
17 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Compositional Blocks for Optimal Self-Healing Gradients

Publisher:

Published version:

DOI:10.1109/SASO.2017.18

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1655254 since 2018-12-16T18:30:55Z

This is the author's version of the contribution published as:

Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Mirko Viroli. Compositional Blocks for Optimal Self-

Healing Gradients. 2017. Proceedings - 11th IEEE International Conference on Self-Adaptive and Self-

Organizing Systems, SASO 2017, 9 October 2017, Article number 8064033, Pages 91-100.

DOI: 10.1109/SASO.2017.18

The publisher's version is available at:

http://ieeexplore.ieee.org/document/8064033/

When citing, please refer to the published version.

The final publication is available at

http://ieeexplore.ieee.org

http://ieeexplore.ieee.org/document/8064033/

Compositional Blocks for Optimal Self-Healing
Gradients

Giorgio Audrito∗, Roberto Casadei†, Ferruccio Damiani∗ and Mirko Viroli†
∗Computer Science Department and C3S, University of Torino

Email: {giorgio.audrito, ferruccio.damiani}@unito.it
†DISI Department, University of Bologna

Email: {roby.casadei, mirko.viroli}@unibo.it

Abstract—With the constant increase in the number of in-
terconnected devices in today networks, and the high demand
of adaptiveness, more and more computations can be designed
according to self-organisation principles. In this context, a key
building block for large-scale system coordination, called gradi-
ent, is used to estimate distances in a fully-distributed way: it is
the basis for a vast variety of higher level patterns including
information broadcast, events forecasting, distributed sensing,
and so on. However, computing gradients is very problematic in
mobile environments: the fastest self-healing gradient conceived
so far (called BIS) achieves a reaction speed proportional to
the single-path speed of information in the network. In this
paper we introduce a new gradient algorithm, SVD (Stale Values
Detection) gradient, which uses broadcasts to reach a reaction
speed that is equal to the multi-path speed of information, namely,
the fastest speed possibly achievable by network algorithms.
We then combine SVD with other blocks (metric correction,
smooth filtering, BIS gradient, information damping) proposing
a composed block called ULT(imate) gradient. We evaluate the
resulting algorithm and compare it with other approaches,
showing it scores best both on accuracy and smoothness while
keeping communication cost under control.

Index Terms—adaptive algorithm; aggregate programming;
computational field; gradient.

I. INTRODUCTION

With the constant increase in the number of interconnected
devices in today networks, more and more computations are
carried on by an infrastructure involving a heterogeneous,
potentially large, and very reactive set of computational nodes,
each coupled with physical environment and providing sensing
and actuation to interact with it. The technological landscape
of such systems, as well as their high demand of adaptive-
ness and openness, call for the adoption of self-organisation
principles in system design: there, one has to find proper
abstractions and techniques to turn global-level requirements
and properties into individual-level behaviour. In this setting,
single computational devices have a partial knowledge of
system and environment, and systematically share it with
others in their (logical or physical) context or neighbourhood
to globally co-create a faithful spatio-temporal representation

This work is partially supported by project HyVar which has received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644298, by ICT COST Action IC1402
ARVI, and by Ateneo/CSP project RunVar.

of the “distributed state” of computation, on top of which
collective adaptive behaviour can be achieved.

Several frameworks were proposed to ground this approach
with models and tools facilitating system construction, one
survey of which may be found in [1]. For goals and proposed
paradigm they can be divided in different groups: works
abstracting from device interaction and making it implicit
in the distributed computational model (e.g., TOTA [2] and
Hood [3]), information systems tackling the problem of read-
ing/streaming/writing space-time regions of sensed data (e.g.,
KQML [4] and TinyDB [5]), approaches seeking at defining
geometric and topological constructions (e.g., ASCAPE [6]
and Origami Shape Language [7]), works considering com-
putation as transformation of space-time data structures (e.g.,
Protelis [8], Proto [9], and MGS [10]), and finally attempts to
devise catalogues of bio-inspired patterns [11]–[13].

On the one hand, these works suggest that self-organisation
can be engineered by a compositional approach, where
reusable distributed algorithms or components, providing basic
functionalities, are safely composed to construct more and
more complex and specialised behaviour, from low-level gen-
eral libraries to application-specific services [14]. In particular,
one of such blocks, called gradient (widely used, e.g., in
[2], [8], [9], [11]), grounds a significant set of distributed
collective systems. It is used to create a global distributed data
structure to estimate distances in a fully-distributed way, and it
is the basis for a vast variety of higher level patterns including
information broadcast, events forecasting, distributed sensing,
steering mobile actors in physical environments, and so on.

On the other hand, previous works also show that non-
functional properties seriously affect the attempt at finding
good implementations of such components [15]. In general,
networks of devices deployed in space easily result in very dy-
namic scenarios, featuring continuous nodes mobility, changes
in the shape of network topology, temporary and permanent
faults, noisy perception of sensors, and so on. Altogether,
these factors can make it very complicated to reach a stable
and faithful representation of global knowledge. In general,
one seeks for solutions where the computational systems can
properly trade off reactiveness to changes with the resources
devoted to intercept and execute adaptation.

As a paradigmatic example, computing gradients is very

problematic in mobile environments: the classical approach of
iterating the triangle inequality [16] suffers from speed prob-
lems when estimating increasing distances, and with reactive-
ness problems with mobile networks, which are only partially
alleviated by the solutions proposed so far (e.g., by Beal [16],
[17]); more recently, the BIS (Bounded Information Speed)
gradient algorithm has been proposed by Audrito et al. [18] to
optimise gradient self-healing, by achieving a reaction speed
proportional to the single-path speed of information in the
network.

