
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Dynamic control of NFV forwarding graphs with end-to-end deadline constraints

Publisher:

Published version:

DOI:10.1109/ICC.2017.7996596

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1662774 since 2018-03-19T10:06:04Z



Dynamic control of NFV forwarding graphs with end-to-end deadline constraints

Victor Millnert∗, Johan Eker∗†, Enrico Bini‡
∗Lund University, Sweden
†Ericsson Research, Sweden
‡University of Turin, Italy

Abstract—There is a strong industrial drive to use cloud com-
puting technologies and concepts for providing timing sensitive
services in the networking domain since it would provide the
means to share the physical resources among multiple users and
thus increase the elasticity and reduce the costs. In this work, we
develop a mathematical model for user-stateless virtual network
functions forming a forwarding graph. The model captures
uncertainties of the performance of these virtual resources as
well as the time-overhead needed to instantiate them. The model
is used to derive a service controller for horizontal scaling of
the virtual resources as well as an admission controller that
guarantees that packets exiting the forwarding graph meet their
end-to-end deadline. The Automatic Service and Admission
Controller (AutoSAC) developed in this work uses feedback
and feedforward making it robust against uncertainties of the
underlying infrastructure. Also, it has a fast reaction time to
changes in the input.

1. Introduction
Over the last years, cloud computing has swiftly trans-

formed the IT infrastructure landscape, leading to large cost-
savings for deployment of a wide range of IT applications.
Physical resources such as compute nodes, storage nodes,
and network fabrics are shared among tenants through the
use of virtual resources. This makes it possible to dynami-
cally change the amount of resources allocated to a tenant,
for example as a function of workload or cost. Initially the
cloud technology was mostly used for IT applications, e.g.
web servers, databases, etc., but has now found its way into
new domains. One such domain is packages processed by a
chain of network functions.

In this work, we are considering a chain of connected
network functions through which packets are flowing. Every
packet must be processed by each function in the chain
within some specific end-to-end deadline. The goal is to
ensure that as many packets as possible meet their deadline,
while at the same time using as few resources as possible.

0 20 40 60 80 100 120
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

time (hours)

in
p
u
t
(p
p
s)

Figure 1: Traffic flowing through a switch over 120 hours. The traffic is
normalized to have a peak of 10 million packets per second

VNF3

VNF1 VNF1

VNF1

VNF1

VNF1VNF1

VNF4

VNF2

VNF3

VNF5

NFVI

Packet flow
Mapping to
physical 
hardware

Logical 
network
links

m1 m2

m4

m5

m5

Figure 2: Several virtual networking functions (VNF) are connected together to
provide a set of services. A packet flow is a specific path through the VNFs.
Connected VNFs are referred to as virtual forwarding graphs or service chains.
The VNFs are mapped onto physical hardware, i.e. compute nodes and network
fabrics and this underlying hardware infrastructure is referred to as Network
Function Virtualization Infrastructure (NFVI), which is the physical servers and
the communication fabric connecting them.

The goal is thus to derive a method for controlling the
amount of resources allocated to each network function in the
chain. Previously, this has been done by statically allocating
some amount of resources to each network function. Since
the input is time-varying (see Figure 1 for a trace of traffic
flowing through a switch in the Swedish university network,
SUNET), such a strategy usually leads to over-allocation
of resources for long periods of time (yielding high costs
and environmental footprint) as well as overload for shorter
periods, when the input is large. To ensure that at least some
packets meet their deadlines when the network function is
overloaded, one has to use admission control, i.e. reject some
packets.

Recently a new option has been made available through
the advances of virtualization technology for networking ser-
vices. The standardization body ETSI (European Telecom-
munications Standards Institute) addresses the standardiza-
tion of these virtual network services under the name Net-
work Functions Virtualisation (NFV) [1]. These Virtual Net-
work Functions (VNFs) consist of virtual resources, such as
virtual machines (VMs), containers, or even processes run-
ning in the OS. Using such VNFs it is possible to change the
resources allocated to a network function by either vertical
scaling (i.e., changing the capacity of the allocated VMs)
or horizontal scaling (i.e., changing the number of allocated
VMs). Horizontal scaling is considered in this work. These
VNFs are connected forming what is commonly called a
Forwarding Graph, as illustrated in Figure 2. In this figure,
there are two forwarding graphs (corresponding to the blue
and the red arrow). The blue forwarding graph consists of
VNF1, VNF2, VNF3, and VNF5 and the red forwarding
graph consists of VNF1, VNF2, VNF4, and VNF5. Each of



the VNF is given a number mi ∈ Z+ of VMs, which are
mapped onto the network function virtual infrastructure.

