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Highlights 

•Models driven by spectral and meteorological data were tested to estimate GPP. 

•Best performing models are based entirely on remotely sensed data. 

•Vegetation indexes related to chlorophyll explained most of the variability in GPP. 

•The use of potential PAR instead of incident PAR improved GPP estimation. 

•Best performing models were driven also by PRI. 

 

Abstract 

Different models driven by remotely sensed vegetation indexes (VIs) and incident 

photosynthetically active radiation (PAR) were developed to estimate gross primary production 

(GPP) in a subalpine grassland equipped with an eddy covariance flux tower. Hyperspectral 

reflectance was collected using an automatic system designed for high temporal frequency 

acquisitions for three consecutive years, including one (2011) characterized by a strong reduction of 

the carbon sequestration rate during the vegetative season. Models based on remotely sensed and 

meteorological data were used to estimate GPP, and a cross-validation approach was used to 

compare the predictive capabilities of different model formulations. Vegetation indexes designed to 

be more sensitive to chlorophyll content explained most of the variability in GPP in the ecosystem 

investigated, characterized by a strong seasonal dynamic. Model performances improved when 

including also PARpotential defined as the maximal value of incident PAR under clear sky conditions 

in model formulations. Best performing models are based entirely on remotely sensed data. This 

finding could contribute to the development of methods for quantifying the temporal variation of 

GPP also on a broader scale using current and future satellite sensors. 
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1. Introduction 

Terrestrial plants play important roles in the global carbon sequestration as they fix carbon dioxide 

(CO2) as organic compounds through photosynthesis. Terrestrial gross primary production (GPP), 

the total amount of CO2 fixed by terrestrial ecosystems, is one of the determinants of land-

atmosphere CO2 exchange (Beer et al., 2010). Thus, accurate GPP estimates can provide valuable 

information for global carbon studies. Among terrestrial ecosystems, mountain grasslands show a 

high interannual variability of their productivity (Yi et al., 2012). This variability is enhanced by 

grassland vulnerability to extreme climate events, such as unusual spring warm temperature which 

can contribute to early snowmelt in mountain environments (Beniston, 2005). The melting of snow 

cover influences the start and length of the summer growing season, the amount and timing of 

nutrients and water release from the snow pack and can contribute to changes in species 

composition (Wipf and Rixen, 2010). The expected increase of the occurrence of extreme events 

predicted by models and confirmed by observational data (Easterling et al., 2000 and Meehl and 

Tebaldi, 2004) could hamper our ability to quantify ecosystem production. Hence, the development 

of models able to estimate ecosystem carbon cycle related processes across years characterized by 

markedly different meteorological conditions is necessary to increase our confidence of future 

model predictions. 

Measurements of vegetation reflectance at eddy covariance (EC) sites have notably increased in 

recent years (Balzarolo et al., 2011) because remote sensing holds considerable potential for 

advancing our capabilities to estimate and monitor vegetation production at different temporal and 

spatial scales. Several studies demonstrated the effectiveness of empirical models driven by remote 

sensing inputs to model GPP on different ecosystems (Peng et al., 2011 and Wu et al., 2009), 

including grasslands (Rossini et al., 2012). Nevertheless a general consensus about model 

formulations and input variables performing better, especially considering long term data series 

characterized by high inter-annual variability, has still to be achieved. 

Previous studies reported the ability to model GPP using vegetation indexes (VIs) designed to be 

sensitive to chlorophyll (Chl) content. Chlorophyll content is a key variable for explaining GPP 

variability in vegetation characterized by strong seasonality, such as crops (Gitelson et al., 2006b, 

Peng et al., 2011 and Rossini et al., 2010) or grasslands (Rossini et al., 2012). This is not surprising 

since Chl content is a main factor controlling the amount of light absorbed by green vegetation and 

also directly relates to the enhanced electron transport activity, which governs light use efficiency 

(LUE). The accuracy in GPP estimation may be improved taking into account high frequency 

changes in radiation conditions and light use efficiency modulation, through the inclusion of 

incident photosynthetically active radiation (PARi) and surrogate of LUE, the photochemical 

reflectance index (PRI, Gamon et al., 1992) in model formulation (Peng et al., 2011, Rossini et al., 

2012 and Sakamoto et al., 2011). 

For the calibration of this kind of models an estimation of PARi is required. In the prospect of GPP 

monitoring from spaceborne remote sensing sensors, an accurate proxy for PARi that can be 

measured remotely is needed. Shortwave radiation obtained from coarse scale meteorological data 

sets from the NASA Data Assimilation Office was used as a substitute for PARi by Sakamoto et al. 

