mechanism of NCL-inhibition and 

important biomarker of N6L treatment. N6L treatment represents a new and more efficient 

anti-tumor and anti-angiogenic therapy for PDAC and insulinoma and could represent a 

promising drug to design combination therapies with established anticancer drugs or stroma-

targeting molecules. 
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FIGURE LEGENDS 

Figure 1. NCL is highly expressed in human and PDAC mouse model.	  

Human PDAC included in a TMA were immunostained with anti-NCL antibody and scored 

as high (A), (B), moderate (C), low (D) or negative (see Methods). The NCL expression was 

barely detected in the tumor stroma and the surrounding pancreatitis (D). NCL was highly 

expressed by tumor glands (arrows in A and B) but not in normal ducts included in the tumor 

(arrowheads in B). (E) Kaplan–Meier overall survival (OS) curves (Mantel Cox Test, 

*p<0,0158). 

 

Figure 2. N6L reduces PDAC tumor growth and liver metastasis. 
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Immunocompetent syngenic FVB/n mice were injected with mPDAC cells into the pancreas. 

Mice were treated one week after inoculation of tumor cells with N6L alone (10 mg/kg) or 

saline solution by i.p. 3 times a week for 3 weeks. Mice were sacrificed and tumor volumes 

were measured (A) (Student t-test, **P<0.01; n=10 mice). mPDAC tissues were 

immunostained with anti-Ki67 (B) or anti-active caspase 3 or NCL antibodies, and images 

show representative fields. White scale bars: 10 µm; black scale bar: 100 µm. The 

quantification of % of Ki67+ cells (C) and of apoptotic cells (D) or NCL staining (E) were 

plotted as inhibition relative to control and were performed by ImageJ analysis as described in 

Methods (Student t-test, **P<0.01 *P<0.05, n=8 mice). (F) NCL mRNA level of PDAC 

tissues were quantified by qPCR and normalized to the GAPDH mRNA level (CtNCL-CtGAPDH) 

(Student t-test, *P<0.05, n=5 mice). For easier interpretation, histograms represent the fold 

change relative to control mice, calculated from the 2-ΔΔCt. (G) Representative histological 

images of liver sections (H&E staining) showing metastatic foci marked by black arrows. 

Scale bar: 100 µm. (H) The area of liver nodules were quantified by digitized image analysis 

using ImageJ software and plotted as the metastatic liver fraction (Student t-test one-tail, 

*P<0.05, n=5 mice). 

 

Figure 3. N6L normalizes tumor blood PDAC vessels and counteracts tumor hypoxia in 

mPDAC. 

PDAC mice were treated or not with N6L for 3 weeks as in Figure 2. (A) Tumor sections 

were immunostained by an anti-MECA32 antibody to detect tumor blood vessels, or co-

immunostained by the anti-MECA32 and anti-NG2 or anti-PDGFRβ antibodies for pericyte 

analysis. Scale bars: 10 µm. Tumor vessels and pericyte coverage analysis were performed as 

described in Methods. In (B), the tumor blood vessel density, and in (C) tumor vessel 

branching are plotted as the % of the inhibition to control tumors. In (D) NG2+ and in (E) 
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PDGFR-β+ pericyte coverage of vessels are represented. In (G) vessel perfusion was assessed 

by tail-injecting animals with FITC-lectin at the end of the treatment with N6L and quantified 

as % of perfused/total blood (n=6 mice, Student t-test ****P<0.0001), and in (F) images are 

representative of lectin-FITC signal. (H) Hypoxia analysis was detected with an antibody 

recognizing the pimonidazole adducts (arrows) in control or N6L-treated tumor tissues. The 

area positive for pimonidazole adducts was 60% in Control and 25% in N6L. Tumor sections 

were immunostained by an anti-CA9 antibody for hypoxia-induced protein analysis (I) and 

the CA9 fluorescence intensity was plotted as a percentage relative to the control (L). In (B), 

(C), (D), (E) and (J), from at least n=5 mice per stage (Student t-test, ***P<0.001; **P<0.01; 

*P<0.05).  

 

Figure 4. N6L normalizes RIP-Tag2 tumor blood vessels and blocks tumor growth. 

