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Abstract

The main results of our research related to first passage time (FPT) problems for
stationary Gaussian processes are synthetically outlined. The vectorized and parallel
algorithm, efficiently implemented on CRAY-T3E in FORTRAN90-MPI, allows to
simulate a large number of sample paths of Gaussian stochastic processes in order to
obtain reliable estimates of probability density functions (pdf) of first passage times
through pre-assigned boundaries. The class of Gaussian processes characterized by
damped oscillatory covariance functions and by Butterworth-type covariances have
been extensively analyzed in the presence of constant and/or periodic boundaries.
The analysis based on our simulation procedure has been particularly profitable as
it has proved to provide an efficient research tool in all cases of interest to us when
closed-form results or analytic evaluations were not available. Last but not least, in
some cases it has allowed us to conjecture certain general features of FPT densities
that successively have been rigorously proved.

Si illustrano sinteticamente gli sviluppi della nostra ricerca in merito al problema
del tempo di primo passaggio per processi gaussiani stazionari. L’algoritmo vetto-
riale e parallelo, efficentemente implementato sul CRAY-T3E in FORTRAN90 e in
ambiente MPI, ha reso possibile simulare un elevato numero di realizzazioni di pro-
cessi stocastici gaussiani fino a poter disporre di affidabili stime delle densita del
tempo di primo passaggio. Le classi di processi gaussiani con funzione di covarianza
ad oscillazioni smorzate e con funzione di covarianza di tipo Butterworth sono state
estensivamente analizzate in presenza di barriere costanti e/o periodiche. Lo studio
basato sulle simulazioni si e cosi rivelato particolarmente utile anche perché ha co-
stituito uno strumento di indagine efficiente in tutti quei casi nei quali soluzioni in
forma chiusa sono risultate inaccessibili o gli strumenti analitici inadeguati; inoltre,
talora ha lasciato intuire nuove congetture la cui validita € poi stata rigorosamente
dimostrata.



1 The FPT problem

The first passage time (FPT) problem involves the determination of the prob-
ability distribution function of the random variable 7" representing the instant
when for the first time a dynamic system, modeled by a stochastic process,
enters a pre-assigned critical region of the state space. Numerous examples
stressing the relevance of FPT problems are offered by various fields: in theo-
retical neurobiology the neuronal firing may sometimes be viewed as a FPT of
the potential difference across the neuronal membrane through some threshold
value; in astrophysics one can think of the time necessary for a star to escape
from a galaxy; other examples are offered by fields as diversified as economy or
psychology and, of course, mechanical engineering in which first passage time
problems bear relevance in the context of stability and integrity of systems
subject to random vibrations (cf, for instance, [6]).

In the neurobiological context a classical approach to model FPT prob-
lems counsists of invoking diffusion processes as responsible for the fluctuations
of the stochastic system under the assumption of numerous simultaneously
and independently acting input processes (see [8] and references therein). All
these models rest on the strong Markov assumption, which implies the possi-
bility of making use of various analytic methods for the FPT pdf evaluation.
However, it is conceivable that, particularly if the described system is sub-
ject to strongly correlated inputs, the Markov assumption is inappropriate, so
that models based on non-Markov stochastic processes ought to be considered.
By analogy with Gernstein-Mandelbrot and Ornstein-Uhlenbeck models ([8]),
one can thus challenge the use of correlated Gaussian processes. However, the
difficulty stems out of the lack of effective analytical methods for obtaining
manageable closed-form expressions for the FPT probability density. Indeed,
let {X(¢),t > 0} be a one-dimensional non-singular stationary Gaussian pro-
cess with mean E[X ()] = 0 and covariance E[X (£) X (7)] = y(t—71) = y(7 —1)
such that v(0) = 1,4(0) = 0 and %(0) < 0. Furthermore, let S(t) € C'[0, 00)
be the threshold, with S(0) > z,. The FPT random variable is defined as
follows:

