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ABSTRACT

We report on the discovery of three transiting planets around GJ 9827. The planets have radii of

1.75±0.18, 1.36±0.14, and 2.11+0.22
−0.21 R⊕, and periods of 1.20896 , 3.6480, and 6.2014 days, respectively.

The detection was made in Campaign 12 observations as part of our K2 survey of nearby stars. GJ 9827

is a V = 10.39 mag K6V star at distance of 30.3 ± 1.6 parsecs and the nearest star to be found hosting

planets by Kepler and K2. The radial velocity follow-up, high resolution imaging, and detection of

multiple transiting objects near commensurability drastically reduce the false positive probability. The

orbital periods of GJ 9827 b, c and d planets are very close to the 1:3:5 mean motion resonance. Our

preliminary analysis shows that GJ 9827 planets are excellent candidates for atmospheric observations.

Besides, the planetary radii span both sides of the rocky and gaseous divide, hence the system will be

an asset in expanding our understanding of the threshold.

Keywords: stars: individual (GJ 9827, EPIC 246389858) – planets and satellites: detection

1. INTRODUCTION

Temporal monitoring of neighboring stars (e.g., within

100 parsecs and therefore relatively bright) provides an

opportunity to search for nearby planetary systems that

are optimal for follow-up studies. This includes favor-

able conditions to characterize the system as a whole,

particularly properties that can be directly linked to

the planetary atmosphere and habitability, such as the

stellar UV emission (Linsky et al. 2014), stellar wind

strength (Wood et al. 2005) and stellar magnetic field

structure (Alvarado-Gómez et al. 2016). As the Kepler

mission and ground-based radial velocity (RV) searches

have shown, terrestrial planets are ubiquitous (Howard

et al. 2012; Fressin et al. 2013). The sample of ter-

restrial exoplanets will continue to grow with dedicated

ground and space-based surveys (e.g., K2, and in the

future with the Transiting Exoplanet Survey Satellite

(TESS); Ricker et al. 2015). A major scientific endeavor
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related to this population of planets will be the evalu-

ation of habitability and a search for biosignatures. It

is precisely in these bright, nearby systems where the

atmospheric measurements will be the most sensitive,

and the question of habitability will be examined in the

greatest detail in the decades to come.

K2, the repurposed Kepler mission, has continued the

legacy of planet discovery by its predecessor (Howell

et al. 2014). While the K2 fields can only be moni-

tored for about 80 days, and thereby limiting discover-

ies to relatively short period transiting objects, its abil-

ity to observe different parts of the ecliptic plane and

choice of more diverse targets has led to some intriguing

discoveries. Many planetary candidates have been re-

ported (e.g., Crossfield et al. 2016) along with the first

detection of transiting bodies orbiting the white dwarf

WD 1145+017 (Vanderburg et al. 2015). K2 also contin-

ues to find multiplanetary systems, which are of interest

for the study of planetary architecture and formation.

Sinukoff et al. (2016) reported the detection of eleven

multiplanetary systems from K2 Campaigns 1 and 2.

However, there are few such systems around nearby stars

(Armstrong et al. 2015; Crossfield et al. 2015; Gandolfi

et. al. 2017), and only a handful around brighter stars

that are suitable for spectroscopic characterization.

We have detected a new planetary system hosted by

a K6V star, GJ 9827 (EPIC 246389858). At 30.3 ±
1.6 parsecs, it is the nearest planetary system detected

by Kepler or K2. Our analysis of the Kepler light

curve demonstrates the presence of three super-Earths

of radii around GJ 9827. We will use the designa-

tion of super-Earth for planets with radii from 1.25–

2 R⊕ (e.g., Batalha et al. 2013), although note that

the precise limits of this range are largely arbitrary and

GJ 9827 d lies just above the upper bound of this desig-

nation. The planets orbit at a distance of 0.020 ± 0.002,

0.041 ± 0.003 and 0.059 +0.004
−0.005 AU corresponding to or-

bital periods of 1.208957+0.000012
−0.000013, 3.64802±0.00011, and

6.20141 +0.00012
−0.00010 days respectively. The planetary system

is tightly packed, and the periods are close to 1:3:5 com-

mensurability. In addition to the fact that GJ 9827 is

a relatively bright star, the planets occur on both sides

of the rocky and gaseous threshold of ∼1.5 R⊕ (Weiss

& Marcy 2014; Rogers 2015). Hence the system is likely

to be a great asset in understanding the nature of this

threshold, and could potentially exhibit a range of den-

sities like the Kepler-36 planets (Carter et al. 2012).

