

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Immunohistochemical and quantitative RT-PCR methods to assess RANK expression in normal and neoplastic canine mammary gland

This is a pre print version of the following article:
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1660037 since 2018-02-16T15:16:057
Dublished version:
Published version:
DOI:10.1177/1040638717735867
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

1	Immunohistochemical and quantitative RT-PCR methods to assess RANK expression in
2	normal and neoplastic canine mammary gland
3	
4	Raquel Sánchez-Céspedes, ¹ Yolanda Millan, Silvia Guil-Luna, Jesús García-Macías, Lorella
5	Maniscalco, Selina Iussich, Raffaella De Maria, Juana M. de las Mulas
6	
7	Department of Comparative Pathology, Veterinary Faculty, University of Cordoba, Cordoba,
8	Spain (Sánchez-Céspedes, Millan, Guil-Luna, García-Macías, de las Mulas); and Department of
9	Veterinary Sciences, University of Turin, Turin, Italy (Maniscalco, Iussich, De Maria).
10	
11	¹ Corresponding author: Raquel Sánchez-Céspedes, Department of Comparative Pathology
12	(Veterinary Faculty, University of Córdoba), Carretera Madrid-Cádiz Km. 396, 14071, Córdoba,
13	Spain. raquelsc17@hotmail.com
14	
15	Running title: RANK expression in canine mammary gland
16	

17 Abstract. The receptor activator of nuclear factor-kB (RANK) gene is found in both human and murine mammary epithelial cells and in human cancer cell lines. We analyzed RANK expression 18 in normal and proliferative canine mammary tissue samples (n = 47) and cell lines (n = 10), and 19 20 identified its expression in epithelial cell populations. The correlation of RANK protein with 21 clinicopathologic parameters was also studied. A double immunohistochemical method using 22 RANK and p63 antibodies was applied to 33 tissue samples to analyze RANK protein expression and its possible co-expression with p63 protein, the latter used to identify myoepithelial (ME) 23 cells (p63-positive) or luminal epithelial (LE) cells (p63-negative). RANK protein expression 24 25 was found in ~75% of the tissue samples analyzed, at a similar level in all of the histologic types studied: dysplasias (4 of 4, 100%), malignant tumors (13 of 17, 76%), normal glands (12 of 17, 26 70%), and benign tumors (6 of 9, 67%). ME and LE cells expressed RANK protein at a similar 27 28 level. A higher level of RANK protein expression was found in older animals (≥ 10 y, p = 0.027). Quantitative RT-PCR was applied to 6 ME (1 normal and 5 neoplastic) and 4 LE (1 normal and 3 29 neoplastic) primary cell lines. The RANK gene was found at similar expression levels in all 30 canine mammary ME and LE cell lines studied. We found RANK expression in normal, 31 dysplastic, and neoplastic canine mammary tissues and cell lines, in both ME and LE cell 32 populations. 33

34

Key words: Canine; cell line; immunohistochemistry; mammary; p63; quantitative RT-PCR;
RANK; tissue samples; tumors.

38	The receptor activator of nuclear factor-kB (RANK) is a receptor of the tumor necrosis factor
39	(TNF) family of cytokines, which upon binding to its ligand (RANKL) transduces a variety of
40	survival, proliferation, differentiation, and migration signals. ¹² RANK and RANKL play key
41	roles in bone remodeling and bone-related lesions. ²⁰ RANK is expressed primarily on the surface
42	of osteoclasts, ²⁰ in dendritic cells, ¹⁹ in T-cells, ¹⁹ and in mammary epithelial cells. ⁴ Furthermore,
43	RANK protein is critical for mammary gland development. ⁴ RANK gene expression has been
44	analyzed in both normal and neoplastic mammary gland specimens and their metastases in
45	humans and murine species, ^{2,9,16} and in several human breast cancer cell lines. ^{2,9} At the time of
46	writing, we found no studies on RANK expression in the canine mammary gland.
47	Mammary gland tumors are the most common neoplasms in female dogs (25–50% of all
48	tumors in intact female dogs). ¹⁰ Ducts and alveoli of normal glands are composed of 2 cell
49	layers, an inner or luminal epithelial (LE) cell layer and an outer layer of myoepithelial (ME)
50	cells. ⁶ Although frequently presented as a spontaneous model of breast cancer, mammary
51	carcinomas in the female dog have lower biological aggressiveness than those in women. This
52	fact has been linked, at least in part, to the higher participation of ME cells in canine mammary
53	tumors, which are considered to be natural paracrine suppressors of invasion and metastasis. ¹⁸
54	We analyzed RANK protein expression in normal, hyperplastic, and neoplastic canine
55	mammary tissue samples by immunohistochemistry, and RANK gene expression in canine cell
56	lines by quantitative reverse transcription PCR (RT-qPCR). In addition, we determined RANK
57	expression in the ME and/or LE cell populations specifically. Thirty-three mammary gland
58	biopsies or mastectomy specimens from 26 female dogs were collected from the archives of the
59	Department of Comparative Pathology of the University of Córdoba (Spain). Tissue samples had
60	been fixed in 10% neutral-buffered formalin for 24-72 h, embedded in paraffin, and processed