In the path towards finding an “ultimate” implementation for
gradients, providing tunable performance in diverse situations,
we introduce a new gradient algorithm, SVD (Stale Values
Detection) gradient. It uses broadcasts to reach a reaction
speed that is equal to the multi-path speed of information,
namely, the fastest speed possibly achievable by network algo-
rithms. We then combine SVD with other blocks (metric cor-
rection, smooth filtering, BIS gradient, information damping)
proposing a composed block called ULT gradient, acting as a
candidate reference implementation for gradients in libraries
of reusable components of distributed system behaviour.

We evaluate the resulting algorithm and compare it with
other approaches, showing it scores best both on accuracy and
smoothness while keeping communication cost under control.

The remainder of this paper is organised as follows: Sec-
tion II reviews aggregate programming and the field calculus,
which give a ground to formalise the proposed algorithms,
Section III discusses existing gradient algorithms, Section IV
develops SVD algorithm and states its optimality, Section V
defines ULT gradient by composition of various blocks, Sec-
tion VI empirically evaluates ULT and compares it with other
approaches, and Section VII concludes with final remarks.

II. AGGREGATE PROGRAMMING AND FIELD CALCULUS

The gradient algorithms discussed in this paper can be
implemented on top of a variety of computational models
and frameworks: it is only assumed that devices work asyn-
chronously and can interact with neighbours via broadcast-
like communication. In presenting motivations, design and
technical details, though, we shall use aggregate programming
[14] as a sort of common model, a lingua franca with formal
semantics, succinctly expressing the required mechanisms and
algorithms.

Aggregate programming is an approach for designing re-
silient distributed systems by abstracting away from individ-
ual devices behaviour and focusing on the global, aggregate
behaviour of the collection of all (or a subset of) the devices.
This approach provides smooth composition of distributed
behaviour, allowing the development of highly reusable “build-
ing block” operators capturing common coordination pat-
terns [19], thus raising the abstraction level and allowing
programmers to work with general-purpose functionalities or
user-friendly APIs capturing common use patterns. These
building blocks may have several possible implementations,
equivalent for their “functional” behaviour but differing in
their performance and resilience properties. The choice of a

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ e(e)
∣∣ if(e0){e1}{e2}∣∣ rep(e){(x)=>e}

∣∣ nbr{e} expression

v ::= φ
∣∣ ` value

φ ::= δ 7→ ` neighbouring field value

` ::= c(`)
∣∣ f local value

f ::= b
∣∣ d

∣∣ (x)=>e function value

Fig. 1. Syntax of Field Calculus.

“best” implementation may depend on the specific application
contest at hand, thus suggesting a recently proposed [19] two-
phases engineering workflow where (i) a specification is first
implemented by composing “building blocks”, and then (ii)
the implementation is tuned by substitution of functionally
equivalent but higher-performance coordination mechanisms.
Proposing and evaluating different alternatives for the gradient
block would be the matter of this work.

A. Field Calculus

The Field Calculus is a tiny functional language for formally
and practically expressing aggregate programs: a detailed
account of it is given in [20]—we hereby recollect its most
basic characteristics in order to be able to use it as common
language to express the algorithms used in this paper with
actual executable code.

In field calculus (see Fig. 1) a program P consists of a
sequence of function declarations F and of a main expression
e—following [21], the overbar notation denotes metavariables
over sequences: e.g., e ranges over sequences of expressions
e1, . . . , en with n ≥ 0. On each device δ the expression e

evaluates to a value v that may depend on the state of δ (values
sensed by δ, the result of previous evaluation, and information
coming from neighbours). Therefore the expression e induces
a computational field Φ, which can be represented as a time-
varying map δ1 7→ v1, . . . , δn 7→ vn, assigning a value vi to
each device δi in a network. Each device δ updates its value
(by evaluating e) in asynchronous computational rounds. The
syntax of an expression comprises the following constructs:
• a variable x, used as function formal parameter;
• a value v, which in turn could be either a neighbouring

field value φ (associating to each device a map from
neighbours to local values—allowed to appear in inter-
mediate computations but not in source programs), or a
local value (built-in functions b, user-defined functions d,
anonymous functions (x)=>e, or plain values—numbers,
literals, tuples and so on);

• a function call e(e) where an expression of functional
type e is applied by-value to arguments e1, . . . en;

• an if-expression if(e0){e1}{e2}, modelling domain
restriction, which computes e1 in the devices where e0

is true, and e2 on the others;
• a rep-expression rep(e1){(x)=>e2}, modelling time

evolution and state preservation, which evaluates an ex-

3.3

1.5

0

3.1

6.5

2.9

5

02.7

1.9

3.3

0.8

1.5

2.5

2.7

4.1

3.5

0.2

3.6

2.1

2.9

Fig. 2. Gradient computed in a sample network with two source devices.

pression e2 on a device δ by substituting the variable x

with the value calculated for the whole rep-expression
at the previous computational round on δ—in the first
computation round on δ (as well as in any computational
round on δ that comes immediately after a computational
round on δ where the rep-expression has not been
evaluated)1 x is substituted with the value of e1;

• or an nbr-expression nbr{e}, modelling neighbourhood
observation and producing a neighbouring field value that
represents an “observation map” of neighbour’s values for
expression e, namely, associating to each device δ (that
has evaluated nbr{e} during its last update)2 a map from
neighbours to their latest evaluation of e.

In order to conveniently present the code of the algorithms,
we extend the calculus with few additional constructs, which
can be defined as syntactic sugar in terms of the presented
ones: let-binding expressions let x = e1 in e2 (operationally
equivalent to ((x)=>e2)e1), binary operators in infix notation,
and the notation [e1, . . . , en] for tuples.

