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On the diameter of Lascar strong types

(after Ludomir Newelski)

Domenico Zambella

A contribution to Liber Amicorum Alberti

dedicated to Albert Visser on the occasion of his 65th birthday

Abstract

This is an exposition a theorem of mathematical logic which only assumes the notions

of structure, elementary equivalence, and compactness (saturation).

In [7] Newelski proved that type-definable Lascar strong types have finite diameter.

This exposition is based on the proof in [12] up to a minor difference: the notion of

weak c-free of [9] is replaced with the notion of non-drifting that is introduced here.

1 Introduction

Few recent results in mathematical logic have a statement that is accessible to logicians

outside a specific area. One of them is the theorem on the diameter of Lascar strong types.

The theorem concerns a graph that can naturally be defined in any infinite structure.

The problem can be presented in different ways that are equivalent. We choose the one

that requires the fewer prerequisites. For a Galois-theoretical perspective, close to Lascar’s

original approach [10], we refer the reader to e.g. [12]. We assume the reader knows what

a saturated model is and we fix one. This is denoted by U and will be our universe for

the rest of the paper. We denote its cardinality by κ which we assume to be uncountable

and larger than the cardinality of the language. We also fix a set A ⊆U of small cardinality,

where small means < κ. There would be no loss of generality in assuming A =∅. Indeed,

A is fixed throughout the following so it could be absorbed in the language and forgotten

about. However, we display it all along. We denote by L(A) the set of formulas with pa-

rameters in A. By |L(A)| we denote the cardinality of the set of sentences in L(A). This

cardinality does not play a role in the proof and assuming |L(A)| =ω may help on the first

reading.

Let z be a tuple of variables of ordinal length |z| < κ. Though the theorem is also interest-

ing for infinite tuples, the length of z does not play any role in the proof. Again, for a first

reading one can assume z is a single variable. If a,b ∈U|z| we write a ≡A b if ϕ(a) ↔ ϕ(b)

holds (in U) for every ϕ(z)∈ L(A). In words we say that a and b have the same type over A.
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A definable set is a set of the form ϕ(U) =
{

a ∈U|z| : ϕ(a)
}

for some formula ϕ(z)∈ L(U). A

type is a set of formulas p(z) ⊆ L(B) for some B ⊆U of small cardinality. A type-definable

set is a set of the form p(U), that is, the intersection of ϕ(U) for ϕ(z)∈ p(z).

It may be useful (though not essential) to interpret this in topological terms. The sets

ϕ(U) =
{

a ∈U|z| : ϕ(a)
}

for ϕ(z) ∈ L(A) form a base for a topology. This topology is zero-

dimensional and it is compact because U is saturated. It is never T0 as any pair of tuples

a ≡A b have exactly the same neighborhoods, such a pair exists for cardinality reasons.

However it is immediate that the topology induced on the quotient U|z|/≡A is Hausdorff

(this is the so-called Kolmogorov quotient). In this topology the closed sets are those of the

form p(U) where p(z)⊆ L(A) is any type.

In what follows, by model we understand an elementary substructure of U of small car-

dinality. The Lascar graph over A has U|z| as the set of vertices and an edge between all

pairs of vertices a,b ∈ U
|z| such that a ≡M b for some model M containing A. We write

dA (a,b) for the distance between a and b in the Lascar graph over A. Let us spell this out:

dA (a,b) ≤ n if there is a sequence a0, . . . , an such that a = a0, b = an , and ai ≡Mi
ai+1 for

some models Mi containing A. We write dA (a,b) <∞ if a and b are in the same connected

component of the Lascar graph over A.

1 Definition For every a ∈U|z|

1. a
L

≡A b if dA (a,b)<∞;

2. L(a/A) =
{

b : a
L

≡A b
}

.

We call L(a/A) the Lascar strong type of a over A. If a
L

≡A b we say that a and b have the

same Lascar strong type over A.

We are ready to state Newelski’s theorem which we prove in the next section.

2 Theorem For every a ∈U|z| the following are equivalent

1. L(a/A) is type-definable;

2. L(a/A) =
{

c : dA(a,c) < n
}

for some n <ω.

Newelski’s original proof has been simplified over the years. Most proofs have a definite

topological dynamics flavor (the liaison with topological dynamics was clarified in [8]).

Below we give a streamlined version of the proof in [12] (see also [1, Theorem 9.22]).

More recent contributions to the subject have investigated the descriptive set theoretic

complexity of the relation of having the same Lascar strong types. This is beyond the scope

of this short note so we refer the interested reader to [6], [5] and [4].

It is interesting to note that if L(a/A) is type-definable for every a ∈ U|z| then the equiv-

alence relation
L

≡A is also type-definable. This might be surprising at first, so we sketch a

proof below (not required for the main theorem).