61	routinely. Age of dog, tumor size, histologic classification, ⁷ and histologic grade of malignant
62	tumors ¹³ were evaluated. The 33 specimens comprised 3 normal glands, 4 dysplastic glands
63	(including ductal hyperplasia, lobular hyperplasia, and duct ectasia), 9 benign tumors, and 17
64	malignant tumors. The latter had been classified into histologic grade 1 ($n = 9$), grade 2 ($n = 7$),
65	and grade 3 ($n = 1$). Normal tissue comprised the 3 normal mammary gland specimens, plus
66	unaltered, normal mammary gland tissue surrounding tumor specimens in 14 of the cases. For
67	immunohistochemistry (IHC), all cases were analyzed using a double-immunostaining method
68	according to the manufacturer's protocol (EnVision doublestain system, Dako, Glostrup,
69	Denmark). Two primary antibodies were used: 1) anti-RANK (Polyclonal IgG antibody, Santa
70	Cruz Biotechnology, Heidelberg, Germany) diluted 1:90, and 2) anti-p63 (monoclonal [clone
71	4A4] isotype IgG ₂ antibody, Santa Cruz Biotechnology) diluted 1:100 and selected as the marker
72	of ME cells. ⁶ A commercial antibody diluent (Dako) was used throughout. RANK
73	immunostaining was developed in fast red (Permanent red substrate-chromogen, liquid, Dako),
74	and p63 immunostaining was developed with 3,3'-diaminobenzidine tetrahydrochloride (DAB)
75	brown (Dako). As negative control, primary antibodies were replaced by the immunoglobulin
76	fraction of serum from non-immunized rabbits and mouse IgG2 (Dako), respectively, diluted as
77	for the primary antibodies. As positive controls, canine lymph node and normal skin were used
78	for RANK and p63 antibodies, respectively. Furthermore, tissue-associated macrophages were
79	used as internal positive controls for RANK antibody.
80	Immunolabeled slides were randomized and masked for blind examination, which was
81	performed independently by 2 observers (R Sánchez-Céspedes, J García-Macías). When there
82	was disagreement (<5% of slides), a consensus between the 2 observers was reached using a
83	multi-head microscope. RANK scoring was rated by comparing labeling intensity with that of