III. GRADIENT ALGORITHMS

A fundamental “building block” commonly considered in
several frameworks for self-organisation is the so-called gra-
dient computation [16], which amounts to computing short-
est paths from all nodes to a given set of source nodes,
through a fully distributed process to be iteratively executed
to promptly react to any change in the environment. Gradients
are known to be a basic building block for self-organising
coordination [11], [17], [22]–[24], being frequently used for a
variety of purposes: to broadcast information, forecast events,
dynamically partition networks, ground distributed sensing,
anticipate future events, and to combine into higher-level
spatial structures [1].

Due to their usefulness, gradients have been studied in
many different contexts: in particular, when local estimation of
distances is available [16]–[18] and when it is not [22], [25],
[26]. In the remainder of this paper we shall focus on the first
case, thus assuming that local device-to-device estimation of
distances is always available.

A. Classic Gradient

In its most basic form the gradient can be calculated
through an algorithm, that we call classic gradient, starting

1For instance, if the main expression is if(e0){rep(e1){(x)=>e2}}{e3},
then a computational round on a given device δ evaluates rep(e1){(x)=>e2}
if and only if e0 evaluates to true in that computational round.

2For instance, if the main expression is a an if-expression
if(e0){e1}{e2} and the expression nbr{e} occurs the left branch
e1, then the neighbours of δ such that e0 evaluated to false in their last
computational round are not considered.

with G(δ) =∞ everywhere except for sources where G(δ) is
constantly 0, hence applying the triangle inequality constraint:

G(δ) = min{G(δ′) + w(δ′, δ) : δ′ linked with δ}.

Written in field calculus, it would be a function taking a 0-
ary function metric which computes a field of distances
with neighbours, and a value source appointing source
devices, represented as the “gradient estimate in absence of
communication links” (thus source should be 0 for source
devices and ∞ for all the others):
def classic(source, metric) {// has type: (float, ()→field(float)) → float
rep (infinity) { (dist) =>
mux(source==0){minhood(nbr(dist) + metric())}}}

Repeated fair application (i.e., each device updates infinitely
often) of this calculation in a fixed network will converge to
the correct value at every point [27]. However, the performance
of this algorithm in a mutable environment is impaired by three
main limitations [18].

First, there can be a speed bias: if devices are continuously
moving, the values produced by the algorithm are typically an
underestimation, with an error that increases with the move-
ment speed—a phenomenon observed also in those contexts
where local distance estimates are not available [22]. Second, it
suffers from the rising value problem (also known as count-to-
infinity in the context of routing algorithms [28]): in response
to changes in the network, the algorithm can rapidly correct
values that need to drop, while it is very slow in correcting
values that need to rise, badly underestimating distances for
long periods of time after such changes—the rising speed of
this algorithm is bounded by the distance between the pair of
closest devices [16]. Third, there is an issue of smoothness:
in the presence of error in distance estimates, flickering in the
output values might be reduced by avoiding strict use of the
triangle inequality. Moreover, if distance estimates are used
for an higher-order coordination mechanism (e.g., for moving
values towards sources by “descending” the shortest-paths
tree obtained from the gradient), then each variation in the
estimates can change the resulting connection tree, effectively
disrupting the outcome of the coordination for some time.

In order to overcome these limitations, several refined algo-
rithms have been proposed, two of which are briefly discussed
in the following for they contribute in the definition of ULT
gradient: Beal’s FLEX gradient (Flexible) [17] and Audrito et
al.’s BIS gradient (Bounded Information Speed) [18].

B. FLEX Gradient and Information Damping

The FLEX gradient [17] is designed to improve smoothness
through application of a “filtering function” to the outcome of
the minimisation, which reduces changes while granting an
overall error of at most a given parameter ε. Assume that we
are repeatedly computing a value by selecting a corresponding
neighbour’s value and adding to it a certain differential ∆
(e.g. a metric in a gradient computation). According to this
viewpoint, we can define (a simplified version of) FLEX as a
damping function F , taking as arguments the old value vold,

the new value vnew, and the differential ∆; and as parameters
an allowed error ε and a time period T .

F (vold, vnew,∆) =

vnew if vold > 2vnew, vnew > 2vold,

or T elapsed since a change
vnew + ε∆

2 if vold > vnew + ε∆

vnew − ε∆
2 if vold < vnew − ε∆

vold otherwise

Since a maximum distortion of ε is allowed for the differential
∆, the total error introduced by the damping is also bounded
by ε. Since the result of damping changes only when violating
the maximum error (or every T time, for finer adjustments),
volatility of values is reduced and communication costs can
also be possibly reduced, assuming that only changing values
are broadcast to neighbours (thus absence of a broadcast is
interpreted as a steady value).

Although outperformed by the following BIS gradient, the
technique used by FLEX can also be understood as a plug-
in applicable to many gradient-like computations, granting
reduction of communication cost and volatility at the expense
of a controlled increase in error.

C. BIS Gradient

The Bounded Information Speed (BIS) gradient improves
over the classical gradient and FLEX by enforcing a minimum
information speed v requested by the user [18]. As long as
v does not surpass the average single-path communication
speed, the algorithm is able to compute correct estimates of
the gradient with increased responsiveness. Values of v that
are too much higher induce a metric distortion, causing the
algorithm to overestimate values.

For each device in the network, we compute both the usual
gradient estimate G(δ) and a lag estimate L(δ), representing
the time elapsed since the message initially spread from a
source. Lags are estimated through local time differences,
so that no overall clock synchronisation is required. When
considering a candidate neighbour δ′ of a device δ, the time
lag relative to this neighbour is:

L(δ, δ′) = L(δ′) + λ(δ′, δ)

where λ(δ′, δ) is the lag of the message from δ′ to δ. We
then take into account this value when calculating the gradient
estimate relative to this neighbour:

G(δ, δ′) = max {G(δ′) + w(δ′, δ), vL(δ, δ′)− r}

where w is the distance between devices and r is the com-
munication radius. This formula accounts to assuming that
messages propagate at least at speed v, so that the gradient
estimate is lower bounded by vL(δ, δ′) (with the additive
constant −r to ensure that some error is taken into account).