While the benefit of using NFV technologies is scalabil-
ity and resource sharing there are two drawbacks:
a) starting a new virtual resource takes time, since it has

to be deployed to a physical server and it requires the
execution of several initialization scripts and push/pulls
before it is ready to serve packets,

b) the true performance of the virtual resource differs from
the expected performance, since one does not know what
else is running on the physical machines.
In this work we:

• develop a model of a service-chain of network func-
tions and use it to derive a service-controller and
admission-controller for the network functions,

• derive a service-controller controlling the number of
virtual resources (e.g., VMs or containers) allocated
to each network function by using feedback from
the true performance of the instances as well as
feedforward between the network functions,

• derive an admission-controller that is aware of the
actions of the service-controller which it uses in order
to reject as few packets as possible,

• evaluate the service- and admission controller using
a real-world traffic trace from the Swedish University
Network (SUNET).

Related works
There are a number of works considering the problem of

controlling virtual resources within data centers, and specif-
ically for virtual network functions. However many of them
focus on orchestration, i.e. how the virtual resources should
be mapped onto the physical hardware. Shen et al [2] develop
a management framework, vConductor, for realizing end-to-
end virtual network services. In [3], Moens and De Turk
develop a formal model for resource allocation of virtual
network functions. A slightly different approach is taken by
Mehraghdam et al [4] where they define a model for formal-
izing the chaining of forwarding graphs using a context-free
language. They solve the mapping of the forwarding graphs
onto the hardware by posing it as a MIQCP.

Scaling of virtual network functions is however studied
by Mao et al [5] where they develop a mechanism for
auto-scaling resources in order to meet some user specified
performance goal. Recently, Wang et al [6] developed a
fast online algorithm for scaling and provisioning VNFs in
a data center. However, they are not considering timing-
sensitive applications with deadlines for the packets moving
through the chain, which is done by Li et al [7] where they
present a design and implementation of NFV-RT that aims at
controlling NFVs with soft Real-Time guarantees, allowing
packets to have deadlines.

The enforcement of an end-to-end deadline for a se-
quence of jobs is however addressed by by several works,
possibly under different terminologies. Di Natale and
Stankovic [8] propose to split the E2E deadline proportion-
ally to the local computation time or to divide equally the
slack time. Later, Jiang [9] used time slices to decouple the

schedulability analysis of each node, reducing the complexity
of the analysis. Such an approach improves the robustness of
the schedule, and allows to analyse each pipeline in isolation.
Serreli et al. [10], [11] proposed to assign local deadlines to
minimise a linear upper bound of the resulting local demand
bound functions. More recently, Hong et al [12] formulated
the local deadline assignment problem as a MILP with the
goal of maximizing the slack time.

An alternate analysis was proposed by Jayachandran and
Abdelzaher [13], who developed several transformations to
reduce the analysis of a distributed system to the single
processor case. Or in [14] where Henriksson et al. proposed
a feedforward/feedback controller to adjust the processing
speed to match a given delay target.

2. Modeling the service-chain

r(t) F1 F2
. . . Fn

r2(t) r3(t) rn(t)

Figure 3: Illustration of the service-chain.

In this section, we present an general model of the
forwarding graph and virtual network functions presented
in Section 1. We consider a service-chain consisting of
n functions F1, . . . , Fn, as illustrated in Figure 3. Packets
are flowing through the service-chain and they must be
processed by each function in the chain within some end-to-
end deadline. A fluid model is used to approximate the packet
flow and at time t there are ri(t) ∈ R+ packets per second
(pps) entering the i’th function. In a recent benchmarking
study it was shown that a typical virtual machine can process
around 0.1–2.8 million packets per second, [15]. Hence,
in this work the number of packets flowing through the
functions is assumed to be in the order of millions of packets
per second, supporting the use of a fluid model.

A function consists of several parts, as illustrated in
Figure 4: an admission controller, a service controller, mi(t)
instances, a buffer, and a load balancer. It is assumed that all
the parts of a function is located on the same location, e.g.,
the same data center or rack. In [16], Google showed that less
than 1% (<1µs) of the latency in a data center was due to
the propagation in the network fabric. Hence, communication
delay within a function is neglected. The functions are also
assumed to be user-stateless.

ri(t)
admission
controller

qi(t)

load
balancer

...

mi(t)

1

+

service
controller

Service Function Fi

ρi(t) si(t)

Figure 4: Illustration of the structure and different entities of the function.