84	the internal positive control (tissue-associated macrophages) as follows: absent (RANK0),
85	positive but less intense than internal control tissue (RANK1+), positive and equal to the internal
86	control tissue (RANK2+), and positive but more intense than the internal control tissue
87	(RANK3+). Cells were considered to be p63+ when they displayed brown nuclear labeling and
88	p63-negative (p63-) when they lacked brown nuclear labeling. For quantification, images were
89	captured (40× microscope objective) from 10 randomly selected neighboring, non-overlapping
90	fields. A sample was considered to be RANK+ when immunostaining intensity was RANK2+ or
91	RANK3+ in >50% of cells. ¹⁶ The co-expression of RANK and p63 antigens was classified as
92	follows: p63+/RANK-, p63+/RANK+, p63-/RANK-, and p63-/RANK+. The number of cells
93	belonging to each group was determined by 2 independent observers (R Sánchez-Céspedes, J
94	García-Macías) with a digital pen tablet (Volito 2, Wacom Europe, Germany), and the
95	percentages were calculated using Image-Pro Plus 4.5 (Media Cybernetics, Rockville, MD).
96	Three fresh samples of mammary tumors and 1 of normal mammary gland (Table 1) were
97	collected from 3 female dogs during surgery at the Department of Veterinary Sciences,
98	University of Turin, Italy (cases 1–3). These fresh samples were processed to obtain primary ME
99	and LE cell lines according to our method proposed previously. ¹⁵ Thus, the magnetic-activated
100	cell sorting (MACS) technique based on the binding of antibody-coated magnetic microspheres
101	to Thy1 (ME cell-specific surface antigen) using an anti-Thy1 antibody was used to purify and
102	isolate canine mammary ME cells (positive selection) or LE cells (negative selection). ^{3,15}
103	Afterward, immunocytochemistry using typical ME or LE lineage markers was carried out to
104	confirm the phenotype of the cells in primary culture. ¹⁵ All 4 tissues were also processed
105	routinely and stained for histologic classification ⁷ and immunophenotyping using the ABC
106	method (Avidin-biotin-complex, Vector Laboratories, Orton Southgate, Peterborough, UK),

with anti-cytokeratin (CK)14 polyclonal rabbit antibody (Covance Research, Munich, Germany;
diluted 1:500) for ME cells and anti-CK8/18 antibody (clone NCL-5D3, isotype IgG₁ antibody,
Euro-Diagnostica, Malmö, Sweden; diluted 1:20) for LE cells.¹⁵ Furthermore, in order to
increase the number of cell lines studied, 2 ME cell lines characterized previously by our
research group¹⁵ were also used: CmME-K1 (complex carcinoma) and CmME-K2 (simple
tubulopapillary carcinoma).

113 For RT-qPCR expression analysis, total RNA was obtained from ME and LE cell lines,

and 1 µg of total RNA was reverse-transcribed using commercially available reagent sets

115 (QiantiTec reverse transcription kit, Qiagen, Hilden, Germany). Quantitative RT-PCR was used

to measure the quantity of RANK relative to the quantity of glyceraldehyde-3-phosphate

117 dehydrogenase (GAPDH) and hypoxanthine phosphoribosyl transferase (HPRT) messenger

118 (m)RNA using commercially available reagent sets (IQ SYBR Green supermix and IQ 5

119 detection system, Bio-Rad, München, Germany). GAPDH and HPRT were used as housekeeping

120 genes. Primer sequences were designed using Primer Express v.2.5 (Thermo Fisher Scientific,

121 Waltham, MA): RANK, 5'-ATGTGGTTTGTAGTTCTTCTC-3' (forward), 5'-

122 ACTCCTTATTTACACTTAGG-3' (reverse); GAPDH, 5'-GGCACAGTCAAGGCTGAG-3'

123 (forward), 5'-CCAGCATCACCCCATTTGAT-3' (reverse); and HPRT, 5'-

124 CACTGGGAAAACAATGCAGA-3' (forward), 5'-ACAAAGTCAGGTTTATAGCCAACA-3'

125 (reverse). Real-time PCR parameters were: cycle 1, 95°C for 30 s; cycle 2, 95°C for 10 s, 60°C

126 for 30 s for 40 cycles. The level of gene expression was calculated using a relative quantification

127 assay corresponding to the comparative threshold cycle (Ct) method: the amount of target,

128 normalized to the endogenous housekeeping genes and relative to the calibrator (control sample),