(2011). However, these estimates of PARi have significant uncertainties; the coefficient of variation 

was 23.6% and mean normalized bias was 13.9% (Sakamoto et al., 2011). Alternatively PARi can 

be indirectly estimated by radiative transfer modeling approach (e.g., Liu et al., 2008) once the 

optical properties of the atmosphere have been retrieved. However, incorporating such radiative 

transfer calculations into the practical generation of standardized product providing regular 

observations of global PARi is still a challenging topic in remote sensing (Liang et al., 2006). 
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Gitelson et al. (2012) suggested using potential photosynthetically active radiation (PARpotential), 

defined as the maximal value of incident PAR under clear sky conditions, rather than PARi for 

estimating GPP. Such approach has the advantage that PARpotential can be more easily estimated 

using radiative transfer models or look-up table-based algorithms (Lyapustin, 2003). 

To our knowledge, such approach has been successfully applied in soybean and maize using 

Landsat and daily MODIS satellite images (Gitelson et al., 2012 and Peng et al., 2013), but it has 

never been applied to simulate GPP using ground spectral reflectance measurements collected with 

daily resolution. 

This paper provides an evaluation of the robustness of an approach based solely on remotely sensed 

data to estimate GPP over grasslands. We monitored spectral reflectance throughout the growth 

period of a subalpine grassland during three consecutive years (2009–2011), including a year (2011) 

characterized by the longest snow-free period on record (83 years) leading to changes in canopy 

structure and functioning with a strong reduction of the carbon sequestration rate during the carbon 

uptake period (Galvagno et al., 2013). 

The specific objectives of this paper are (1) to evaluate the robustness of GPP prediction by remote 

sensing driven models using a three year dataset including one year with an exceptionally long 

growing season, (2) to assess the performance of the best model formulation, and (3) to test whether 

the use of PARpotential improves the accuracy in GPP estimation. 

2. Methods 

2.1. Site description and micrometeorological measurements 

The study was conducted in an unmanaged grassland of the subalpine belt located in the North-

Western Italian Alps (45°50′40″ N, 7°34′41″ E, Torgnon, Aosta Valley) at 2160 m a.s.l. during 

three growing seasons (2009–2011). The vegetation of the site is composed mainly by matgrass 

(Nardus stricta) and, secondarily, by Trifolium alpinum, Arnica montana, Poa alpina and Carex 

sempervirens. The area is classified as an intra-alpine region with semi-continental climate with an 

annual mean temperature of 3.1 °C and mean annual precipitation of about 880 mm (Mercalli and 

Berro, 2003). The snow-free period lasts generally from late May to early November. This site is 

approximately 9 ha and it is equipped with an EC flux tower which provides continuous 

measurements of net ecosystem CO2 exchange (NEE) from January 2009. Detailed descriptions of 

the EC flux measurements, the procedures used to partition the NEE to derive GPP and of the flux 

footprint are reported in Migliavacca et al. (2011) and Galvagno et al. (2013). Along with EC 

fluxes, the main meteorological variables (in particular PARi) are available with a time step of 

30 min. 

2.2. Radiometric measurements and spectral vegetation index computation 

Hyperspectral reflectance measurements were collected in the proximity of the EC tower using the 

HyperSpectral Irradiometer (HSI, Cogliati, 2011 and Meroni et al., 2011), designed for unattended 

high temporal frequency acquisitions. This instrument acquired spectra in the visible and near-

infrared region (400–1000 nm) with a full width at half maximum of 1 nm. 

HSI employs a rotating arm equipped with a cosine-response optic to measure alternately the sky 

(sensor pointing zenith) and the target irradiance (sensor pointing nadir), allowing the computation 

of the Bi-Hemispherical Reflectance factor (BHR, Schaepman-Strub et al., 2006). With this 
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configuration the 97% of the total signal comes from a cone limited by a zenith angle of 80° and the 

maximum contribution to the measured signal comes from zenith angles around 45°. This means 

that with an installation height of 3.5 m above the investigated surface, the 97% of the total signal 

comes from a circular ground area of 40 m diameter (Meroni et al., 2011). 

Hyperspectral reflectance measurements were acquired every 5 min from sunrise to sunset during 

the snow-free season in 2009, 2010 and 2011. The values of the VIs used in the following analyses 

are means of index values calculated for each reflectance spectrum collected between 11:00 and 

13:00 local solar time to minimize changes in solar angle. For more details about spectral 

reflectance data acquisition and preprocessing see Rossini et al. (2012). 