2.1. Admission controller
Every packet that enters the service-chain must be pro-

cessed by all of the functions in the chain within a certain



end-to-end (E2E) deadline, denoted Dmax. This deadline can
be split into local deadlines Di(t), one for each function in
the chain, such that the packet should not spend more than
Di(t) time-units in the i’th function. Should a packet miss
its E2E deadline it is considered useless. It is thus favorable
to use admission control to drop packets that have a high
probability of missing their deadline in order to make room
for following packets. The goal of the admission controller
is to guarantee that the packets that make it through the
service-chain do meet their E2E deadline. It is assumed to
be possible to do admission control at the entry of every
function in the chain.

Packets are admitted into the buffer of the function based
on the admittance flag αi(t) ∈ {0, 1}. If αi(t) = 1 incoming
packets are admitted into the buffer, and if αi(t) = 0 they
are rejected. We define the residual rate ρi(t) to be the rate
by which packets are admitted into the buffer:

ρi(t) = ri(t)× αi(t). (1)

2.2. Service controller
At any time instance, function Fi has mi(t) ∈ Z+

instances up and running. Each instance is capable of pro-
cessing packets and corresponds to a virtual machine, a
container, or a process running in the OS. It is possible
to control the number of running instances by sending a
reference signal mref

i (t) ∈ Z+ to the service controller.
However, as explained in Section 1, it takes some time to
start/stop instances since an instantiation of the service is
always needed. We denote this as the time overhead ∆i.
Hence, the number of instances running in the i’th function
at time t is

mi(t) = mref
i (t−∆i). (2)

The time-overhead is assumed to be symmetric here, but in
the real-world it is usually faster to start an instance than
it is to stop one. However, for increased readability they
are considered equal in this work. It should be noted that
it is straight forward to extend the theory to account for an
asymmetric time-overhead.

An instance is expected to be able to process packets at
an expected service rate of s̄i pps. However, as described in
Section 1, the true capacity of the instance will differ from
the expected one since there might be other loads running
on the infrastructure (i.e. the physical machine). Hence, the
true capacity of the j’th instance in the i’th function is given
by

scap
i,j (t) = s̄i + ξi,j(t),

where ξi,j(t) is the machine uncertainty for the j’th instance
in the i’th function. It is given by

ξi,j(t) ∈ [ξlb
i , ξ

ub
i ] pps, −s̄i < ξlb

i ≤ ξub
i <∞,

where ξlb
i and ξub

i are lower and upper bounds of this
machine uncertainty, assumed to be known. The machine
uncertainty is also assumed to be fairly constant during the
lifetime of the instance. Using this, one can express the true
capacity of the i’th function in the service-chain as

scap
i (t) =

mi(t)∑
j=1

s̄i + ξi,j(t), (3)

which together with the average machine uncertainty

ξ̂i(t) =
1

mi(t)

mi(t)∑
j=1

ξi,j(t), (4)

can be written as scap
i (t) = mi(t) × (s̄i + ξ̂i(t)). Note that

it would be natural to allow the time-overhead ∆i to also
have some uncertainty. However, such uncertainty can be
translated into a machine uncertainty.

2.3. Processing of packets
The packets in the buffer are stored and processed in a

FIFO manner. Once a packet reaches the head of the queue
the load balancer will distribute it to one of the instances in
the function. Note that this is done continuously due to the
fluid approximation. The rate by which the load balancer is
distributing packets, and thus by which the function process-
ing packets, is defined as the service rate

si(t) =

{
ρi(t) if qi(t) = 0 and ρi(t) ≤ scap

i (t)

scap
i (t) else

(5)

where ρi(t) is residual rate given by (1) and qi(t) is the
number of packets in the buffer:

qi(t) = Pi(t)− Si(t), qi(t) ∈ R+, (6)
where Pi(t) =

∫ t
0
ρi(x)dx is the total amount of packets that

has been admitted into function Fi, and Si(t) =
∫ t

0
si(x)dx

is the total amount of packets that has been served by
function Fi. Furthermore, the total amount of packets that
has reached the i’th function is given by Ri(t) =

∫ t
0
ri(x)dx.