T= %gg{t : X(t) > S(t)}  with X(0) = o,

and the FPT probability density function 6P(87;§t) = g[S(t),t|zo] of X(t)

through S(t), is given by ([9])

o ot ¢ t
g[S(t),tlxo]=W1(t|$0)+2(—1)l/0 dty | dtz---/t dt;Wig1(t, ..., ti, t]ao),

i=1
' (1)
with
%0 d /oo dz, i — S(t:)] pan[S(t1), ..., S(tn); 21, - - - znlz0],
/5(151) o S(tn) ‘ Z:r[l[z (t)] p2n[S(t1) (tn); 21 Zn| o]



vs{herep%(xl, s TR, , Zn| o) is the joint pdfof X (¢1),..., X (tn), Z(t1) =
X(t1),..., Z(t,) = X(t5) conditional upon X (0) = =y.

The computational complexity of the above equations indicates that alter-
native procedures should be used in order to obtain information on the FPT
distribution functions.

A simulation procedure, in details described in [3], has been implemented
in order to disclose the essential features of the FPT densities for a class
of Gaussian processes and specified boundaries. Our approach relies on a
simulation procedure by which sample paths of the stochastic process are
constructed and their first crossing instants through assigned boundaries are
recorded. The underlying idea can be applied to any Gaussian process having
spectral densities of a rational type. Since the sample paths of the simulated
process are generated independently of one another, the simulation procedure
is particularly suited for implementation on vector and supercomputers.

1.1 Butterworth covariance function

Extensive computations have been performed by us to explore the possible
different shapes of the FPT densities as induced by the oscillatory behaviors
of covariances and thresholds. In [3] we refer to the {X(¢),t > 0} stationary,
zero-mean normal process with the oscillatory covariance

() = EX({t+7)X(1)]=vV2e * sin(at+7/4) t>0, acRT, (3)

known as Butterworth-type covariance, which is the simplest type of covari-
ance carrying a concrete engineering significance ([10]). We consider separately
the case of the varying boundary of the form

S(t) = Sy + Asin (27¢/Q), (initially increasing), (4)
and that of the varying boundary of the form
S(t) = S+ Acos (2nt/Q), (initially decreasing),

where Sy, A and @) are positive constants. Such investigations have led us to
formulate conjectures on the influence of the ratio %, where @ is the threshold

period and P is the covariance period, on the behaviour of g[S(t),t|zo]. In
addition, we gave numerical evaluation of W (t|z¢), the first term in the right
hand of (1), which we used to validate the reliability of estimates obtained
by simulations in correspondence of small values of time £.

1.2 Damped oscillatory covariance function and double bound-
ary case

Motivated by their relevance for numerous applications, we have implemented

the simulation procedure for stationary normal processes {X(t),¢ > 0} char-

acterized by a more general damped oscillatory covariance function depending
on two parameters ([5])

v(t) = exp(—pt) cos(at), witht >0, «,f € RT, (5)



and we estimated first passage time densities, conditional upon X (0) = 1z,
through pairs of smooth boundaries, a constant and a periodic one:

01(t) = —A4A, )
02(t) = A"‘SID(%), tZOa A7Q€R . (6)

The results of some simulations are shown and conclusions are drawn on the
effects of the periodic components of covariances and boundaries on qualitative
and quantitative features of the following first passage time densities

0
g (too) i= 5P {int [t X(0) > 020X () > 016 vr € .01} (D)
denoting the FPT density through the upper boundary,

g (o) = 5P {inf [0 X () < 00 X (1) < a0 ¥r € 001}, ()

denoting the FPT density through the lower boundary, g (t|z0) = ¢* (t|x¢)+9~
(t|zo), denoting the FPT density of X (¢) through either boundaries and, fi-
nally, the g, (t|xo) providing the FPT density of X (¢) through only one bound-
ary of that in (6) (see Fig.1).