As a first step for scaling the results of this study to current and future Earth Observation systems, 

the VIs considered have been defined on the basis of MODIS (Moderate Resolution Imaging 

Spectrometer, NASA) and OLCI (Ocean and Land Colour Instrument on board of future Sentinel-3 

satellite, ESA) spectral bands. In particular, we considered the following VIs: (i) the normalized 

difference vegetation index (NDVI) and the photochemical reflectance index (PRI) computed from 

MODIS simulated data, (ii) the red-edge chlorophyll index (CIre), the green chlorophyll index (CIg), 

the OLCI terrestrial chlorophyll index (OTCI) and the normalized difference red-edge (NDRE), 

computed from OLCI simulated data (Clevers and Gitelson, 2013). Their definitions using MODIS 

(M) and OLCI (O) spectral bands are provided in Table 1. 

Table 1.  

Vegetation indexes evaluated in this study. M refers to the MODIS band, O refers to the 

OLCI band and Rλ refers to the reflectance factor at wavelength λ in nm. 

Index Formulation 
Formulation with 

satellite bands 
References 

NDVI 
R858.5−R645R858.5+R645 M2−M1M2+M1 

Rouse et al. (1974)  

PRI 
R531−R551R531+R551 M11−M12M11+M12 

Gamon et al. (1992)  

CIre 
R779R709−1 O16O11−1 

Gitelson et al., 

2003 and Gitelson et al., 

2006a 

CIg 
R779R560−1 O16O6−1 

Gitelson et al., 

2003 and Gitelson et al., 

2006a 

OTCI 
R754−R709R709−R681 O12−O11O11−O10 

Dash and Curran (2004)  

NDRE 
R754−R709R754+R709 O12−O11O12+O11 

Gitelson and Merzlyak 

(1994)  
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2.3. Data selection 

Ground-observed PARi values were used to calculate PARpotential as the maximal PARi in 8-day-

PARi windows (Gitelson et al., 2012 and Peng et al., 2013). The relationship between maximal 

PARi and the day of the year (DOY) was fitted with polynomial functions to compute PARpotential at 

daily step. The best-fit functions, a second and a third order polynomial, were used to calculate 

midday and daily PARpotential respectively. Based on PARpotential, the frequency of occurrence of 

cloudy or hazy weather conditions during the three years was then computed as the percentage 

difference (PARpotential − PARi)/PARpotential (hereafter ΔPAR) for each sampling date. 

The proposed models were calibrated and validated using data collected with ΔPAR lower than 

60%. This threshold was indicated by Peng et al. (2013) as the one for which the GPP estimation 

model with PARpotential was more accurate than the models with PARi. 

2.4. Model development 

The set of models proposed in Rossini et al. (2012) was used to estimate both the daily midday 

average GPP (GPPm, μmol CO2 m
−2 s−1) and the daily cumulated GPP (GPPd, gC m−2 d−1). The use 

of both PARi and PARpotential was tested in the following model formulations: 

(i)model 1 (MOD 1), linear relationship between GPP and a VI related to canopy Chl content 

equation(1) 

GPP=a0 VI+b0GPP=a0 VI+b0 

 
(ii)model 2 (MOD 2), linear relationship between GPP and the product of a VI related to canopy 

Chl content and PAR 

equation(2) 

GPP=a1(VI×PAR)+b1GPP=a1(VI×PAR)+b1 

 
(iii)model 3 (MOD 3), LUE-like model (Monteith, 1972 and Monteith, 1977) assuming constant 

light use efficiency (ɛ) and modeling fAPAR as a linear function of a VI related to canopy Chl 

content 

equation(3) 

GPP=ε×(a2 VI+b2)×PAR=(a3 VI+b3)×PARGPP=ε×(a2 VI+b2)×PAR=(a3 VI+b3)×PAR 

 
(iv)model 4 (MOD 4), modeling ɛ and fAPAR as a linear function of PRI and VI, respectively 

equation(4) 

GPP=(a4 PRI+b4)×(a5 VI+b5)×PARGPP=(a4 PRI+b4)×(a5 VI+b5)×PAR 

 

Model coefficients (ax and bx) were estimated using the Gauss-Newton nonlinear least square 

optimization method (Bates and Watts, 1988), implemented in the function optim() of the R 

standard package (R, version 2.6.2, R Development Core Team, 2011). Model accuracy was 

evaluated in terms of root mean square deviation (RMSD) which represents the “mean” deviation of 

modeled values (GPPmod) with respect to the observed ones (GPPobs), in the same units as the model 

variable under evaluation (GPPd or GPPm) and the relative RMSD (rRMSD, %) computed as: 

equation(5) 
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γrRMSD=1n∑i=1n(GPPimod−GPPiobs)2(GPPiobs)2×100 

 
where n is the number of samples. 