The overall estimates of G(δ) and L(δ) for non-source
devices are then obtained by minimising G(δ, δ′) over neigh-
bours (we assume that pairs are ordered lexicographically):

[G(δ), L(δ)] = min{[G(δ, δ′), L(δ, δ′)] : δ′ linked with δ}

The performance of BIS gradient can be theoretically de-
termined, and proved to be optimal among algorithms with
a single-path information flow whenever the parameter v is
close to the average single-path information speed.

Theorem 1 (BIS Performance Bound [18]). Information speed
in BIS gradient, calculated w.r.t. the gradient estimates, is at
least v. Furthermore, values constrained by obsolete informa-
tion increase at least at speed v.

Theorem 2 (BIS Optimality [18]). The BIS gradient with
v equal to the average single-path information speed vavg

attains optimal reactivity among algorithms with a single-path
information flow.

It is thus crucial to correctly determine the average single-
path information speed vavg of a network, in order to achieve
the best performance. In [18] an estimate of the average infor-
mation speed over a single hop is given. Over multiple hops,
speeds do not simply add up: in fact, the expected single-path
information speed changes and can be better approximated
by the easier (experimentally verified) formula vavg = R/3T
where R is the average communication radius and T is the
average interval between computation rounds. It follows that
if R and T are known to the self-organising system designer,
vavg can be readily calculated. If they are not available, or
cannot assumed to be constant throughout the system’s life,
they can still be computed by a simple aggregate program:
e.g., by Laplacian averaging over the maximum distance and
average time interval measured.

IV. SVD GRADIENT

Since BIS gradient is optimal among algorithms with a
single-path information flow, to obtain a faster self-healing
algorithm it is necessary to use some form of multi-path
communication, namely, where the value at a device is con-
structed by the result of flows coming from different paths
connecting to the source. This intuition leads us to the SVD
(Stale Values Detection) gradient, which detects obsolete
information through broadcast of time data, propagating a
“reconfiguration” message whenever such situation occurs
(through broadcast as well). In fact, SVD gradient behaves
as the classic gradient until an “error” is detected and fast
reconfiguration occurs; thus differing from BIS gradient which
gradually adapts to network changes.

SVD has the same inputs source and metric of classic
gradient seen in previous section, but it rather calculates four
values in each device:
• x, the distance estimate;
• sid, the identifier of the source device from which

distance x is attained;
• t, the multi-path time interval from source sid; i.e., the

interval between the device’s current time and the most
recent information from sid that reached the current
device through broadcast;

• obs, whether the current values have been detected as
obsolete and thus should not be used to calculate other
device’s values.

These values are updated in a rep statement, combined into
a single tuple old = [x,t,sid,obs], where only x is
finally returned by the algorithm (by operator 1st extracting
the first component):
def SVD(source, metric) { // has type: (float, ()→field(float)) → float
let loc = [source, source, uid, false] in
1st(rep (loc) { (old) =>
let xs = minhood(mux(

nbr{4th(old)} and anyhood(nbr{not 4th(old)}),
[source,uid], [nbr{1st(old)}+metric(),nbr{3rd(old)}]

)) in
let t = minhood(mux(nbr{3rd(old)} != 2nd(xs),

source, nbr{2nd(old)} + lagmetric()
)) in
let loop = 2nd(xs) == uid and 1st(xs) < source in
let obsolete = detect(time()-t) or loop or anyhood(

nbr{4th(old)} and nbr{3rd(old)}==2nd(xs) and
nbr{2nd(old)}+lagmetric() < t+0.0001

) in
min(loc, [1st(xs), t, 2nd(xs), obsolete])

})
}

The code above computes the tuple loc and then uses it as
initial value for the old variable in the rep-expression. Both
x and t are distances (spatial and temporal, respectively) from
the source, thus their initial values are the same: ∞ if there
are no sources, and 0 if the device is a source. The body of
the rep-expression performs the following steps:
• First, the new values for x and sid are calculated

together into variable xs. This step follows the classic
gradient calculation, thus minimising neighbours’ values
for x plus their relative distance, but discarding neigh-
bours where obs is true (unless obs is true for all
neighbours).

• Then, the most recent information t for the new sid
is retrieved through minimising neighbours’ values for t
plus their relative time distance, discarding neighbours
with a different sid.

• Finally, it is computed in obsolete whether the newly
produced information is to be considered obsolete. This
happens in three cases:

– if any neighbour with the same sid and a t not
older than the device’s one3 has already been claimed
obsolete (anyhood expression);

– if the device’s value happens to be calculated
from itself (i.e. sid is the device itself), with a
value smaller than the one currently determined by
source;

– if function detect realises that the time time()−
t when the currently used information started from
sid is too old to be reliable.

Function detect is the heart of the algorithm, being
responsible to kick-start the reconfiguration process.
def detect(time) { // has type: float → boolean
let repcnt = rep (0) { (old) =>
if (abs(time-delay(time)) < 0.0001) {

old + deltatime()
} {0}

} in
repcnt > 3rd(rep ([0, 0, 0]) { (old) =>

3That is, adding the neighbour’s t with the relative time distance, we obtain
an interval not longer than the current t.

if (repcnt > 0) { old } {
let avg = 0.9*1st(old) + 0.1*delay(repcnt) in
let sqa = 0.9*2nd(old) + 0.1*sqr(delay(repcnt)) in
let dev = sqrt(sqa - sqr(avg)) in
[avg, sqa, avg+7*dev]

}
})

}

This function keeps track into repcnt of how much time is
elapsed since the first time the current information (originated
from the source in time time) reached the current device:
if time is the same as its previous value delay(time),4

the time interval deltatime() between the current time and
the previous round is added to the counter, which is reset
otherwise. If a source device sid gets disconnected from
the network, all the repcnt values of devices dependent on
sid constantly increase; while in a regular situation they raise
and reset randomly, approximately according to an exponential
distribution.