129	was then transformed by $2^{-\Delta\Delta Ct}$ (fold increase), where $\Delta\Delta Ct = \Delta Ct$ (sample) – ΔCt (control); ΔCt
130	is the Ct of the target gene subtracted from the Ct of the housekeeping genes.
131	Immunohistochemical and clinicopathologic results were grouped into contingency tables
132	and analyzed using the Fisher exact test; $p \le 0.05$ was considered statistically significant. Data
133	were analyzed with GraphPad Prism v.4.0 (GraphPad Software, San Diego, CA).
134	RANK labeling was seen in the cytoplasm of epithelial ductal and alveolar cells of
135	normal, dysplastic, and neoplastic glands, osteoclasts of mixed tumors, and tissue-associated
136	macrophages within and around the tumors. The latter 2 cell types were used as internal positive
137	controls of RANK labeling. Cytoplasmic staining was diffuse and an apical/luminal RANK
138	labeling pattern was also observed in some ductal and alveolar cells.
139	RANK expression varied with histologic classification, although differences were not
140	statistically significant (Table 2). Thus, 12 of 17 (70%) normal, all (4 of 4, 100%) dysplastic, and
141	19 of 26 (73%) tumorous mammary glands were classified as RANK+ cases (Table 2). The
142	single simple adenoma studied (composed of LE cells exclusively) was classified as RANK-
143	(Fig. 1), whereas 1 of 2 (50%) complex adenomas was negative and 5 of 6 (83%) benign mixed
144	tumors were considered RANK+ cases (Fig. 2). The majority of simple and complex carcinomas
145	(80% and 89%, respectively) and a single (1 of 3, 33%) mixed carcinoma were classified as
146	RANK+ cases.
147	The median percentage of RANK+ cells found in RANK+ cases was similarly high in all
148	groups (93% in normal and 80% in dysplastic glands; 76% in benign and 71% in malignant
149	tumors; Table 2). The median percentage of both ME and LE cells expressing RANK was

similar in the different histologic types of samples studied (Table 2).

151 In both normal and dysplastic glands, RANK+ cells were found in the LE cells of the ductal and lobular system with both diffuse and apical/luminal staining patterns (Fig. 3). 152 Furthermore, RANK+ cells were also found in the single flattened or spindle ME cell layer 153 154 located around normal ducts and alveoli with a diffuse staining pattern (Fig. 3). In RANK+ 155 benign tumors, most LE and ME cells located in the inner and the outer cell layers, respectively, 156 of neoplastic tubules were RANK+ cells showing a diffuse staining pattern. However, the apical/luminal staining pattern was also occasionally seen. Fusiform, polygonal, or round 157 RANK+ ME cells formed fascicles without atypia in all RANK+ complex adenomas, and were 158 159 also embedded in lacunae of cartilaginous matrix in 2 of 5 RANK+ benign mixed tumors (Fig. 2). In malignant tumors, 4 staining patterns were observed. First, RANK+ ME cells were seen 160 forming a single complete or incomplete layer of flattened or spindle cells located around 161 162 neoplastic nodules, tubules, and papillae (Fig. 4). Second, RANK+ fusiform ME cells forming nests or fascicles were also seen in complex and mixed carcinomas. Third, RANK+ LE cells 163 forming 1–3 layers of proliferating cells into the lumen of neoplastic tubules were observed in 164 malignant tumors with either diffuse or apical/luminal RANK staining patterns (Fig. 4). And 165 fourth, rounded cells of the cartilage nests observed in the mixed carcinoma were RANKO and 166 p63-. 167

RANK protein expression was higher in animals ≥10 y old (*p* = 0.027; Table 3). RANK
expression was not related to tumor size or histologic grade of the malignant tumors (Table 3). *RANK* gene expression level was similar in both normal ME and LE cell lines (CmMEN1 and CmLE-N1, respectively). The tumor ME (CmME-T2, CmME-T3, CmME-K1, CmMEK2) and LE (CmLE-T2, CmLE-T3) cell lines expressed *RANK* gene at levels similar to their
respective controls from normal ME (CmME-N1; Fig. 5) and LE (CmLE-N1; Fig. 6) cell lines,

