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Parallel simulations in FPT problemsfor Gaussian proessesE. Di NardoDip. di Matematia, Univ. della Basiliata, Contrada Mahia Romana, Potenza,e-mail: dinardo�unibas.itA.G. NobileDip. di Matematia e Informatia, Univ. di Salerno, Via S. Allende, Salerno,e-mail: nobile�unisa.itE. PirozziDip. di Informatia, Matematia, Elettronia e Trasporti, Univ. di Reggio Ca-labria, Via Graziella, Reggio Calabria, e-mail: pirozzi�ing.unir.itL.M. RiiardiDip. di Matematia e Appliazioni, Univ. di Napoli \Federio II",Via Cintia,Napoli, e-mail: Luigi.Riiardi�unina.itAbstratThe main results of our researh related to �rst passage time (FPT) problems forstationary Gaussian proesses are synthetially outlined. The vetorized and parallelalgorithm, eÆiently implemented on CRAY-T3E in FORTRAN90-MPI, allows tosimulate a large number of sample paths of Gaussian stohasti proesses in order toobtain reliable estimates of probability density funtions (pdf) of �rst passage timesthrough pre-assigned boundaries. The lass of Gaussian proesses haraterized bydamped osillatory ovariane funtions and by Butterworth-type ovarianes havebeen extensively analyzed in the presene of onstant and/or periodi boundaries.The analysis based on our simulation proedure has been partiularly pro�table asit has proved to provide an eÆient researh tool in all ases of interest to us whenlosed-form results or analyti evaluations were not available. Last but not least, insome ases it has allowed us to onjeture ertain general features of FPT densitiesthat suessively have been rigorously proved.Si illustrano sintetiamente gli sviluppi della nostra riera in merito al problemadel tempo di primo passaggio per proessi gaussiani stazionari. L'algoritmo vetto-riale e parallelo, eÆentemente implementato sul CRAY-T3E in FORTRAN90 e inambiente MPI, ha reso possibile simulare un elevato numero di realizzazioni di pro-essi stoastii gaussiani �no a poter disporre di aÆdabili stime delle densit�a deltempo di primo passaggio. Le lassi di proessi gaussiani on funzione di ovarianzaad osillazioni smorzate e on funzione di ovarianza di tipo Butterworth sono stateestensivamente analizzate in presenza di barriere ostanti e/o periodihe. Lo studiobasato sulle simulazioni si �e os�� rivelato partiolarmente utile anhe perh�e ha o-stituito uno strumento di indagine eÆiente in tutti quei asi nei quali soluzioni informa hiusa sono risultate inaessibili o gli strumenti analitii inadeguati; inoltre,talora ha lasiato intuire nuove ongetture la ui validit�a �e poi stata rigorosamentedimostrata.
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1 The FPT problemThe �rst passage time (FPT) problem involves the determination of the prob-ability distribution funtion of the random variable T representing the instantwhen for the �rst time a dynami system, modeled by a stohasti proess,enters a pre-assigned ritial region of the state spae. Numerous examplesstressing the relevane of FPT problems are o�ered by various �elds: in theo-retial neurobiology the neuronal �ring may sometimes be viewed as a FPT ofthe potential di�erene aross the neuronal membrane through some thresholdvalue; in astrophysis one an think of the time neessary for a star to esapefrom a galaxy; other examples are o�ered by �elds as diversi�ed as eonomy orpsyhology and, of ourse, mehanial engineering in whih �rst passage timeproblems bear relevane in the ontext of stability and integrity of systemssubjet to random vibrations (f, for instane, [6℄).In the neurobiologial ontext a lassial approah to model FPT prob-lems onsists of invoking di�usion proesses as responsible for the utuationsof the stohasti system under the assumption of