Function detect then raises an alert whenever repcnt
reaches a value that is unlikely to happen according to its
previously measured behaviour. This is checked by tracking:
• avg, an estimate of the average peak value for repcnt;

obtained by exponentially filtering with a factor 0.1 the
peak values of repcnt (obtained as delay(repcnt)
when repcnt is reset to 0);

• sqa, an estimate of the average square of repcnt peak
values, obtained by an analogous exponential filter.

From them the standard deviation σ can be calculated as√
sqa− avg2, and a bound is set to avg+7σ. Under an ex-

ponential distribution assumption, this bounds corresponds to
the 1−e−8 ' 99.97% quantile (under a normality assumption
would correspond to approximately the 1 − 10−12 quantile).
The mean and square-mean estimators are initially set to 0, in
order to avoid need of an additional parameter; which implies
that alerts are continually raised for some rounds on network
start-up. This could be avoided by setting the initial value to
any reasonable value (such as [2T, 8T 2, 16T] where T is the
average time interval between rounds).

A. Expected Performance and Parameters Estimation

Thanks to its multi-path communication structure, SVD
gradient can attain a globally optimal performance.

Theorem 3 (SVD Optimality). SVD gradient attains optimal
reactivity on input discontinuities, reaching multi-path reac-
tion speed, modulo a fixed delay ` which depends on some
network configuration parameters.

Proof. When a new source is connected, reaction speed is
multi-path for any gradient algorithm: values are recomputed
towards the new source using every possible available path.
Assume that a source s is disconnected in time t0, and let
δ be the device holding the smallest bound ` computed in
function detect, among devices depending on s. The time
information originating from s in t0 reaches δ at multipath

4Function delay(v) is a simple building block which returns the same
values it receives in input delayed by one computation round.

metric

gradient 1

damper 1

. . .
gradient n

damper n

max

filter

Fig. 3. How the different blocks are composed (arrows represent data flow).

speed, since time distance is calculated through minimising
among every neighbour (i.e., broadcasting). After that moment
t1, the temporal distance estimate in δ raises constantly as
t = tcur − t0.

When t overcomes t1 + `, function detect has been fed
with the same reference time tcur − t = t0 for ` time, thus
repcnt > ` and an alert obs is raised. The alert information
propagates on every possible path as well, until reaching the
border of the region depending on s; then information bounces
back again at multi-path speed recomputing distances using
other sources.

Thus information travels from the source to the border of the
region (and back) at multi-path speed, covering a space that
is equal to the amount which the gradient estimates needs to
rise, except for ` time during which the algorithm is waiting
for an alert: in other words, reconfiguration is happening at
multi-path speed with a delay `.

Thus, the average delay ` corresponds to the average “lowest
bound computed by detect” on devices connected to a
source. Extensive simulations revealed that those bounds were
always below 2T + 8σ + 8vT 2/R + dT/

√
N , where T is

the average time interval between rounds, σ is the standard
deviation of time intervals, v is the average movement speed
of devices, R is the average communication radius, N is the
average number of neighbours, and d is the current gradient
estimate. Bounds tend to increase with the distance from the
source, as reflected by term d√

N
T . However, since the delay

corresponds to the lowest bound in the region, this term can
be ignored obtaining a bound for ` of 2T + 8σ + 8vT 2/R.
The average value for ` is practically much lower due to
the minimisation, even if quite difficult to estimate precisely
(usually between T and 5T , that is, between 1 and 5 rounds).

V. COMPOSITE GRADIENT

In Section III we presented several issues about gradient
computations. In order to fully solve these issues, it is neces-
sary to combine different techniques altogether:

• metric correction, in order to prevent the speed bias;
• output filtering, in order to improve smoothness;
• combining fast self-healing algorithms, in order to react

to input discontinuities and network changes;

• FLEX-style damping, in order to decrease communication
cost and improve smoothness (at the expense of some
controlled error).

We now present original techniques addressing all these points,
in some cases built upon existing ones. These techniques can
be combined together (as depicted in Fig. 3) to form an “ulti-
mate” gradient algorithm, which we call ULT gradient, where
each of this components can be tuned (or even deactivated)
depending on the application context.

A. Metric Correction

When devices are moving, classical gradient algorithms
systematically underestimate values according to the so-called
speed bias. This is due to the fact that metric estimates are
calculated in a specific time, and then applied to compare
events happening in different times. More precisely, taking
the field calculus setting as reference:
• the metric estimate is computed at time t1 when device
δ1 sends his message to device δ2;

• it is used in the following update event in δ2, happening
at some time t2 > t1;

• it relates to data produced in the preceding update event
in δ1, happening at some time t0 < t1.

Thus the distance between the relevant update events in δ1
and δ2 is not correctly measured, introducing some random
error which results in systematic underestimation due to the
“minimisation” nature of gradient algorithms.