174 except for the CmLE-T1 cell line (from case 1, complex carcinoma) that expressed twice as much RANK as normal cells (Fig. 6). RANK expression was detected in most of the tissue 175 samples and in all cell lines studied. ME and LE cells expressed RANK at a similar level in 176 177 normal, dysplastic, and neoplastic canine mammary tissues and in primary cell lines. RANK protein labeling was found in ~75% of the tissue samples analyzed. We found no statistically 178 significant differences in RANK protein expression between the histologic types: dysplasias 179 (100%), malignant tumors (76%), normal glands (70%), and benign tumors (67%). This could be 180 because of the high Ki67 proliferation index found in dysplasia (data not shown). In human 181 breast tissue, a positive correlation between RANK expression and Ki67 labeling index has been 182 reported.¹ RANK+ malignant tumors are more common in dogs (76%) than are breast carcinomas 183 in women (57% reported by some authors and 6% from others).^{8,16} Different methodologies to 184 185 evaluate IHC findings could contribute to discrepancies among studies. When grouped by histologic subtypes, all tumor subtypes expressed RANK at a similar level. To our knowledge, 186 there are no published reports of a correlation of *RANK* gene expression with histologic subtype 187 (simple, complex, mixed) in breast cancer; however, there is one study in which RANK 188 expression was independent of neoplasm subtype (ductal vs. lobular).¹⁷ All RANK+ cases, 189 regardless of their histologic subtype, had a high percentage of RANK+ cells ($\geq 67\%$). Sixty-five 190 percent of RANK+ cells were reported in breast cancer¹⁶ according to our results (71% of 191 RANK+ cells in malignant tumors), but there are no published data concerning other histologic 192 193 types of samples.

Double-labeling IHC was performed to analyze RANK labeling in the 2 epithelial cell populations of the mammary gland: ME and/or LE cells. After observing the cytoplasmic and/or apical/luminal RANK labeling pattern, we selected p63 as the marker of ME cells because of its

nuclear staining pattern.⁵ RANK protein expression was similar in both ME (57%) and LE (56%) 197 cells, which corresponds with the observation of RANK protein in both compartments of murine 198 mammary epithelial cells.⁸ A higher level of RANK protein expression was found in older 199 200 animals (≥ 10 y, p = 0.027). Statistically significant differences between RANK protein expression and tumor size or histologic grade of malignancy were not observed in canine 201 mammary glands. In human breast cancer, increased RANK expression was correlated with 202 higher histologic grade of malignancy by IHC,¹⁴ and a higher *RANK* gene expression was 203 observed in bigger tumors by microarray analysis.¹⁷ However, microarray analysis showed no 204 correlation between age and RANK expression.¹⁷ Comparison between results from 2 different 205 methodologies (IHC and microarray) may have intrinsic limitations. It is important to note that in 206 human and murine mammary gland tumors, most authors report that high RANK level in 207 primary tumors is predictive of poorer prognosis.¹⁷ Unfortunately, we do not possess available 208 data concerning the biological behavior of the tumors included in our study to support this 209 hypothesis. 210

211 Transcript levels of RANK were shown by RT-qPCR to be similar between canine mammary normal ME versus LE cell lines, and between normal versus neoplastic cell lines, in 212 213 accordance with IHC results. Only the CmLE-T1 cell line had higher RANK levels than the normal counterpart, which could be the result of the fact that the tumor had been classified as 214 grade 3 malignancy, whereas the rest of the malignant tumors had been classified as grades 1 and 215 216 2 (data not shown). In humans, studies on *RANK* gene expression by RT-qPCR in ME and/or LE cell lines from the breast have not been found, and those studies in neoplastic cell lines are 217 contradictory. Thus, some authors have shown that higher RANK expression in breast cancer 218 cells correlated with greater metastatic rates in bone,^{2,20} whereas other authors have shown that 219

220	transcript levels of RANK gene were reduced in tumor samples when compared with normal
221	tissue, and that reduced RANK expression was associated with poor clinical outcomes,
222	disseminated metastasis, bone metastasis, and death. ¹¹
223	Declaration of conflicting interests
224	The authors declared no potential conflicts of interest with respect to the research, authorship,
225	and/or publication of this article.
226	Funding
227	This publication was supported, in part, by BIO287 research group from the Plan Andaluz de
228	Investigación (PAIDI).
229	References
230	1. Azim HA Jr, et al. RANK-ligand (RANKL) expression in young breast cancer patients and
231	during pregnancy. Breast Cancer Res 2015;17:24.
232	2. Blake ML, et al. RANK expression on breast cancer cells promotes skeletal metastasis. Clin
233	Exp Metastasis 2014;31:233–245.
234	3. Clarke C, et al. An immunomagnetic separation method using superparamagnetic (MACS)
235	beads for large-scale purification of human mammary luminal and myoepithelial cells.
236	Epithelial Cell Biol 1994;3:38–46.
237	4. Fata JE, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for
238	mammary gland development. Cell 2000;103:41-50.
239	5. Gama A, et al. p63: a novel myoepithelial cell marker in canine mammary tissues. Vet Pathol
240	2003;40:412–420.
241	6. Gartner LP, Hiatt JL. Chapter 20. In: Color Textbook of Histology. 3rd ed. Philadelphia, PA:
242	Saunders, 2007:485–488.