When using observed PAR, models were tested using the average of the values measured between 

11:00 and 13:00 local solar time for the midday analysis (μmol m−2 s−1) and the sums of half-hourly 

measurements during the day (when global radiation exceeds 15 Watt m−2) for the daily analysis. 

Out of sample performances were assessed following a training/validation splitting approach: one 

year at a time was excluded using the remaining subset as the training set and the excluded one as 

the validation set. The model was fitted against each training set and the resulting parameterization 

was used to predict the CO2 uptake of the excluded year. 

3. Results and discussion 

3.1. Interannual variability of gross primary production 

The seasonal variations of carbon fluxes exhibited similar dynamics in 2009 and 2010 that are 

markedly different from 2011 (Fig. 1). The year 2011 was characterized by the earliest snowmelt 

since 1945 and the longest snow-free period on record (83 years) (Galvagno et al., 2013). An early 

snowmelt meant a lengthened snow-free period and consequently an expanded growing season for 

the plants. The snow-free period varied from 159 and 160 days in 2010 and 2009, respectively, to 

234 days in 2011. 

 
Fig. 1.  

Seasonal variation of 2009 (gray circles), 2010 (black triangles) and 2011 (white squares): 

(a, c, e) midday Gross Primary Production (GPPm, μmol CO2 m
−2 s−1) and (b, d, f) daily 

Gross Primary Production (GPPd, gC m−2 d−1). DOY is day of the year. 

GPP increased sharply just after snowmelt in 2009 and 2010, reaching its maximum value in mid-

July (18th–13th, DOY 199 and 194). During the second part of the season the decrease rate of GPP 
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was slower compared to the increase one. On the contrary, in 2011 GPP increased earlier in spring, 

but with a lower rate and showing a less pronounced asymmetry between increasing and decreasing 

phases. This resulted in a longer carbon uptake period characterized by a reduced carbon 

sequestration rate, compared to previous years, but a similar seasonal cumulative carbon uptake 

(Galvagno et al., 2013). 

GPPm appeared more affected than GPPd by the early snowmelt occurred in 2011. The peak of 

GPPm in 2011 was 25% and 29% lower than those recorded in 2009 and 2010, respectively. The 

correspondent decrease in 2011 GPPd peak was 16.8 and 16.6% referred to 2009 and 2010, 

respectively. The snowmelt timing observed in 2011 exposed plants acclimated to a narrow range of 

environmental conditions typical of late spring/early summer, to the unusual weather conditions of 

the early spring. As a result, vegetation grown in 2011 manifested, throughout the whole summer, a 

reduced responsiveness to high irradiance, typical of central hours of the day in this site. As GPPd 

integrates periods of high and low PARi, the reduced responsiveness of GPP to high PARi is likely 

to be masked when considering GPPd (Turner et al., 2003). 

3.2. Time courses of spectral vegetation indexes 

The seasonal variations in midday VIs are shown in Fig. 2. All VIs exhibited a clear seasonal 

trajectory, increasing from the end of May (DOY 160) due to canopy greening, reaching a peak in 

July (DOY 220) and decreasing more or less steeply afterwards with senescence and canopy 

yellowing. Most VIs peaked in the middle of July, except PRI which peaked about two weeks later. 

A possible explanation of this delay is that PRI uses bands in the green region of the spectrum 

where Chl absorption is weaker compared to the red region and the tendency toward saturation for 

medium to high canopy greenness is reduced. 
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Fig. 2.  

Seasonal temporal profiles of measured vegetation indexes in 2009 (circles, left panels), 

2010 (triangles, middle panels) and 2011 (squares, right panels): (a, g, m) normalized 

difference vegetation index, NDVI; (b, h, n) green chlorophyll index, CIg; (c, i, o) red-edge 

chlorophyll index, CIred-edge; (d, j, p) normalized difference red-edge, NDRE; (e, k, q) OLCI 

terrestrial chlorophyll index, OTCI; (f, l, r) photochemical reflectance index, PRI. Each 

http://www.sciencedirect.com/science/article/pii/S0303243413001761#gr2


point indicates the average value between 11:00 and 13:00 (local solar time). DOY is day of 

the year. 