numerous simultaneouslyand independently ating input proesses (see [8℄ and referenes therein). Allthese models rest on the strong Markov assumption, whih implies the possi-bility of making use of various analyti methods for the FPT pdf evaluation.However, it is oneivable that, partiularly if the desribed system is sub-jet to strongly orrelated inputs, the Markov assumption is inappropriate, sothat models based on non-Markov stohasti proesses ought to be onsidered.By analogy with Gernstein-Mandelbrot and Ornstein-Uhlenbek models ([8℄),one an thus hallenge the use of orrelated Gaussian proesses. However, thediÆulty stems out of the lak of e�etive analytial methods for obtainingmanageable losed-form expressions for the FPT probability density. Indeed,let fX(t); t � 0g be a one-dimensional non-singular stationary Gaussian pro-ess with mean E[X(t)℄ = 0 and ovariane E[X(t)X(�)℄ = (t��) = (�� t)suh that (0) = 1; _(0) = 0 and �(0) < 0. Furthermore, let S(t) 2 C1[0;1)be the threshold, with S(0) > x0. The FPT random variable is de�ned asfollows: T = inft�0ft : X(t) > S(t)g with X(0) = x0;and the FPT probability density funtion �P (T�t)�t � g[S(t); tjx0℄ of X(t)through S(t), is given by ([9℄)g[S(t); tjx0℄ =W1(tjx0)+ 1Xi=1(�1)i Z t0 dt1 Z tt1 dt2 � � � Z tti�1 dtiWi+1(t1; : : : ; ti; tjx0);(1)with Wn(t1; : : : ; tnjx0) = (2)Z 1_S(t1) dz1 � � � Z 1_S(tn) dzn nYi=1 [zi � _S(ti)℄ p2n[S(t1); : : : ; S(tn); z1; : : : ; znjx0℄;2



where p2n(x1; : : : ; xn; z1; : : : ; znjx0) is the joint pdf ofX(t1); : : : ;X(tn); Z(t1) =_X(t1); : : :, Z(tn) = _X(tn) onditional upon X(0) = x0.The omputational omplexity of the above equations indiates that alter-native proedures should be used in order to obtain information on the FPTdistribution funtions.A simulation proedure, in details desribed in [3℄, has been implementedin order to dislose the essential features of the FPT densities for a lassof Gaussian proesses and spei�ed boundaries. Our approah relies on asimulation proedure by whih sample paths of the stohasti proess areonstruted and their �rst rossing instants through assigned boundaries arereorded. The underlying idea an be applied to any Gaussian proess havingspetral densities of a rational type. Sine the sample paths of the simulatedproess are generated independently of one another, the simulation proedureis partiularly suited for implementation on vetor and superomputers.1.1 Butterworth ovariane funtionExtensive omputations have been performed by us to explore the possibledi�erent shapes of the FPT densities as indued by the osillatory behaviorsof ovarianes and thresholds. In [3℄ we refer to the fX(t); t � 0g stationary,zero-mean normal proess with the osillatory ovariane(t) := E[X(t+ �)X(�)℄ � p2 e�� t sin (� t+ �=4) t � 0; � 2 R+; (3)known as Butterworth-type ovariane, whih is the simplest type of ovari-ane arrying a onrete engineering signi�ane ([10℄). We onsider separatelythe ase of the varying boundary of the formS(t) = S0 +A sin (2�t=Q) ; (initially inreasing), (4)and that of the varying boundary of the formS(t) = S0 +A os (2�t=Q) ; (initially dereasing),where S0; A and Q are positive onstants. Suh investigations have led us toformulate onjetures on the inuene of the ratio QP ; where Q is the thresholdperiod and P is the ovariane period, on the behaviour of g[S(t); tjx0℄. Inaddition, we gave numerial evaluation of W1(tjx0), the �rst term in the righthand of (1), whih we used to validate the reliability of estimates obtainedby simulations in orrespondene of small values of time t.1.2 Damped osillatory ovariane funtion and double bound-ary aseMotivated by their relevane for numerous appliations, we have implementedthe simulation proedure for stationary normal proesses fX(t); t � 0g har-aterized by a more general damped osillatory ovariane funtion dependingon two parameters ([5℄)(t) � exp(��t) os(�t); with t � 0; �; � 2 R+; (5)3