- 7. Goldschmidt M, et al. Classification and grading of canine mammary tumors. Vet Pathol
 2011;48:117–131.
- 8. Gonzalez-Suarez E, et al. RANK ligand mediates progestin-induced mammary epithelial
 proliferation and carcinogenesis. Nature 2010;468:103–107.
- 9. Jones DH, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature
 248 2006;440:692–696.
- 10. Misdorp W. Tumors of the mammary gland. In: Meuten DJ, ed. Tumors in Domestic
 Animals, 4th ed. Ames, IA: Iowa State Press, 2002:575–606.
- 251 11. Owen S, et al. Expression profile of receptor activator of nuclear-kB (RANK), RANK ligand

252 (RANKL) and osteoprotegerin (OPG) in breast cancer. Anticancer Res 2013;33:199–206.

- 253 12. Papanastasiou AD, et al. Identification of novel human receptor activator of nuclear factor-
- 254 kB isoforms generated through alternative splicing: implications in breast cancer cell

survival and migration. Breast Cancer Res 2012;14:R112.

- 256 13. Peña L. Prognostic value of histological grading in noninflammatory canine mammary
- carcinomas in a prospective study with two-year follow-up: relationship with clinical and
 histological characteristics. Vet Pathol 2013;50:94–105.
- 14. Pfitzner BM, et al. RANK expression as a prognostic and predictive marker in breast cancer.

260 Breast Cancer Res Treat 2014;145:307–315.

- 261 15. Sánchez-Céspedes R, et al. Isolation, purification, culture and characterization of
- 262 myoepithelial cells from normal and neoplastic canine mammary gland using a magnetic-
- activated cell sorting separation system. Vet J 2013;197:474–482.
- 264 16. Santini D, et al. Expression pattern of receptor activator of NFkB (RANK) in a series of
- primary solid tumors and related bone metastases. J Cell Physiol 2011;226:780–784.

266	17. Santini D, et al. Receptor activator of NK-kB (RANK) expression in primary tumors
267	associates with bone metastasis occurrence in breast cancer patients. PLoS One
268	2011;6:e19234.
269	18. Sternlicht MD, et al. The human myoepithelial cell is a natural tumor suppressor. Clin
270	Cancer Res 1997;3:1949–1958.
271	19. Wong BR, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced
272	cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic
273	cell-specific survival factor. J Exp Med 1997;186:2075-2080.
274	20. Zhang J, et al. Murine RANK protein's inhibition of bone resorption. J Craniofac Surg
275	2011;22:2084–2089.

Table 1. Clinical and pathologic features of dogs with mammary tumors used for isolation of

278	myoepithelial (ME) and luminal epithelial (LE) cells.	

		1		Lesstian	Size of	Histologic	ME coll	LE call
		Age		Location	tumor	classification	ME cell	LE cell
Case	Breed	(y)	Sex	of tumor	(cm)	of tumor	line	line
1*	Poodle	14	Female	II right	0.9	Complex	CmME-T1	CmLE-T1
						carcinoma		
2	Rottweiler	8	Female	III left	0.4	Simple	CmME-T2	CmLE-T2
						tubulopapillary		
						carcinoma		
3	Shih Tzu	8	Female	IV right	1	Benign mixed	CmME-T3	CmLE-T3
						tumor		

²⁷⁹ * Fresh tissue sample from normal mammary gland (V right) of case 1 was also collected, named

280 CmME-N1 and CmLE-N1 for the ME and LE cell lines obtained, respectively.

- **Table 2.** RANK protein expression in cases under study and the median percentage of
- 283 myoepithelial (ME; p63+) and luminal epithelial (LE; p63–) cells expressing RANK antigen in