2.4. Function delay
The time that a packet that exists function Fi at time t

has spent inside that function is denoted the function delay
di(t):

di(t) = inf{τ ≥ 0 : Pi(t− τ) ≤ Si(t)}. (7)
The expected time that a packet entering the i’th function at
time t will spend in the function before exiting is defined as
the expected function-delay d̄i(t)
d̄i(t) = inf{τ ≥ 0 :

Pi(t) ≤ Si(t) +

∫ t+τ

t

mi(x)× (s̄i + ξ̂i(x))dx }. (8)

Equation (8) can be interpreted as finding the minimum time
τ ≥ 0 such that Si(t + τ) = Pi(t), or in other words such
that at time t + τ the function will have processed all the
packets that has entered the function at time t. Finally, it
is also of interest to find the upper bound of the expected
function delay:
dub
i (t) = inf{τ ≥ 0 :

Pi(t) ≤ Si(t) +

∫ t+τ

t

mi(x)× (s̄i + ξlb
i )dx}. (9)

This can be interpreted as the expected delay in the worst
case, i.e. when every instance process packets at the lower
bound of the possible service-rate, hence leading to the upper
bound on the expected delay.

Computing the expected function-delay d̄i(t) requires in-
formation about mi(t) and ξ̂i(t) for the future, whereas com-
puting the expected function delay dub

i (t) requires informa-
tion about mi(t) for the future. Information about mi(t) up



until time t+∆i is always known since mi(t+∆i) = mref
i (t)

and mref
i (x) is known for x ∈ [0, t]. It is therefore possible

to compute the expected function delay d̄i(t) whenever it is
shorter than the time-overhead ∆i (which will be used later
in Section 3 when deriving the admission controller and the
service controller).

Note that the (expected) function delay does not dis-
tinguish between queueing delay and processing delay. In
[16], Google profiled where the latency in a data center
occurred and showed that 99% of the latency (≈ 85µs)
occurred somewhere in the kernel, the switches, the memory,
or the application. It is very difficult to say exactly which of
this 99% is due to processing or queueing, hence they are
considered together as the function delay.

2.5. Concatenation of functions
The n functions in the service-chain are concatenated

with the assumption of no loss of packets in the communi-
cation channel between them. Therefore the input of function
Fi is exactly the output of function Fi−1:

ri(t) = si−1(t), ∀i = 2, 3, . . . , n.

Finally, no communication latency between functions are
assumed. However, it is possible to account for it, and would
be necessary should the different functions reside in differ-
ent locations, i.e. different data centers. However, adding
a communication latency is straightforward, and if such
communication latency (say C) were to be constant between
the functions one could easily account for it by properly
decrementing the end-to-end deadline: D̃max = Dmax − C,
and then use the framework developed in this paper.

2.6. Problem formulation
The goal of this paper is to derive a service-controller

and an admission-controller that guarantees that packets that
pass through the service-chain meet their E2E deadline. This
should be done using as few resources as possible while still
achieving as high throughput as possible. This is captured
in a simple, yet intuitive utility function ui(t). Later in
Section 3, the utility function is used to derive an automatic
service- and admission controller, denoted AutoSAC.

Utility function. The utility function measures the
availability ai(t) and the efficiency ei(t) of the each function
in the service chain. The availability is defined as the ratio
between the service-rate and the input-rate of the function,
and the efficiency is defined as the ratio between service-rate
and the capacity of the function:

ai(t) =
service
demand

=
si(t)

ri(t− di(t))
∈ [0, 1 + ε], (10)

ei(t) =
service

capacity
=

si(t)

scap
i (t)

∈ [0, 1]. (11)

The reason why ai(t) can grow greater than 1 is due to the
buffer—it is possible to store packets for a short interval and
then process them at a rate greater than what they arrived
with. However, it is not possible to have ai(t) > 1 for an
infinite amount of time. In practice, ε is very small, and it is
not possible to achieve a ai(t) > 1 for any significant period
of time.

A low availability corresponds to a large percentage of
the incoming load being rejected by the admission controller,

since there is not enough capacity to serve them. A low
efficiency, on the other hand, correspond to over-provisioning
of resources. It is therefore difficult to achieve both a high
availability and a high efficiency. The utility function ui(t)
captures this, by combining the availability and efficiency

ui(t) = ai(t)× ei(t) =
s2
i (t)

scap
i (t)× ri(t− di(t))

. (12)

Note that the utility function, as well as the availability
and efficiency function, all have the good property of being
normalized making it easy to compare the performance of
service-chains having different input load.

To evaluate the performance between service-chains of
different lengths and over different time-horizons the average
utility U(t) is defined:

u(t) =
1

n

n∑
i=1

ui(t), U(t) =
1

t

∫ t

0

u(x)dx. (13)

3. Controller design
In this section an automatic service- and admission-

controller (AutoSAC) is derived. The admission controller
is then derived in Section 3.1 and the service controller
in Section 3.2. In Section 3.3 a short discussion of the
properties of AutoSAC is presented.