and we estimated �rst passage time densities, onditional upon X(0) = x0;through pairs of smooth boundaries, a onstant and a periodi one:8<: �1(t) = �A;�2(t) = A+ sin�2�tQ �; t � 0; A;Q 2 R+: (6)The results of some simulations are shown and onlusions are drawn on thee�ets of the periodi omponents of ovarianes and boundaries on qualitativeand quantitative features of the following �rst passage time densitiesg+(tjx0) := ��tP �inft�0 [t : X(t) > �2(t);X(�) > �1(t);8� 2 (0; t)℄� ; (7)denoting the FPT density through the upper boundary,g�(tjx0) := ��tP �inft�0 [t : X(t) < �1(t);X(�) < �2(t);8� 2 (0; t)℄� ; (8)denoting the FPT density through the lower boundary, g (tjx0) = g+ (tjx0)+g�(tjx0), denoting the FPT density of X(t) through either boundaries and, �-nally, the gs (tjx0) providing the FPT density of X(t) through only one bound-ary of that in (6) (see Fig.1).2 The uprossing FPT problemThe uprossing �rst passage time problem through varying boundaries, inwhih the X(0) does not possess a delta-type probability density funtion,is onsidered. At �rst, fousing the attention on the problem of single neu-ron's ativity modeling, we have onsidered some earlier ontributions by A.I.Kostyukov et al. ([7℄) in whih a non-Markov proess of a Gaussian type isassumed to desribe the time ourse of the neural membrane potential. Afterre-formulating the problem in a rigorous framework, de�ning the uprossingFPT density gu[S(t); t℄, and pinpointing the limits of validity of the modelwe ompared in [4℄ Kostyukov's results on the �ring probability density withthose obtained by us by means of an ad ho numerial algorithm implementedfor the leaky integrator di�usion �ring model with a variety of data on-struted by the simulation proedure of non-Markov Gaussian proesses withpre-assigned ovarianes. As shown in Fig.2, for di�erent values of orrelationtime � := R10 j (�)j d�; the parallel proedure allowed us to simulate the be-havior of a lass of Gaussian proesses with ovariane (5) in the presene ofdereasing boundary S(t) = 5� t: See [4℄ for details.Along the lines indiated in [9℄, we have provided a series expansion ofthe uprossing probability density funtion of the �rst passage time. Spei�-ally, along the paradigm of a more extensive analysis of Gauss-Markov pro-esses ([1℄), we introdued, in orrispondene of a �xed real number " > 0,4
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Figure 1: For P � (2�=�) = 2; � = 0:1; A = 1 and Q = 5 densities gs(tjx0) andg+(tjx0) are plotted respetively in (a) and in (d). For P = 2; � = 0:1; A = 1and Q = 7 densities gs(tjx0) and g+(tjx0) are plotted respetively in (b) and in (e).For P = 3; � = 0:1; A = 2 and Q = 4 densities gs(tjx0) and g+(tjx0) are plottedrespetively in () and in (f).the "�uprossing FPT pdf g(")u [S(t); t℄ related to the onditioned FPT pdfg[S(t); tjx0℄ as follows:g(")u [S(t); t℄ = Z S(0)�"�1 g[S(t); tjx0℄ "(x0) dx0; (t � 0);under the hypothesis that a subset of sample paths of X(t) are originated ata state X0 that is a r.v. with pre-assigned pdf"(x0) � 8><>: f1(x0) "Z S(0)�"�1 f1(z) dz#�1; x0 < S(0) � "0; x0 � S(0) � "; (9)and where f1(x0) denotes the pdf of X(0):f1(x0) = 1p2� exp �x202 ! :5