Comparing the three years analyzed in this study, the onset of greening was anticipated in 2011 due 

to the earlier snowmelt and all VIs started to increase (decrease) about 15 days earlier than the 

previous years. For example, NDVI level of 0.5 was attained on DOY 166, 164 and 151 in 2009, 

2010 and 2011, respectively. However, the slope of the VIs in the green-up phase was lower in 

2011 and VIs peaked in the same period across the three years, indicating a slower green-up period 

with advanced snowmelt. The maximum values reached by the VIs in 2011 were lower than those 

of previous years; this reduction is more evident when considering VIs computed using red-edge 

bands and in particular OTCI (maximum values of 2.84, 2.79 and 2.55 in 2009, 2010 and 2011, 

respectively). NDVI showed the most similar trends between the three years because of its 

saturation at medium to high canopy biomass (Huete et al., 2002). Conversely, the minimum PRI 

values were slightly lower in 2011. 

The differences in 2011 VIs can be attributed to the response of the ecosystem to an exceptionally 

early snowmelt followed by cold temperature typical of springtime. This event caused a change in 

the typical trajectory of canopy development and physiological responses (Galvagno et al., 2013) 

visible also in the VI trajectories. 

The examination of the seasonal time courses of the different VIs with respect to GPP showed that 

there was a good general correspondence between GPP and VIs tracking canopy greenness and in 

particular canopy Chl content: both GPP and VIs showed a more symmetric behavior between 

increasing and decreasing phases as well as lower peak values in 2011 compared to previous years. 

3.3. Analysis of the effect of the illumination conditions 

Fig. 3 shows higher occurrences of “not clear sky” conditions in 2010, with 15% of data collected 

with ΔPAR greater than 60%. This frequency is higher than those recorded in 2009 (7%) and 2011 

(8%). 

 
Fig. 3.  

Distribution of the sampling days used in the analysis in 5 classes of 

(PARpotential − PARi)/PARpotential: from ΔPAR between 0% and 20% (clear sky conditions) to 

ΔPAR between 80% and 100% (overcast conditions). The percentage of days belonging to 

each class is plotted for each year. 
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The effect of including cloudy or hazy weather observations in the analysis was evaluated plotting 

the rRMSD of the models aimed at GPP estimation versus the maximum value of ΔPAR used as a 

criterion to select the observations composing both the calibration and the validation datasets. In 

this paragraph results obtained for GPPd estimation in 2010 are presented as an example, as 2010 

was the year characterized by higher values of ΔPAR. Fig. 4 shows that, as expected, the accuracy 

of all the proposed models increased as ΔPAR decreased. Higher improvements in model 

performances were observed between the rRMSD calculated using the complete dataset and the 

rRMSD computed using data collected with ΔPAR below 60%. This 60% threshold was selected as 

further reduction of this threshold did not result in significant performance increases. The same 

threshold was obtained by Peng et al. (2013) for GPP modeling in soybean and maize. Relative 

RMSD for models driven by PARpotential varied between 36% and 84% using the complete dataset 

and between 16% and 52% when using observations with ΔPAR < 60%. Similar improvements 

were observed applying the ΔPAR threshold on PARi: the rRMSD range varied from 29–83% to 

16–52%. Models using PARpotential had smaller rRMSD than models using PARi when ΔPAR was 

below 80%. 

 
Fig. 4.  

Relative root mean squared difference (rRMSD) of different GPPd estimation models plotted 

versus the difference (PARpotential − PARi)/PARpotential (ΔPAR, %). Results obtained for GPPd 

estimation in 2010 are shown. 

The analysis on midday values showed smaller improvements when considering lower ΔPAR 

compared to the analysis on daily values (data not shown). We hypothesize that GPPd estimation 

can be more affected by variations in ΔPAR because daily GPP and PAR result from the integration 

of half-hourly measurements during the day. A high correlation between midday fluxes and daily 

fluxes (r = 0.95) enabled the daily analysis to work well when using midday remote sensing 

acquisitions. However, these relationships can be lowered when observations collected with highly 

variable weather conditions during the day are included because they may cause a decrease in the 

correlation between daily and midday fluxes, and consequently between daily fluxes and midday 

VIs. This is most likely to happen during hazy or cloudy days that can be filtered out based on 

ΔPAR thresholds. The proposed models were consequently calibrated and validated using only data 

collected with ΔPAR lower than 60%. 
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3.4. GPP estimation 

The performances of different models for GPPd and GPPm estimation are shown in terms of cross 

validated rRMSD (Fig. 5). 

http://www.sciencedirect.com/science/article/pii/S0303243413001761#fig0025


 
Fig. 5.  
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Relative root mean square deviation (rRMSD, %) between predicted and observed values 

using the 2009, 2010, 2011 and the total datasets for: (a–d) GPPd estimation using PARi, (e–

h) GPPd estimation using PARpotential, (i–l) GPPm estimation using PARi, (m–p) GPPm 

estimation using PARpotential. 