(A) Total tumor volume in 4-weeks treatment regression trial showed that the treatment with 

N6L reduced tumor burden by 40% compared with controls (Student t-test, **P<0.01; n=6 

mice). Tumor sections were immunostained by anti-active caspase 3 antibody (B) or co-

immunostained by the anti-MECA32 and anti-NG2 for pericyte analysis (C). Scale bars: 20 

µm. Quantification of apoptotic staining, tumor blood vessel density, tumor vessel branching 

and pericyte coverage have been performed as in Figure 3 and shown in (B), (D), (E), (F), 

respectively. (Student t-test, ****P<0,0001; ***P<0.001; **P<0.01; *P<0.05, n=5 mice). (H) 

Vessel perfusion was assessed as in Figure 3 (n=4 mice, Student t-test **P<0.01), and in (G) 

images are representative of lectin-FITC signal. 

 

Figure 5. NCL inhibition blocks cell cycle in G1/S and decreases Ang-2 secretion. 

In (A) and (B), ECs were incubated with N6L for 24 hours or transfected with siControl or 

siNCL. Cell cycle progression was analyzed by BrdU incorporation and the % cells in each 
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phase (G1, S, G2/M) is shown in the graph. (B) Efficiency of siNCL is shown by 

immunoblotting analysis. In (C) and (F), supernatants of ECs treated by increasing 

concentrations of N6L for 5 hours or from siControl or siNCL transfected ECs were analyzed 

by ELISA. The concentration of Ang-2 was normalized to the whole protein amount of the 

corresponding cell lysates in the different treatment groups. (D) N6L-treated ECs for 5 hours 

were fixed and coimmunostained with an anti-Ang-2 and anti-vWF antibodies, the Ang-2 area 

of staining per cell is plotted in (E). Insets show colocalization between the two stainings. 

(Student t-test, ***P<0.001, **P<0.05, *P<0.01, n=3 independent experiments). 

In (G) and (H), ECs treated by N6L at 10 µM or transfected by NCL siRNA were lysed and 

Western Blotting of Ang-2 in EC lysates are shown. In (I) Ang-2 mRNA level of ECs treated 

by N6L were quantified by qPCR and normalized to the GAPDH mRNA level, histograms 

represent the fold change relative to control cells (±SEM) of 3 independent experiments, 

calculated from the 2-ΔΔCt (Student t-test, *P<0.05). 

 

Figure 6. NCL inhibition decreases Ang-2 secretion by ECs and plasma Ang-2. 

(A) FVB/n mice were injected with PDAC cells (PDAC) or saline solution (Control) into the 

pancreas, blood samples were collected after 3 weeks (W3) or (B) PDAC mice were treated or 

not with N6L for 3 weeks as in Figure 3 (W4). Plasma Ang-2 was quantified by ELISA 

(Student t-test, *P<0.05, n=6 mice). (C) Ang-2 mRNA level of PDAC tissues were quantified 

by qPCR and normalized to the MECA32 mRNA level (CtAng-2-CtMECA32) (n=5 mice, Student 

t-test, *P<0.05). For easier interpretation, histograms represent the fold change relative to 

Control mice, calculated from the 2-ΔΔCt. (D) and (E) HBVP were allowed to migrate in the 

presence of supernatants of siControl- or siAng2-transfected or N6L-treated ECs. 

Recombinant Ang-2 at 100 ng/ml was added as indicated. The graph shows the fold increase 

of pericyte migration relative to control cells (Student t-test, *P<0.01, *P<0.05, n=3 
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experiments). On the right, immunoblotting analysis of Ang-2 in siControl or siAng2-

transfected ECs, Ang-2 depletion was of 90% by siRNA transfection. 

 

Figure 7. NCL inhibition improves drug delivery to the tumor. 

Doxorubicin delivery was evaluated after 3 weeks of treatment of PDAC-carrying animals 

with N6L (A) or 2 weeks of treatment of BxPC-3 orthotopic tumors (B). Amount of 

doxorubicin (DXR) present in tumors was expressed as µg equivalent/g tumor. N6L enhanced 

doxorubicin delivery to PDAC 3.5 fold and 1.9 fold to BxPC-3. (Student t-test, *P<0.05, n=6 

mice). (C) Immuno-competent syngenic FVB/n mice were injected with PDAC cells into the 

pancreas, and treated with control and N6L, alone or in combination with gemcitabine (GEM. 

Mice were sacrificed and tumor volumes were measured (Student t-test, ****P<0.0001, 

***P<0.001, **P<0.01; control n=5, N6L n=4, gemcitabine n=7, N6L+GEM n=7). 
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