	No.	No. of	% of RANK+	%	%
	of	RANK+	cells in RANK+	RANK+	RANK+
Sample type	cases	cases	cases	ME cells	LE cells
Normal mammary tissue	17	12 (70)	93	54	66
Dysplasia	4	4 (100)	80	59	60
Benign tumor	9	6 (67)	76	46	42
Simple adenoma	1	0	0	0	0
Complex adenoma	2	1 (50)	67	42	60
Benign mixed tumor	6	5 (83)	77	77	70
Malignant tumor	17	13 (76)	71	67	57
Simple carcinoma	5	4 (80)	68	76	58
Complex carcinoma	9	8 (89)	69	68	66
Mixed carcinoma	3	1 (33)	91	56	48
Total	47	35 (74)	80	57	56

284 different mammary tissues.

285 Numbers in parentheses are percentages.

Parameter/range	No. of total cases	No. of RANK+ cases
Age*		
<10 y	6	1 (17)
≥10 y	20	18 (90)
Tumor size		
<2 cm	15	10 (67)
$\geq 2 \text{ cm}$	11	9 (82)
Histologic grade of carcinoma		
1	9	6 (67)
2	7	6 (86)
3	1	1 (100)

Table 3. RANK protein expression and clinicopathologic parameters of the 26 dogs.

288 Numbers in parentheses are percentages.

289 * p = 0.027

291	Figure 1. Simple adenoma in a canine mammary gland; p63+ cells form a single complete or
292	incomplete layer of flattened cells around neoplastic ducts and alveoli in a RANK- case.
293	Double immunohistochemical labeling for RANK (red) and p63 (brown) (EnVision
294	doublestain system, Dako). Bar = $20 \ \mu m$.
295	Figure 2. Benign mixed tumor in a canine mammary gland. In the lacunae of cartilaginous
296	matrix, both RANK+/p63- cells (black arrows) and co-expression of RANK and p63 antigens
297	are present in some cells (red arrow). Double immunohistochemical labeling for RANK (red)
298	and p63 (brown; EnVision doublestain system, Dako). Bar = 20 μ m.
299	Figure 3. Dysplasia in a canine mammary gland. RANK labeling was observed in both p63– and
300	p63+ cells. RANK+/p63- cells are present in the outer, proliferative, and luminal layers of
301	neoplastic tubules (black arrows). Co-expression of RANK and p63 proteins is present in all 3
302	cell layers of neoplastic tubules (red arrows). Double immunohistochemical labeling for
303	RANK (red) and p63 (brown; EnVision doublestain system, Dako). Bar = 20 μ m.
304	Figure 4. Simple carcinoma in a canine mammary gland. Round-to-oval cells form the
305	neoplastic nodules that histologically appeared to be of only one type. Double
306	immunohistochemical labeling revealed 4 different cell types: 1) RANK+/p63- cells (black
307	arrows); 2) RANK+/p63+ cells (red arrows); 3) RANK-/p63+ cells (black stars); and 4)
308	RANK-/p63- cells (red stars). Double immunohistochemical labeling for RANK (red) and
309	p63 (brown; EnVision doublestain system, Dako). Bar = 20 μ m.
310	Figure 5. RANK gene expression by RT-qPCR in canine mammary myoepithelial (CmME) cell
311	lines. The fold increase of each specific mRNA was normalized with the normal ME cell line
312	(CmME-N1), and the error bars indicate one standard deviation of experimental triplicates.

313	RANK gene expression level was similar in the neoplastic ME cell lines compared to the
314	normal ME cell line.

Figure 6. *RANK* gene expression by RT-qPCR in canine mammary luminal epithelial (CmLE)

cell lines. The fold increase of each specific mRNA was normalized with the normal LE cell

- line (CmLE-N1), and the error bars indicate one standard deviation of experimental
- triplicates. The neoplastic LE cell lines expressed *RANK* at levels similar to the normal LE
- cell line; only the neoplastic CmLE-T1 cell line showed a 2-fold increase in *RANK* expression
- 320 compared to the normal LE cell line.