Considering the analysis of daily values, some general considerations can be drawn: (i) the VIs 

based on the red-edge region performed better than NDVI and CIg; (ii) GPP estimation accuracies 

increased using models accounting for variations in the incident PAR (both PARi and PARpotential) 

and including the PRI in model formulation (MOD 4); (iii) the use of PARpotential instead of PARi 

improved GPP estimation. The best performing model formulations allowed GPPd estimation with a 

RMSD of 0.50 gC m−2 d−1 (corresponding to a rRMSD of about 15%). For most of the models, 

better performances were achieved using midday values. The lowest rRMSD values were confirmed 

at about 15% with MOD 4 driven by VIs based on red-edge wavelengths (e.g. CIre). Comparing 

results obtained in the three years analyzed, the lowest performances in GPPm estimation were 

observed in 2011. A specific discussion about the possible reasons of this is reported in the next 

paragraph. 

Fig. 5(d, h, l, p) shows the rRMSD between predicted and observed values for GPPm and GPPd 

considering the three years together. The best performing model for GPPm estimation is MOD 2 

driven by the product of CIre and PARpotential and MOD4 driven by CIre, PARpotential and PRI for 

GPPd estimation. This means that the use of a VI related to Chl content in combination with 

PARpotential alone or with PRI allowed to account for both the seasonal change in Chl and the 

modulation of GPP due to changes in radiation conditions and light use efficiency. 

Models driven by PARpotential performed better than those driven by PARi. This indicates that the 

use of PARpotential improved the accuracy in GPP estimation when a decrease in PARi may not 

correspond to a decrease in GPP due to the tendency toward saturation of the relationship between 

GPP and PARi. Thus, at high irradiance loads slightly PARi fluctuations due to unstable weather 

conditions may cause noise and unpredictable uncertainties in GPP estimation. As our results show, 

the use of PARpotential in the model may partially reduce such noise of the model. 

Vegetation indexes based on the red-edge region (OTCI, CIre and NDRE) and designed to be 

sensitive to Chl content explained most of the variability in GPP and performed better than NDVI 

and CIg. CIre was the best performing VI when used together with PRI and PAR (MOD 4) or PAR 

alone (MOD 2 and MOD3) because together they account for both the seasonal change in Chl 

content and the modulation of GPP due to changes in radiation conditions (Peng et al., 2011). OTCI 

was instead the best performing index when used as single driver for GPP estimation. The use of 

OTCI as a single variable to predict GPPd was already proven successful in sites dominated by a 

predictable seasonal cycle such as deciduous forests and grasslands (Harris and Dash, 2010). 

Further works are needed to evaluate the possibility to apply this approach also on vegetation 

characterized by weak seasonality (e.g. evergreen forests). 

Although the NDVI is the most widely used spectral index at European EC sites (87.5% of the sites 

according to Balzarolo et al. (2011)), it exhibits limitations in GPP estimation in the investigated 

grassland. Models driven by NDVI alone or NDVI and PAR underestimated GPP at the beginning 

of the growing season (green-up phase) while overestimated GPP from DOY 180 on (data not 

shown). One possible reason is that NDVI response saturates with high biomass amount (Fava et 

al., 2010). The inclusion of PRI in model formulations improves GPP estimation using NDVI. 