2 The upcrossing FPT problem

The upcrossing first passage time problem through varying boundaries, in
which the X (0) does not possess a delta-type probability density function,
is considered. At first, focusing the attention on the problem of single neu-
ron’s activity modeling, we have considered some earlier contributions by A.I.
Kostyukov et al. ([7]) in which a non-Markov process of a Gaussian type is
assumed to describe the time course of the neural membrane potential. After
re-formulating the problem in a rigorous framework, defining the upcrossing
FPT density g,[S(t),t], and pinpointing the limits of validity of the model
we compared in [4] Kostyukov’s results on the firing probability density with
those obtained by us by means of an ad hoc numerical algorithm implemented
for the leaky integrator diffusion firing model with a variety of data con-
structed by the simulation procedure of non-Markov Gaussian processes with
pre-assigned covariances. As shown in Fig.2, for different values of correlation
time 6 := [;° |y ()| dr, the parallel procedure allowed us to simulate the be-
havior of a class of Gaussian processes with covariance (5) in the presence of
decreasing boundary S(t) = 5 — t. See [4] for details.

Along the lines indicated in [9], we have provided a series expansion of
the upcrossing probability density function of the first passage time. Specifi-
cally, along the paradigm of a more extensive analysis of Gauss-Markov pro-
cesses ([1]), we introduced, in corrispondence of a fixed real number ¢ > 0,
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Figure 1: For P = 2n/a) = 2,8 = 0.1,A = 1 and ) = 5 densities gs(t|zo) and
For P = 2,8 = 0.1,A = 1
and () = 7 densities g;(t|zo) and g*(t|zo) are plotted respectively in (b) and in (e).
For P = 3,8 = 0.1,A = 2 and Q = 4 densities gs(t|zg) and g*(t|zo) are plotted
respectively in (c) and in (f).

g7 (t|xo) are plotted respectively in (a) and in (d).

the e—upcrossing FPT pdf gq(f) [S(t),t] related to the conditioned FPT pdf
g[S(t), t|xo] as follows:
S(0)—e
|

under the hypothesis that a subset of sample paths of X (¢) are originated at
a state Xg that is a r.v. with pre-assigned pdf

glS(t), t|wo] ve (z0) dwo, (t>0),

S(0)—e

e (o) = fi(zo) [/_OO
0,

-1
f1(z) dz] , 1w < S(0)—e¢ 9)

zo > S(O) — &
and where f(zo) denotes the pdf of X (0):

1 3
exp | —— | .
V2 P 2

f1(zo) =



1.2+

Figure 2: Plot of g,[S(t),t] for the various values of 6.

By using the parallel procedure, suitably modified ([2]) for upcrossing FPT
problem, estimates of the upcrossing probability density function of the first
passage time gff) [S(%),t] have been constructed. In the context of upcrossing
FPT problem we also worked out a numerical procedure to evaluate Wl(u) (t),
that plays the analogous role of W(t|zy) in the conditional FPT problem. A
comparison is then provided with the numerical results obtained by approxi-
mating the simulated upcrossing probability density by the first order partial
sum of the series expansion (see Fig.3).

3 Asymptotic results

Finally, by making use of a Rice-like series expansion, we have investigated
the asymptotic behavior of FPT pdf through certain time-varying boundaries,
including periodic boundaries. In [2] we gave sufficient conditions for the case
of a single asymptotically constant boundary, under which the FPT densi-
ties asymptotically exhibit exponential behaviors. The parallel procedure to
simulate the sample paths allows to evaluate the order of magnitude of the
parameters characterizing the exponential behavior of FPT pdf’s (see Fig.4).
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Figure 3: Plot of W\ (t) and of §i7'[S(t),t] as function of ¢ (top to bottom) for
a stationary Gaussian process with zero mean and covariance function (3) for the
boundary (4) with the following parameter values: (a) Sp = 0.5, A =0, « = 1 and
e=01;(b)Sg=1,A=0,a=1lande=0.1;(c) So=1,A=1,Q=3,a=1,
e=01;(d) So=1,A=1,Q=1,a=1,¢=0.1.
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