The equivalence relation
L

≡A is invariant over A, that is, invariant over automorphisms

that fix A. Its equivalence classes, are Lascar invariant over A, that is, invariant over auto-

morphisms that fix some model containing A. There are at most 22|L(A)|
sets that are Lascar

invariant over A. Then
L

≡A is a bounded equivalence relation, that is, it has < κ equiva-

lence classes. It is not difficult to verify that
L

≡A is the finest bounded equivalence relation
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invariant over A.

Let e A(x, z) ⊆ L(A) be the union of all types over A that define a bounded equivalence

relation. It suffices to prove that if L(a/A) is type-definable then L(a/A) = e A(U, a). In

fact, if this holds for every a ∈U|z|, then e A(x, z) defines
L

≡A .

IfL(a/A) is type-definable, by Theorem 2 and Proposition 3 it is defined by the type dA (a, z)<

n for some n. The same is true for every b ≡A a. Hence dA (x, z) < n defines an equiv-

alence relation whose restriction to O(a/A) = {b : b ≡A a} has boundedly many classes.

By a well-known fact (see for example [11, Proposition 5.11]), there is a bounded equiv-

alence relation type-definable over A that coincides with dA(x, z) < n on O(a/A). Then

e A(U, a) ⊆L(a/A) follows. The converse inclusion is trivial.

In his seminal paper [10] Lascar asked for (not literally but in an equivalent way) examples

where the relation of having the same Lascar strong type is not type-definable. By the the-

orem above this is equivalent to asking for structures where the diameter of a connected

component of the Lascar graph is infinite. In tame structures, like stable and simple ones,

the diameter is always finite. The first example with infinite diameter was constructed by

Ziegler [2] and later more natural examples were found [3].

2 Lascar strong automorphisms

It may not be immediately obvious that the relation dA(z, y) ≤ n is type-definable. From

this the easy direction of the main theorem follows.

3 Proposition For every n <ω there is a type pn(z, y) ⊆ L(A) equivalent to dA (z, y)≤ n.

Proof In a saturated structure types are closed under existential quantification, therefore

it suffices to prove the proposition with n = 1. Let λ = |L(A)| and let w = 〈wi : i < λ〉 be a

tuple of distinct variables. Then p1(z, y) = ∃w p(w, z, y) where

p(w, z, y) = q(w) ∪

{

ϕ(z, w) ↔ϕ(y, w) : ϕ(z, w) ∈ L(A)
}

and q(w) ⊆ L(A) is a consistent type with the property that all its realizations enumerate a

model containing A.

Now we only need to prove that such a type exists. Let 〈ψi (x, w↾i ) : i < λ〉 be an enumera-

tion of the formulas in Lx,w (A), where x is a single variable. Let

q(w) =
{

∃x ψi (x, w↾i ) → ψi (wi , w↾i ) : i < λ
}

.

Any realization of q(w) satisfy the Tarski-Vaught test therefore it enumerates a model con-

taining A. Vice versa it is clear that we can realize q(w) in any model containing A. �

We write Aut(U/A) for the set of automorphisms ofU that fix A. We write Autf(U/A) for the

subgroup of Aut(U/A) generated by the automorphisms that fix some model M containing

A. The “f” in the symbol stands for fort, the French for strong. It is immediate to verify that

Autf(U/A) is a normal subgroup of Aut(U/A).

Recall that saturated models are homogeneous, hence any a ≡B b are conjugated over B ,

that is, there is an f ∈ Aut(U/B) such that f a = b. Then it is easy to verify that a
L

≡A b if and
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only if f a = b for some f ∈ Autf(U/A). The following notions apply generally to any group

G acting on some set X and and to any set D ⊆ X . Below we always have G = Autf(U/A)

and X = U|z|. We say that D is drifting if for every finitely many f1, . . . , fn ∈ G there is

a g ∈ G such that g [D] is disjoint from all the fi [D]. We say that D is quasi-invariant

if for every finitely many f1, . . . , fn ∈ G the sets fi [D] have non-empty intersection. Note

parenthetically that D is quasi-invariant if and only if ¬D= X àD is not c-free in the sense

of [12] or not generic in the sense of [5]. We say that a formula or a type is drifting or

quasi-invariant if the set it defines is.

The union of drifting sets need not be drifting. However, the following lemma says it can-

not be quasi-invariant.

4 Lemma The union of finitely many drifting sets in not quasi-invariant.

Proof It is convenient to prove an apparently more general claim. If D1, . . . ,Dn are all

drifting and L is such that for some finite F ⊆G

♯ L ⊆
⋃

f ∈F

f [D1 ∪ . . .∪Dn],

then L is not quasi-invariant. (The statement is slightly awkward since a superset of a

quasi-invariant set must be quasi-invariant.)