This issue can be completely solved in presence of GPS
data, where distance between events can be computed exactly
by comparing absolute positions, as in function gpsrange.
def gpsmetric() { // has type: () → field(float)
let pos = coordinates() in
norm(pos - nbr{delay(pos)}) }

Even if GPS data is not available, but some form of speed
estimation is available (either in terms of sensors or pre-
computed constants), we can modify the metric in order to
guarantee that distances are never underestimated.
def speedmetric(speed) { // has type: float → field(float)
nbr{speed*deltatime()} + nbrrange() + speed*nbrlag() }

In speedmetric, the built-in metric nbrrange (giving a
map from neighbours to estimated distances) is adjusted both
by the space travelled by neighbour devices in their last round
(left) and by the space travelled by the current device since
the metric data was received (right). Thus, it is guaranteed
to produce overestimates of real values, which turns out in a
drastically improved precision (also due to the “minimisation”
carried by gradient algorithms).

B. Smooth Filtering

In order to improve smoothness, it is possible to directly
smooth the output of a gradient algorithm with filters. The
most common type of filters, exponential filters (e.g., the one
used in function detect, Section IV) indeed succeed to
drastically improve smoothness, and its use can be suggested
in nearly-static environments. However, if devices are moving

significantly, exponential filters tend to delay the gradient
adjustments thus producing a significant increase in error. An
alternative approach is given by the following inertial filter,
which is able to improve smoothness with lower error increase.
def inertialfilter(val, factor) { // has type (float,float) → float
let dt = deltatime() in
let at = expfilter(dt, factor) in
let ad = expfilter(abs(val - delay(val)), factor) in
rep (val) { (old) =>
if (isfinite(old)) {

let v = sign(val-old)*min(abs(val-old)/dt,ad/at) in
old + v * dt

} {val}
}

}

This function proceeds in the following steps:
• firstly, an estimate at of the average time interval be-

tween rounds deltatime() is kept through exponential
filtering (represented by function expfilter);

• an estimate ad of the average value change between
rounds is obtained through exponential filtering as well;

• these two estimates are combined into a “change speed”
estimate vavg = ad/at, and the current value change is
slowed down to vavg if needed.

Notice that a uniform linear value change is followed closely
by the inertial filter without a delay; and as the given factor
approaches 0, the filter smooths out values to a uniform linear
change. In fact, in a variable environment with significant
movement speeds, uniform linear change can be regarded as
the smoothest possible behaviour.

C. Self-Healing Algorithms

In order to obtain correct values at all times, it is crucial
for the underlying gradient algorithms to attain fast reaction
speeds. Audrito at al. [18] showed that BIS gradient is able to
outperform both classic, CRF and FLEX gradients under any
environment and input conditions (see Section III-C). In Sec-
tion IV we presented SVD gradient, and argued that it is able
to attain an optimal reaction speed on input discontinuities,
even faster than that of BIS. However, it is not true that SVD
outperforms BIS under any environment and input conditions.
• BIS instantly reacts to input changes with continuous

small adjustments; whereas SVD behaves like the classic
gradient until a sudden reconfiguration happens, thus
having worse values in the start-up phase and worse
smoothness overall. On the other hand, SVD values be-
come more precise for some time after a reconfiguration.

• In networks with low device density and space/time
variability, multi-path information speed can be very
close to single-path information speed; possibly reducing
SVD advantage to being negligible. On the other hand,
dense networks with variability can have very different
multi-path and single-path speeds.

• Finally, SVD is more resource-demanding than BIS due
to a more complex code.

It follows that whenever resource consumption is strictly
bounded, or the network has low density and variability, BIS
is overall preferable. In all the other cases, it is advisable to

take the “best” from both algorithms, as in the following ULT
gradient.
def ULT(source, metric, radius, speed, factor) {

// has type (float, ()→field(float), float, float, float) → float
let svd = SVD(source, metric) in
let bis = BIS(source, metric, radius, speed) in
inertialfilter(max(svd, bis), factor)

}

Through maximising between BIS and SVD gradients, ULT
is able to instantly react to continuous small adjustments,
snapping up to correct values when input discontinuities are
detected, thus always outperforming both BIS and SVD (at the
expense of an increased code complexity/resource demand).

In the above code and in the remainder of the paper, we
assume that ULT gradient also incorporates metric correction
and smooth filtering, in order to achieve the best results under
every environment and input conditions.

D. FLEX-style Damping

In Section III-B we pointed out that FLEX gradient [17]
can be seen as a “damping” plug-in F for gradient-like
computations [18]. It can thus be applied to BIS, SVD and
ULT, both for their spatial components (e.g., x in SVD) and
for their temporal components (e.g., t in SVD), obtaining
improved smoothness and reduced communication costs.

VI. EMPIRICAL EVALUATION

In order to compare the performance of the different
gradient algorithms presented in this paper, we chose an
environment able to trigger the issues presented in Section
III (speed bias, rising value, smoothness). Following the
guidelines presented by Audrito et al. [18], we thus tested
the following scenarios.
• Environment: we initially put 1000 devices with commu-

nication radius 10m and average update rate 1s randomly
into a 500m × 20m corridor, producing a network 50
hops wide. We tested this environment with increasing
variability and noise both in space and in time. Several
conducted tests revealed that the effect of increasing
variability or noise (both in space or in time) is similar, so
we decided to report graphs with simultaneously increas-
ing variability of both types. We ranged the parameter
from 0 (no movement, uniform update rate) to 1 (long
range movements together with high-frequency Brownian
motion, 50% relative standard error in update rate be-
tween different devices plus another 50% in each device).
We modelled randomly distributed events according to a
Weibull distribution [29].

• Input: we provided the algorithms with two sources,
steadily located on both ends of the corridor until time
200, when the left source was abruptly disconnected. In
this way, reaction to discontinuous input is measured (in
the middle of the graphs) as well as behaviour under
constant input (at the sides of the graphs).