The difficulty when deriving AutoSAC lies in the dif-
ferent time-scales for starting/stopping instances, the E2E
deadlines, and the rate-of-change of the input. They are all
assumed to be of different orders of magnitudes, given by
Table 1. However, these timing assumptions will be exploited
when deriving AutoSAC later.

Parameter timing assumption
long-term trend change of the input 1min – 1h

service-rate change overhead ∆i 1s – 1min
request end-to-end deadline Dmax 1ms – 100 ms

TABLE 1: Timing assumptions for the the end-to-end deadline, the change-
of-rate of the input, and the overhead for changing the service-rate. These
timing assumptions are used when deriving the automatic service- and admission-
controller.

3.1. Admission controller
Every request that enters the service chain has an end-to-

end deadline Dmax. It has to pass through every function in
the chain within this time. Furthermore, each function can
impose a local deadline Di(t) for the packet entering the
i’th function at time t.

Using the local deadline each function can evaluate the
upper bound of the expected delay, dub

i (t) for a new packet.
If this is longer than the local deadline the admission con-
troller should drop the packet. The admittance-flag αi(t) is
thus controlled as

αi(t) =

{
1 if Di(t) ≥ dub

i (t)

0 if Di(t) < dub
i (t)

(14)

3.2. Service controller
The goal for the service-controller is to find mref

i (t) such
that the utility function is maximized once the reference
signal is realized in ∆i time-units, i.e. such that ui(t+ ∆i)
is maximized. Recall that the utility function is given by

ui(t) = ai(t)× ei(t) =
s2
i (t)

scap
i (t)× ri(t− di(t))

.



As explained in the introduction of this section, the input
load is assumed to change relatively slowly over a time
interval of a few milliseconds. Hence, one can approximate

ri(t− di(t)) ≈ ri(t), (15)
since the goal of both the admission controller and the
service controller is to keep di(t) in the order of milliseconds
or less. Therefore it is possible to approximate the utility
function with

ui(t) ≈
s2
i (t)

scap
i (t)× ri(t)

.

Furthermore, the service rate si(t) can be approximated to
be either at the capacity of the function, scap

i (t), or at the
input rate ri(t)

si(t) ≈ min{scap
i (t), ri(t)}. (16)

where the min is used since the function cannot process
packets at a faster rate than what they are entering the
function for a prolonged period of time. Likewise, it cannot
process packets at a rate higher than the capacity of the
function when the input were to be higher than this. This
leads to the utility function being approximated as

ui(t) ≈


(scap
i (t))2

scap
i (t)× ri(t)

=
scap
i (t)

ri(t)
, if scap

i (t) ≤ ri(t)

r2
i (t)

scap
i (t)× ri(t)

=
ri(t)

scap
i (t)

, else

With scap
i (t) given by (3) and the average machine uncer-

tainty ξ̂i(t) given by (4) the utility function can finally be
approximated as

ui(t) ≈


mi(t)(s̄i + ξ̂i(t))

ri(t)
, if mi(t)(s̄i + ξ̂i(t)) ≤ ri(t)

ri(t)

mi(t)(s̄i + ξ̂i(t))
, else

(17)
Since the goal is to find mref

i (t) in order to maximize
ui(t+∆i) one needs knowledge of ξ̂i(t+∆i) and ri(t+∆i)
which is not available. However, one can assume that the
machine uncertainty will be fairly constant during ∆i time-
units such that ξ̂i(t + ∆i) ≈ ξ̂i(t). Furthermore, one has to
estimate the future input-rate to the function. For the first
function, F1, this can be done by using the derivative of the
(preferably low-pass filtered) input-rate:

r̂1(t) = r1(t) + ∆1
dr1(t)

dt
.

For the succeeding functions, i = 2, . . . , n the input-rate
will change in a step-wise fashion and can therefore not
approximate it with the expression above. However, since
ri(t) = si−1(t) and mi−1(x) is known for x ∈ [0, t+∆i−1]
(with t being the current time) one could estimate the future
input-rate r̂i(t) with
r̂i(t) ≈ min

(
scap
i−1(t+ ∆i−1), r̂i−1(t)

)
, i = 2, . . . , n.