Thus, while NDVI can provide useful information about the temporal evolution of ecosystem 

phenology (Hmimina et al., 2013), the potential of using NDVI for GPP monitoring requires further 

investigations. Fig. 6 shows the strong relationship between PRI and indexes tracking canopy Chl 
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content such as OTCI and CIre. This relationship showed pronounced hysteresis: for the same OTCI 

or CIre, sPRI in the green-up stage was much higher than in the senescence stage. The hysteresis 

was more pronounced for OTCI compared to CIre. The reason of this hysteresis can be explained 

considering that PRI is related to the carotenoid/Chl ratio (Panigada et al., 2009 and Stylinski et al., 

2002) since it measures the relative reflectance on either side of the green hump, one side being 

affected only by Chl absorbance and the other by the coupled Chl and carotenoid absorbance (Sims 

and Gamon, 2002). Carotenoid concentration increases together with Chl concentration in the 

green-up period while during senescence Chl decreases sharper compared to carotenoids that are 

retained for photoprotection (Merzlyak and Gitelson, 1995). Even if only few authors (Sims and 

Gamon, 2002 and Stylinski et al., 2002) reported similar relationships, PRI variation over weeks or 

months may be a combined function of the variation of ɛ and changes in the total pools of pigments. 

This may help explaining why the use of PRI in model formulation increases the accuracy in GPP 

estimation, since varying carotenoid/Chl ratios can covary with xanthophyll pigment levels, and this 

may enhance the ability of PRI to predict ɛ. On the other hand, to the extent that pigment ratios are 

not closely related to ɛ, changing pigment ratios would be a confounding variable. Thus, PRI may 

still be effective as a measure of changes in ɛ to the extent that ɛ is correlated with pigment content. 

Such a relationship appears likely in the present study but the implications of this relationship for 

the use of PRI in ɛ estimation needs to be investigated in a wider number of ecosystems. 

 
Fig. 6.  

Relationship between (a) PRI and OTCI and (b) PRI and CIre. PRI is plotted as scaled PRI, 

computed as sPRI = (PRI + 1)/2, for clarity of representation. 

The modeling approach proposed here has some potential for application with current and future 

satellite data because all the input variables can be in principle derived from satellite observations, 

including PARpotential that can be more easily computed with radiative transfer models as compared 

to PARi. However, when working with satellite instruments, the spatial and temporal detail would 

be necessarily reduced compared to the one available for this study. As a result, GPP estimation 

uncertainty expected to be substantially greater than that achieved in this study using ground 

measurements. Satellite application is expected to be particularly challenging in ecosystems 

characterized by high spatial and temporal heterogeneity such as the one investigated here. In 

particular, one of the main limitations in mountain areas is that the ecosystem size is often lower 

than the pixel size (from 250 m to 1 km for MODIS sensor and 300 m for OLCI) causing different 

land cover classes to be included in the same pixel and decreasing the performances in GPP 

estimation. 
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3.5. Model performances in a year characterized by an unusually long growing 

season 

The proposed method was tested to assess the ability in estimating GPP for the year 2011 

characterized by a markedly different carbon sequestration dynamic during the vegetative season 

due to an extremely long growing season caused by an exceptionally early snowmelt. The 

prediction accuracy was better for daily rather than midday GPP. For the analysis of daily values, 

better results have been obtained with MOD 4 driven by PARpotential, CIre and PRI. This model 

yielded a RMSD of 0.55 gC m−2 d−1, corresponding to a rRMSD of 15.8%. When analyzing midday 

values, MOD 1 driven by CIre predicted GPPm with the highest performances, rRMSD of 22.1%, 

corresponding to an absolute RMSD of 1.9 μmol CO2 m
−2 s−1. To get a better understanding of the 

capability of remote sensing driven models to represent the seasonal time courses of GPP, we 

compared CO2 uptake observations and model outputs obtained with the best-performing model for 

the daily and midday values (Fig. 7). 

 
Fig. 7.  

Time courses of 2011 (a) daily (gC m−2 d−1) and (b) midday GPP (μmol CO2 m
−2 s−1) 

estimated from eddy covariance measurements (GPPobs) (full symbols) and GPP modeled 

(black line) with the best performing model formulation (GPPmod): model 4 parameterized 

with PRI, CIre and PARpotential (rRMSD = 15.8%) for the daily analysis and model 1 

parameterized with CIre (rRMSD = 22.1%) for the midday analysis. Temporal changes in the 

difference between simulated and observed GPP for the (c) daily (ΔGPPd) and (d) midday 

(ΔGPPm) analysis. Temporal changes in ΔGPP normalized by GPPobs for the (e) daily 

(ΔGPPd/GPPd) and (f) midday (ΔGPPm/GPPm) analysis. 
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Predicted GPPd values agreed quite well with observations as concerns both amplitude and seasonal 

phase and successfully described the dynamics captured by CO2 uptake fluxes. Predicted GPPm 

values agreed quite well with GPPobs as concerns the seasonal phase but showed overestimation in 

the middle of the growing season (see Fig. 7d from DOY 174 to DOY 254). 