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Figure 2: Plot of gu[S(t); t℄ for the various values of �.By using the parallel proedure, suitably modi�ed ([2℄) for uprossing FPTproblem, estimates of the uprossing probability density funtion of the �rstpassage time ~g(")u [S(t); t℄ have been onstruted. In the ontext of uprossingFPT problem we also worked out a numerial proedure to evaluate W (u)1 (t);that plays the analogous role of W1(tjx0) in the onditional FPT problem. Aomparison is then provided with the numerial results obtained by approxi-mating the simulated uprossing probability density by the �rst order partialsum of the series expansion (see Fig.3).3 Asymptoti resultsFinally, by making use of a Rie-like series expansion, we have investigatedthe asymptoti behavior of FPT pdf through ertain time-varying boundaries,inluding periodi boundaries. In [2℄ we gave suÆient onditions for the aseof a single asymptotially onstant boundary, under whih the FPT densi-ties asymptotially exhibit exponential behaviors. The parallel proedure tosimulate the sample paths allows to evaluate the order of magnitude of theparameters haraterizing the exponential behavior of FPT pdf's (see Fig.4).AknowledgementsThis work has been performed in part within a joint ooperation agreementbetween Japan Siene and Tehnology Corporation (JST) and Universit�adi Napoli \Federio II", under partial support of National Researh Coun-il (CNR) and of Ministry of University and of Sienti� and Tehnologial6
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Figure 3: Plot of W (u)1 (t) and of ~g(")u [S(t); t℄ as funtion of t (top to bottom) fora stationary Gaussian proess with zero mean and ovariane funtion (3) for theboundary (4) with the following parameter values: (a) S0 = 0:5, A = 0, � = 1 and" = 0:1; (b) S0 = 1, A = 0, � = 1 and " = 0:1; () S0 = 1, A = 1, Q = 3, � = 1," = 0:1; (d) S0 = 1, A = 1, Q = 1, � = 1, " = 0:1.Researh (MURST). A grant by CINECA has made possible some of the ne-essary omputations.Referenes[1℄ E. Di Nardo, A.G. Nobile, E. Pirozzi and L.M. Riiardi, A ompu-tational approah to �rst-passage-time problem for Gauss-Markov pro-esses. Preprint no. 5, Universit�a degli Studi della Basiliata (1998)[2℄ E. Di Nardo, A.G. Nobile, E. Pirozzi and L.M. Riiardi, Evaluationof uprossing �rst passage time densities for Gaussian proesses via asimulation proedure. Atti della Conferenza Annuale della Italian Soietyfor Computer Simulation. pp. 95-102 (1999)[3℄ E. Di Nardo, A.G. Nobile, E. Pirozzi and L.M. Riiardi, Simulation ofGaussian proesses and �rst passage time densities evaluation. LetureNotes in Computer Siene. vol. 1798, pp. 319-333 (2000)[4℄ E. Di Nardo, A.G. Nobile, E. Pirozzi, L.M. Riiardi, On a non-Markovneuronal model and its approximation, BioSystems, 48, 29-35 (1998)7
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(c)Figure 4: Plot of ~g(")u (S; t) with " = 0:1 and exponential pdf g(t) = �e��t where � isspei�ed in [2℄, related to a Butterworth ovariane funtion with � = 1 and onstantboundaries S = 1 in (a), S = 1:5 in (b) and S = 2 in ().[5℄ E. Di Nardo, E. Pirozzi, L.M. Riiardi and S. Rinaldi, First passagetime densities evaluation for simulated Gaussian proess. Cybernetis andSystem 1, 301-306 (2000)[6℄ S.R.K. Nielsen, Approximations to the probability of failure in randomvibration by integral equation methods. J. Sound and Vibr. 137 (1990).[7℄ A. I. Kostyukov, Yu.N. Ivanov and M.V. Kryzhanovsky, Probability ofNeuronal Spike Initiation as a Curve-Crossing Problem for GaussianStohasti Proesses. Biologial Cybernetis. 39, 157-163 (1981)[8℄ L.M. Riiardi, Di�usion models of neuron ativity. In The Handbook ofBrain Theory and Neural Networks (M.A. Arbib, ed.). The MIT Press,Cambridge, 299-304 (1995)[9℄ L.M. Riiardi and S. Sato, On the evaluation of �rst passage time den-sities for Gaussian proesses. Signal Proessing 11, 339{357 (1986)[10℄ A.M. Yaglom, Correlation Theory of Stationary Related Random Fun-tions. Vol. I: Basi Results. Springer-Verlag, New York (1987)
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