Note that scap
i−1(t+∆i−1) is used here, instead of scap

i−1(t+∆i).
The reason is that if ∆i > ∆i−1 one does not have enough
information to compute scap

i−1(t + ∆i−1). However, one can
use the assumption that ∆i ≈ ∆i−1. Furthermore, since

scap
i−1(t+ ∆i−1) ≈ mref

i−1(t)× (s̄i−1 + ξ̂i−1(t))

one can summarize the predicted input r̂i(t) as

r̂i(t)=

{
ri(t) + ∆i

dri(t)
dt , i = 1

min
(
mref
i−1(t)×(s̄i−1 + ξ̂i−1(t)), r̂i−1(t)

)
, else

With these simplifications and approximations, mref
i (t)

can be found by solving
mref
i (t) =

arg max
x∈Z+

{x× (s̄i + ξ̂i(t))

r̂i(t)

}
, if x× (s̄i + ξ̂i(t)) ≤ r̂i(t)

arg max
x∈Z+

{ r̂i(t)

x× (s̄i + ξ̂i(t))

}
, else

where x ∈ Z+ is the number of instances. Here one can see
that the first case of the above equation is maximized when x
is as large as possible, but since this case is only valid when
x ≤ r̂i(t)/(s̄i+ξ̂i(t)) it leads to x = b ri(t)

s̄i+ξ̂i(t)
c. Similarly, the

second case is maximized when x is as small as possible,
and since this case is valid for x ≥ r̂i(t)/(s̄i+ξ̂i(t)) it leads to
x = d ri(t)

s̄i+ξ̂i(t)
e, leading to the final control-law:

mref
i (t) =


⌊

r̂i(t)

s̄i+ξ̂i(t)

⌋
, if

⌊ r̂i(t)

s̄i+ξ̂i(t)

⌋ s̄i+ξ̂i(t)
r̂i(t)

≥
r̂i(t)

s̄i+ξ̂i(t)
× 1⌈

r̂i(t)

s̄i+ξ̂i(t)

⌉⌈
r̂i(t)

s̄i+ξ̂i(t)

⌉
, else

(18)

3.3. Properties of AutoSAC
There are several interesting properties captured by the

admission controller and service controller presented in this
section. First of all, the admission controller (14) ensures,
by design, that every packet that is admitted into a function,
and thus exits the function, meets its deadline. Therefore, no
packets that exit the service-chain will miss their end-to-end
deadline.

The service-controller given by equation (18) captures
both the feedback used from the true performance of the
instances (when computing ξ̂i(t)) as well as feedforward
information about future input coming from functions earlier
in the service-chain (when computing r̂i(t)). This makes it
robust against machine uncertainties but also ensures that it
reacts fast to sudden changes in the input. For instance, given
a service-chain of 6 functions, function F5 will know that in
∆4 time-units, F4 will have mref

4 (t) instances running and
can thus start as many instances as needed to process this
new load.

4. Evaluation
In this section, we evaluate the automatic service- and

admission-controller (AutoSAC) developed in Section 3
through a Monte Carlo simulation with 15 · 104 runs. It
is compared against two state-of-the-art methods for auto-
scaling VMs in industry; dynamic auto-scaling (DAS) and
dynamic over-provisioning (DOP). However, since these two
methods do not use any admission control they are also
augmented with the admission controller presented in Sec-
tion 3.1. The two augmented methods are denoted by “DAS
with AC” and “DOP with AC”. Hence, in total the method
presented in Section 3 is compared with four other methods.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

time (hours)

u
ti
li
ty

Ua(t)

Ub(t)

Uc(t)

Ud(t)

Ue(t)

Figure 5: Average utilities for one of the runs in the Monte Carlo simulation. AutoSAC–Ua(t), DAS–Ub(t), DOP–Uc(t), DAS with AC–Ud(t), DOP with AC–Ue(t).
One can see that AutoSAC performs better than DAS and DOP, as well as that the utility for DAS and DOP is the same as for DAS with AC and DOP with AC
except for some short time-intervals. During these time-intervals these functions were overloaded, and the lack of admission control in DAS and DOP lead to packets
missing their deadlines, thus leading to a drop in the utility. However, even when augmenting DAS and DOP with admission control they do not perform as well
as AutoSAC, the main reason being that AutoSAC uses feedback from the true performance of the instances as well as feedforward between the functions in the
service-chain to obtain a faster reaction time.

A real-world trace of traffic data is used as input to the
simulation. The trace was gathered over 120 hours from
a port in the Swedish University NETwork (SUNET) and
then normalized to have a peak of 10, 000, 000 packets per
second as shown in Figure 1. The simulation was written in
the open-source language Julia [17]. The code used for this
simulation is provided on GitHub1.