• Output: for each scenario we measured precision as abso-
lute error w.r.t. Euclidean distance, stability (or smooth-
ness) as the absolute acceleration of values (i.e., the

Fig. 4. Performance comparison between gradients algorithms. Variability levels (both in space and time) range from 0 (top) to 1 (bottom). In each environment,
we measured absolute error (left), stability of values (centre) and communication cost as number of exports (right). In each graph, we can see the impact of
input discontinuity (at time 200) as well as behaviour under steady conditions (sides of each graph).

absolute value of the second derivative of the computed
gradient values), and communication cost as the number
of values exchanged with neighbours (assuming that
steady values do not need to be broadcast).

A. Impact on gradient formation

Figure 4 summarises the evaluation results, which were
obtained (like all the experiments reported in this paper)
with Protelis [8] (an incarnation of the Field Calculus [20])
as programming language to code the model, Alchemist as
simulator [30] and the Supercomputer OCCAM [31] to run
the experiments. We tested classic, BIS with and without
speed bias correction (1.5vavg speed parameter), SVD with
parameters auto-tuning, ULT with and without FLEX damping
(20% damping tolerance, 0.2 filter factor). We run 20 instances
of each scenario with different random seeds and averaged
the results, which had a 16% relative standard error among
them—thus not affecting the result of our evaluation.

The addition of speed bias correction allowed to virtually
eliminate the systematic error both on algorithms BIS and
SVD (and their combination ULT). SVD becomes increasingly
faster than BIS in recovering from discontinuities as variability
increases, and the response delay of SVD proves to be

unnoticeable from the graphs. ULT is able to fully match
the performance of SVD: the filtering factor 0.2 does not
introduce significant additional error. SVD has the worst peak
in stability, which is effectively mitigated by the filter included
in ULT; so that ULT achieves the better stability scores in
high variability scenarios. FLEX damping allows to further
slightly improve stability and reduce communication cost, at
the expense of a predictable systematic error: a trade-off which
might still be convenient when the gradient values are used to
directing information flows (see Section VI-B).

In order to better analyse the conditions under which SVD
becomes preferable than BIS, we also run tests on these two
algorithm while varying parameters of the environment:

• Length. We varied the length of the corridor from 250m
to 1500m, while keeping density fixed (thus varying the
number of devices from 500 to 3000).

• Radius. We varied the communication radius of devices
from 5m to 15m.

Simultaneously, we also considered variabilities from 0 to 1 as
in the previous graphs. We run 10 instances of each scenario
with different random seeds and averaged the results, which
had a 3.7% relative standard error among them. The results are

Fig. 5. Performance comparison between BIS and SVD gradients, varying length of the corridor (top) and communication radius (bottom), under variabilities
from 0 (left) to 1 (right). Each point measures the average total error from time 0 to 500.

Fig. 6. Values for node counting with different gradient algorithms, taken
after disconnection of a source (sink), for different variability levels.

reported in Fig. 5. As already shown in the previous graphs,
an increase in variability gives advantage to SVD. The length
of the corridor does not influence the relative performance of
the two algorithms. The communication radius, instead, has a
larger impact: when it is too low, multi-path communication
reduces to single-path giving advantage to BIS; when it is
higher SVD error converges towards 0 while BIS is not
noticeably influenced.

B. Evaluation of Gradients as Components

In order to better grasp the impact of the various algorithms
we now consider a main application of gradients, namely, as
carriers for distributed sensing. From a sink/source node one
can spread a gradient, used as “potential field”, and let all
nodes send the values they sensed downward such a field,
combining with others en route, until reaching the target and

hence resulting there in the outcome of distributed sensing.
As described in detail in [19] (so we omit the code here),
this can be obtained by orthogonally stacking C component
(convergent-cast) on top of a gradient. Intuitively, the ability
of a gradient algorithm to promptly and resiliently construct
such a potential field is essential for the efficient operation of
C and the stabilisation of its results—i.e., for limiting errors
in the values collected at the sinks.

Starting from the scenario described in Section VI-A, we
make the sink count the number of overall nodes in the
system—a paradigmatic case of distributed sensing where
each device senses value 1, and en route combination is by
mathematical sum. We analyse the impact of four versions of
the gradient – namely classic, BIS, ULT, and ULT-damped –
by comparing their resulting total count with the ideal value.
Counts are averaged in the time-frame [200, 400] (i.e., shortly
after the input discontinuity), variability is kept in the range
[0, 0.20] (as it significantly impacts the quality of C), the filter
factor for ULT is set to 0.1, and the damping factor to 0.3. We
run 20 instances of each scenario with different random seeds
and averaged the results, which had a 19% relative standard
error among them. The results are reported in Fig. 6. As
expected, ULT significantly outperforms BIS, while Classic
shortly fails in keeping up with continuous changes in network
topology. Additionally, as discussed in previous section, the
damped version of ULT, though impairing precision in the
distance estimation, is almost necessary to provide reasonable
results for counting, for it causes the gradient to have a
smoother “shape”, favouring descent of values towards the
sink.

VII. CONCLUSION

Based on existing and new algorithms and techniques re-
lated to the problem of estimating distances in fully-distributed

systems, in this paper we propose ULT gradient, a gradient
algorithm that provides the best performance so far in the
diverse situations in which a gradient may need to operate.
This is rooted in two key ingredients: SVD algorithm that
achieves optimality among multi-path gradient algorithms,
and mixing of composition/filtering/damping techniques to
ensure that all the performance problems of gradient al-
gorithms in dynamic environments are properly addressed.
Most specifically, ULT improves over the gradient algorithm
with best performance trade-offs to date, BIS [18], in that
it more quickly recovers from changes in networks with high
variability (asynchronicity and node mobility) and high density
(large neighbourhoods/high communication radius).