The claim is vacuously true for n = 0. Let n be positive, let C=D1∪ . . .∪Dn−1, and assume

the claim holds for n −1. Since Dn is drifting there is a g ∈ G such that g [Dn] is disjoint

from f [Dn ] for every f ∈ F , which implies that

L∩ g [Dn ] ⊆
⋃

f ∈F

f [C].

Hence for every h ∈G there holds

hg−1[L]∩h[Dn ] ⊆
⋃

f ∈F

hg−1 f [C].

Rewriting ♯ as

L ⊆
⋃

f ∈F

f [C] ∪
⋃

h∈F

f [Dn],

we observe that

L∩
⋂

h∈F

hg−1[L] ⊆
⋃

f ∈F

f [C] ∪
⋃

f ∈F

hg−1 f [C].

By the induction hypothesis, the r.h.s. cannot be quasi invariant. Hence neither is L, prov-

ing the claim and with it the lemma. �

The following is a consequence of Baire’s category theorem. We sketch a proof for the

convenience of the reader.

5 Lemma Let p(x) ⊆ L(B) and pn(x) ⊆ L(A), for n <ω, be consistent types such that

1. p(x) →
∨

n<ω
pn(x)

Then there is an n <ω and a formula ϕ(x) ∈ L(A) consistent with p(x) such that

2. p(x)∧ϕ(x) → pn(x)

4



Proof Negate 2 and choose inductively for every n <ω a formula ψn(x) ∈ pn(x) such that

p(x)∧¬ψ0(x)∧ . . .∧¬ψn (x) is consistent. By compactness, we contradict 1. �

Finally we can prove the Theorem 2 which we restate for convenience.

2 Theorem For every a ∈U|z| the following are equivalent

1. L(a/A) is type-definable;

2. L(a/A) =
{

c : dA(a,c) < n
}

for some n <ω.

Proof Implications 2⇒1 holds by Proposition 3. We prove 1⇒2. Suppose L(a/A) is type-

definable, say by the type l(z). Let p(z, y) be some consistent type (to be defined below)

such that and p(z, y)→ l(z)∧ l(y). Then, in particular

p(z, y) →
∨

n<ω
dA(z, y) < n.

By Proposition 3 and Lemma 5, there is some n < ω and some ϕ(z, y) ∈ L(A) consistent

with p(z, y) such that

♯1 p(z, y)∧ϕ(z, y) → dA (z, y) < n.

Below we define p(z, y) so that for every ψ(z, y) ∈ L(A)

♯2 p(z, a)∧ψ(z, a) is non-drifting whenever it is consistent.

Drifting and quasi-invariance are relative to the action of Autf(U/A) on U|z|. Then, in par-

ticular, p(z, a)∧ϕ(z, a) is non-drifting and the theorem follows. In fact, let a0, . . . , ak ∈

L(a/A) be such that every set p(U,c)∩ϕ(U,c) for c ∈ L(a/A) intersects some p(U, ai )∩

ϕ(U, ai ). Let m be such that dA (ai , a j ) ≤ m for every i , j ≤ k. From ♯1 we obtain that

dA (a,c) ≤ m +2n. As c ∈L(a/A) is arbitrary, the theorem follows.

The required type p(z, y) is union of a chain of types pα(z, y) defined as follows

p0(z, y) = l(z) ∪ l(y);

♯3 pα+1(z, y) = pα(z, y)∪
{

¬ψ(z, y) ∈ L(A) : pα(z, a)∧ψ(z, a) is drifting
}

;

pα(z, y) =
⋃

n<α
pn(z, y) for limit α.

Clearly, the chain stabilizes at some stage ≤ |L(A)| yielding a type which satisfies ♯2. So we

only need to prove consistency. We prove that pα(z, a) is quasi-invariant (so, in particular,

consistent). Suppose that pn(z, a) is quasi-invariant for every n < α but, for a contradic-

tion, pα(z, a) is not. Then for some f1, . . . , fk ∈Autf(U/A)

pα(z, a) ∪

k
⋃

i=1

pα(z, fi a)

is inconsistent. By compactness there is some n <α and some ψi (z, y) as in ♯3 such that

pn(z, a) → ¬

m
∧

j=1

k
∧

i=1

¬ψ j (z, fi a)

As pn(z, a) is quasi-invariant, from Lemma 4 we obtain that pn(z, fi a)∧ψ j (z, fi a) is non-

drifting for some i , j . Clearly we can replace fi a with a, then this contradicts the construc-

tion of pα(z, y) and proves the theorem. �
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We are indebted to the anonymous referee for many useful comments and for a neat proof

of Lemma 4.
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