Dynamic auto-scaling (DAS). This method is cur-
rently being offered to customers using Amazon Web Ser-
vices [18]. It allows the user to monitor different metrics
(e.g., CPU utilization) of their VMs using CloudWatch. One
can then use it together with their auto-scaling solution to
achieve dynamic auto-scaling. This allows the user to scale
the number of VMs as a function of these metrics. One
should note that the CPU utilization can be considered the
same as the efficiency metric ei(t) defined in (11). For the
Monte Carlo simulation the following rules were used:

• add a VM if the efficiency is above 99%,
• remove a VM if the efficiency is below 95%,

which might seem as a high and tight interval, but it is
necessary in order to achieve a high utility.

Dynamic over-provisioning (DOP). A downside
with DAS is that it reacts slow to sudden changes in the
input. A natural alternative to would therefore be to instead
do dynamic over-provisioning, where one measures the input
to each function and allocate virtual resources such that there
is an expected over-provision by 10%.

Monte Carlo Simulation. The five methods are
compared using a Monte Carlo simulation with 15 ·104 runs.
For every run, one hour of input data was randomly selected
from the total of 120 hours shown in Figure 1. In every
run a new service-chain with 5 functions was generated.
The E2E deadline for the service-chain was set to 50ms,
which in turn was split into local deadlines of 10ms for
each function. The other parameters (i.e., s̄i, ∆i, ξlb

i , and
ξub
i ) for every function in the service-chain was generated

randomly. The expected service-rate s̄i was chosen uniformly
at random from the interval [100, 000, 200, 000] pps. The
time-overhead ∆i was drawn uniformly at random from

1. https://github.com/vmillnert/ICC17simulation

the interval [30, 120] seconds. The machine uncertainty was
chosen to be in the range of ±30% of the expected service-
rate s̄i. The lower bound of the machine uncertainty was
drawn from the interval [−0.3s̄i, 0] pps and likewise, the
upper bound was drawn from [0, 0.3s̄i] pps.

The evaluation of the Monte Carlo simulation is based
on the average utility U(t) = 1

t

∫ t
0

∑n
i=1 ui(x)dx. Since

a packet that misses its deadline (which is possible when
using DAS or DOP) is considered useless it is evaluated
as a dropped packet when exiting the function. It therefore
impacts the availability metric and in turn the utility. Should
all packets miss their deadlines in function Fi for a time
interval τ , then ai(t) = 0 ∀t ∈ τ , i.e. the availability would
be evaluated as 0 during this time-interval since the output
of the function is considered useless.

Results. The mean of the average utility U(t) for all
the simulation runs is presented in Table 2 for each of the five
methods. One can see that AutoSAC achieves a utility that is
30–40% better than that of DAS and DOP. The main reason
for this is that they are lacking admission control leading
to packets missing their deadlines, which eventually results
in a low utility. This can be seen in Figure 5, illustrating
a “typical” run in the Monte Carlo simulation. There, the
sudden drops in the utility function for DAS (Ub(t)) as
well as the step-wise increase of DAS and DOP (Uc(t)) in
the beginning, indicate that they are overloaded and packets
are missing their deadlines in some of the functions in the
service-chain.

Method Mean(U(t)) Var(U(t)) Figure 5
AutoSAC 0.99 3.0 · 10−5 Ua(t)

DAS 0.67 2.7 · 10−2 Ub(t)
DOP 0.75 1.6 · 10−2 Uc(t)

DAS with AC 0.94 2.8 · 10−3 Ud(t)
DOP with AC 0.91 4.9 · 10−4 Ue(t)

TABLE 2: Results from the Monte Carlo simulation. AutoSAC performs 30–40%
better than DAS and DOP. The main reason is the admission controller used in
AutoSAC. When augmenting DAS and DOP with this admission controller, their
performance is increased by more than 20%. However, AutoSAC still outperforms
the augmented methods by 5–10% since it uses feedforward, making it faster to
react to input changes, as well as feedback making it more robust to machine
uncertainties.

When augmenting DAS and DOP with the admission
controller derived in Section 3.1 the performance is increased
by 20–40%, purely as a result of not having these sudden



drops in performance. However, AutoSAC still performs 5–
10% better, due to the feedforward property of AutoSAC
giving it having a faster reaction time to changes in the input
as well as the feedback property leading to better prediction
and robustness against the machine uncertainties.

5. Summary
In this work we have developed a mathematical model for

a NFV Forwarding Graphs residing in a Cloud environment.
The model captures, among other things, the time needed
to start/stop virtual resources (e.g., virtual machines or con-
tainers), and the uncertainty of the performance of the virtual
resources which can deviate from the expected performance
due to other tenants running loads on the physical infras-
tructure. The packets that flow through the forwarding graph
must be processed by each of the virtual network functions
(VNFs) within some end-to-end deadline.