Future works will be developed along several dimensions.
First, mathematically or empirically estimating actual single-
path and multi-path speed in a given network can allow us to
better characterise advantages and disadvantages of the various
approaches. Second, specific implementation techniques can
be developed to increase the speed of multi-path solutions
(and hence, SVD/ULT), by more promptly using neighbour
values to compute new distance estimations—e.g., in the
field calculus this can be done with a new implementation
approach for the rep and nbr constructs. Third, empirical
evaluation in large and realistic simulation scenarios (e.g.
smart mobility and mobile wireless sensor networks) can allow
us to more precisely investigate the performance issue of
gradient algorithms.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
comments and suggestions for improving the presentation.

REFERENCES

[1] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments,
M. Mernik, Ed. IGI Global, 2013, ch. 16, pp. 436–501, longer version
at: http://arxiv.org/abs/1202.5509.

[2] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. on Software
Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[3] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” in Proceedings of MobiSys 2004.
ACM Press, 2004.

[4] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “Kqml as an agent
communication language,” in Proceedings of ACM CIKM ’94. New
York, NY, USA: ACM, 1994, pp. 456–463.

[5] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting
aggregate queries over ad-hoc wireless sensor networks,” in Workshop
on Mobile Computing and Systems Applications, 2002.

[6] M. Inchiosa and M. Parker, “Overcoming design and development
challenges in agent-based modeling using ascape,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 99,
no. Suppl 3, p. 7304, 2002.

[7] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, Cambridge, MA, USA, 2001.

[8] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate pro-
gramming,” in ACM SAC 2015, April 2015, pp. 1846–1853.

[9] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[10] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz, “Compu-
tational models for integrative and developmental biology,” Univerite
d’Evry, LaMI, Tech. Rep. 72-2002, 2002.

[11] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
and J. L. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, vol. 12, no. 1, pp.
43–67, 2013.

[12] M. Puviani, G. Cabri, and F. Zambonelli, “A taxonomy of architectural
patterns for self-adaptive systems,” in In ACM C3S2E13 2013. ACM,
2013, pp. 77–85.

[13] L. Gardelli, M. Viroli, and A. Omicini, “Design patterns for self-
organising systems,” in Multi-Agent Systems and Applications V, ser.
LNAI. Springer, Sep. 2007, vol. 4696, pp. 123–132, in CEEMAS’07.

[14] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, 2015.

[15] J. Beal, M. Viroli, D. Pianini, and F. Damiani, “Self-adaptation to device
distribution changes,” in IEEE SASO 2016, 2016, pp. 60–69, Best paper
of IEEE SASO 2016.

[16] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in Proceedings of ACM SAC 2008. ACM, 2008, pp. 1969–
1975.

[17] J. Beal, “Flexible self-healing gradients,” in Proceedings of the 2009
ACM Symposium on Applied Computing, ser. SAC ’09. ACM, 2009,
pp. 1197–1201.

[18] G. Audrito, F. Damiani, and M. Viroli, “Optimally-self-healing dis-
tributed gradient structures through bounded information speed,” in
Coordination Languages and Models, ser. LNCS, J.-M. Jacquet and
M. Massink, Eds., vol. 10319. Springer, 2017, pp. 59–77.

[19] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in IEEE
SASO 2015. IEEE, 2015, pp. 81–90.

[20] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets self-
organisation: A higher-order calculus of computational fields,” in Formal
Techniques for Distributed Objects, Components, and Systems, ser.
Lecture Notes in Computer Science. Springer International Publishing,
2015, vol. 9039, pp. 113–128.

[21] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A minimal
core calculus for Java and GJ,” ACM Transactions on Programming
Languages and Systems, vol. 23, no. 3, 2001.

[22] Q. Liu, A. Pruteanu, and S. Dulman, “Gradient-based distance estimation
for spatial computers,” Comput. J., vol. 56, no. 12, pp. 1469–1499, 2013,
DOI: 10.1093/comjnl/bxt124.

[23] A. Lluch-Lafuente, M. Loreti, and U. Montanari, “Asynchronous dis-
tributed execution of fixpoint-based computational fields,” CoRR, vol.
abs/1610.00253, 2016.

[24] M. Viroli and F. Damiani, “A calculus of self-stabilising computational
fields,” in Coordination Languages and Models, ser. LNCS. Springer-
Verlag, 2014, vol. 8459, pp. 163–178.

[25] J. Katzenelson, “Notes on amorphous computing,” in MIT Artificial
Intelligence Laboratory. Citeseer, 2000.

[26] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate
system from local information on an ad hoc sensor network,” in
Information Processing in Sensor Networks. Springer, 2003, pp. 333–
348.

[27] F. Damiani and M. Viroli, “Type-based self-stabilisation for computa-
tional fields,” Logical Methods in Computer Science, vol. 11, no. 4,
2015, DOI: 10.2168/LMCS-11(4:21)2015.

[28] E. M. Royer and C. Toh, “A review of current routing protocols for ad
hoc mobile wireless networks,” IEEE Personal Commun., vol. 6, no. 2,
pp. 46–55, 1999.

[29] W. Weibull et al., “A statistical distribution function of wide applicabil-
ity,” Journal of applied mechanics, vol. 18, no. 3, pp. 293–297, 1951.

[30] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with ALCHEMIST,” J. Simulation, vol. 7,
no. 3, pp. 202–215, 2013.

[31] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, S. Vallero, and S. Ra-
bellino, “The Open Computing Cluster for Advanced data Manipulation
(occam),” in The 22nd International Conference on Computing in High
Energy and Nuclear Physics (CHEP), San Francisco, USA, 2016.

	IIEEE-SASO-2017-Audrito-et-al-COPERTINA.pdf
	main