The early start of season triggered by snow melting exposed plants to weather conditions harder 

than previous years. High altitude plants depend on highly efficient carbon assimilation since their 

growing season is usually very short and characterized by extreme climatic conditions (Streb et al., 

1998). The acclimation of physiological processes is therefore essential to cope with such climatic 

conditions. The snowmelt observed in 2011 was the third earliest in the last 83 years and hence 

exposed the investigated grassland to less favorable weather occurring earlier in the season. Plants 

responded to such conditions through a reduction of the parameters describing the light response 

curve of photosynthesis (Galvagno et al., 2013): this means that for a given irradiance level the 

observed GPP was lower in 2011 compared to other years. This effect is enhanced for high 

irradiance loads occurring at noon. As a consequence when the models were used to predict GPPm, 

predicted GPPm was overestimated because the models were trained with the 2009 and 2010 

datasets characterized by higher GPPm values for the same PARi. It is interesting to note that, 

despite the extraordinary conditions experienced in 2011, the proposed method allowed to 

accommodate for inter-annual changes in the length of the growing season and predict GPPd and 

GPPm with an acceptable accuracy. Since future warming of the Alpine region (Foppa and Seiz, 

2012) will likely result in earlier snowmelt dates and thus an increase of the frequency of events 

such the one occurred in 2011, the evaluation of the robustness of models proposed for GPP 

estimation in such conditions is crucial. 

This study demonstrates the importance to collect spectral reflectance data continuously, regularly 

and from a worldwide network in connection with the well-established network of flux towers 

(FLUXNET) to improve our ability to model changes in ecosystem production in response to 

interannual climatic variations. 

4. Conclusions 

This study showed that models entirely based on remote-sensing data can provide good predictions 

of GPP in high altitude grassland ecosystems. Better results in GPPm have been obtained using the 

model driven by the product of CIre and PARpotential, while accuracy in GPPd estimation have been 

obtained with the model driven by CIre, PARpotential and PRI, confirming the highest performances of 

VIs related to Chl content for GPP estimation. However, the use of PRI as estimate of ɛ over weeks 

or months should be carefully evaluated because at this temporal scale PRI may be a combined 

function of changes in ɛ and changes in chlorophyll content as well as carotenoid/Chl ratio. So PRI 

is expected to provide good estimate of ɛ to the extent that ɛ is correlated with pigment variations. 

Further studies are needed to explore the seasonal relationship between PRI and ɛ in ecosystems 

characterized by weak seasonal variations where the correlation between pigment seasonal variation 

and ɛ is likely to be lower. 

After the application of a cloud screening criterion based on the difference between PARi and 

PARpotential (ΔPAR < 60%), models driven by PAR in the form of PARpotential provided better 

estimates of both GPPm and GPPd compared to the models driven by PARi. Since PARpotential is 

expected to be more easily available than PARi, the use of PARpotential can be preferred in GPP 

monitoring using solely remotely sensed data. 

The proposed technique was validated also during a year (2011) characterized by a strong reduction 

of the carbon sequestration rate during the vegetative season. Results showed accurate GPPd 
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estimation with a rRMSD of 15.8%, while GPPm was estimated with a worse accuracy compared to 

the other years analyzed. This can be explained by the reduction of the parameters describing the 

light response of photosynthesis occurred in 2011 due to the unusual early snowmelt, affecting 

GPPm to a higher extent compared to GPPd. As a consequence, models calibrated with the 2009 and 

2010 datasets overestimated the GPPm measured in 2011. 

Long-term time series of hyperspectral reflectance at daily resolution are available in a limited 

number of sites due to high costs and complexity in making the instruments running unattended. 

This makes difficult to test the proposed approach on similar data collected in different vegetation 

types. However the approach presented in this study is not limited to estimate GPP using spectral 

reflectance collected by radiometers mounted on a platform close to the canopy. It could be also 

applied to remotely sensed data collected at multiple scales from close range to satellite platforms, 

allowing regional or global GPP monitoring. However the large scale difference between medium 

to coarse resolution satellite data and in situ local hyperspectral measurements can make the direct 

extrapolation of this approach to wider area challenging when a single pixel contains multiple land 

cover classes (characterized by different VIs-GPP relationships), as in mountain areas with high 

landscape fragmentation and heterogeneity. Consequently, it appears worthwhile to address further 

research to test this kind of approach in different vegetation types using satellite-derived VIs and 

PARpotential calculation using radiative transfer approaches. 
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