A utility function is defined to evaluate performance
between different methods for controlling NFV Forwarding
Graphs. The utility function is also used to derive an auto-
matic service- and admission-controller (AutoSAC) in Sec-
tion 3. It ensures that packets that exit the forwarding graph
meet their end-to-end deadline. The service-controller use
feedback from the actual performance of the virtual resources
making it robust against uncertainties and deviations from
the expected performance. Furthermore, it uses feedforward
between the VNFs making it fast to react to changes in the
input load.

In Section 4 AutoSAC is evaluated and compared against
4 other methods in a Monte Carlo simulation with 15 · 104

runs. The input load for the simulation is a real-world trace of
traffic data gathered over 120 hours. The traffic is normalized
to have a peak of 10, 000, 000 packets per second. AutoSAC
is shown to have better performance than what is offered
in the cloud industry today. We also show that when aug-
menting the industry-methods with the admission controller
derived in Section 3 they have a significant increase in
performance.

It would be interesting to extend this work by investigat-
ing how to derive a controller when the true performance is
unknown or when the time-overhead needed to start virtual
resources is unknown. Moreover, it would be interesting
to investigate how as well as by developing a model for
a forwarding graph that has forks and joins, i.e. a graph
structure.

Acknowledgements The authors would like to thank Karl-
Erik Årzén and Joao Monteiro Soares for the useful comments on
early versions of this paper.

Source code The source code for the simulation in Sec-
tion 4 can be found on Github at https://github.com/vmillnert/
ICC17simulation.

References
[1] ETSI, “Network Functions Virtualization (NFV),”

https://portal.etsi.org/nfv/nfv white paper.pdf, October 2012.

[2] W. Shen, M. Yoshida, T. Kawabata, K. Minato, and W. Imajuku,
“vconductor: An nfv management solution for realizing end-to-end
virtual network services,” in Network Operations and Management
Symposium (APNOMS), 2014 16th Asia-Pacific. IEEE, 2014, pp.
1–6.

[3] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference
on Network and Service Management (CNSM) and Workshop. IEEE,
2014, pp. 418–423.

[4] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[5] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with dead-
line and budget constraints,” in 2010 11th IEEE/ACM International
Conference on Grid Computing. IEEE, 2010, pp. 41–48.

[6] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online vnf scaling
in datacenters,” arXiv preprint arXiv:1604.01136, 2016.

[7] Y. Li, L. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE International Conference on
Computer Communications (INFOCOM), 2016.

[8] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end guarantees
in distributed real time systems,” in Proceedings of the 15-th IEEE
Real-Time Systems Symposium, Dec. 1994, pp. 215–227.

[9] S. Jiang, “A decoupled scheduling approach for distributed real-time
embedded automotive systems,” in Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2006,
pp. 191–198.

[10] N. Serreli, G. Lipari, and E. Bini, “Deadline assignment for
component-based analysis of real-time transactions,” in 2nd Workshop
on Compositional Real-Time Systems, Washington, DC, USA, Dec.
2009.

[11] ——, “The demand bound function interface of distributed sporadic
pipelines of tasks scheduled by EDF,” in Proceedings of the 22-nd
Euromicro Conference on Real-Time Systems, Bruxelles, Belgium, Jul.
2010.

[12] S. Hong, T. Chantem, and X. S. Hu, “Local-deadline assignment
for distributed real-time systems,” IEEE Transactions on Computers,
vol. 64, no. 7, pp. 1983–1997, Jul. 2015.

[13] P. Jayachandran and T. Abdelzaher, “Delay composition algebra: A
reduction-based schedulability algebra for distributed real-time sys-
tems,” in Proceedings of the 29-th IEEE Real-Time Systems Sympo-
sium, Barcelona, Spain, Dec. 2008, pp. 259–269.

[14] D. Henriksson, Y. Lu, and T. Abdelzaher, “Improved prediction for
web server delay control,” in Proceedings of the 16th Euromicro
Conference on Real-Time Systems, Jun. 2004, pp. 61–68.

[15] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso,
“Assessing the performance of virtualization technologies for nfv: a
preliminary benchmarking,” in 2015 Fourth European Workshop on
Software Defined Networks. IEEE, 2015, pp. 67–72.

[16] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing,
ser. SoCC ’12. New York, NY, USA: ACM, 2012, pp. 9:1–9:14.
[Online]. Available: http://doi.acm.org/10.1145/2391229.2391238

[17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” arXiv preprint arXiv:1411.1607,
2014.

[18] (2016, 10). [Online]. Available: https://aws.amazon.com/