GJ 9827 planets are great candidates for atmospheric

studies. In the past, ground based telescopes, along with

the Hubble Space Telescope (HST) and Spitzer, have

been successfully used to characterize the atmospheres

of hot Jupiters (Charbonneau et al. 2002; Knutson et al.

2008; Redfield et al. 2008; Sing et al. 2015). With the

James Webb Space Telescope (JWST), this territory will

be extended into the super-Earth regime (Deming et al.

2009). Bright, nearby planetary systems like GJ 9827,

will provide excellent opportunities to probe the condi-

tions of super-Earth atmosphere.

2. OBSERVATIONS AND DATA ANALYSIS

GJ 9827 (EPIC 246389858) was proposed by our team

(PI Redfield) as part of a Campaign 12 survey of nearby

stars (GO-12039), and in three other programs: GO-

12071, PI Charbonneau; GO-12049 PI Quintana; and

GO-12123 PI Stello. The star was observed for a total

of 78.89 days from 15 December, 2016 to 4 March, 2017

at the boundary of constellation Aquarius and Pisces at

RA of 23:27:04.835 and declination -01:17:10.58 in long

cadence mode.

2.1. K2 Observations

We implement a data reduction pipeline to detrend

the systematic K2 noise. We follow the protocol to

decorrelate the data against its arclength (1D) using

one of the three standard stars from the Campaign (e.g.,

Vanderburg & Johnson 2014; Vanderburg et al. 2016).

These standard pointing stars are chosen such that their

centroid can be found with better precision than an av-

erage star in the field. Among these three standards,

the light curve is decorrelated with the star whose cen-

troid variation over time is best fit with a fifth-degree

polynomial, in this case EPIC 246292491. Besides, we

use a modified version of Van Eylen et al. (2016) pub-

licly available code1, which detrends the lightcurve by

a simultaneous second order fit for both the centroid

coordinates and time, also allowing for a cross term be-

tween two centroids. The k2photometry pipeline yields

a flattened light curve. In our implementation, the final

transit removed light curve from k2photometry has a

standard deviation of 77 ppm compared to 106 ppm from

Vanderburg’s method. Thus in Figure 1, we show the

detrended flux obtained from Vanderburg’s method and

the normalized lightcurve from k2photometry. These

values are higher by a factor of ∼2 than the expected

calculated rms values of 39.2 for 10.5 V magnitude star2

which is expected due to pointing induced errors for K2.

As for some of the unique aspects of our pipeline, we

take the median value in each frame as the background.

In order to avoid the effect of the outliers, we perform an

iterative spline fitting, rejecting 3σ outliers until conver-

gence. Finally, the background is subtracted from the

photometric flux. We reject the data with bad qual-

ity flags, which resulted in excluding around 15% of the

data flagged for thruster firing, Agrabrightening, cosmic

1 https://github.com/vincentvaneylen/k2photometry

2 https://keplergo.arc.nasa.gov/CalibrationSN.shtml

https://github.com/vincentvaneylen/k2photometry
https://keplergo.arc.nasa.gov/CalibrationSN.shtml
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Figure 1. Detrended and normalized K2 light curve of EPIC 246389858. Transits of each planet are marked, and the combined fit (brown
line) at a finer sampling rate for all transit based on MCMC fits, presented in Table 1, is shown. The bottom left and bottom right figure
zooms into two different sections of the data.

ray detection, and pipeline outlier detection. This has

led to two instances where the transits are completely

missing (refer to Figure 1). We did a follow-up test with

different aperture sizes from which a circular aperture of

∼ 20” radius is chosen. Initially we define our aperture

as the largest contiguous region above twice the median.

From this we calculate the centroid of the star. How-

ever, the calculated centroid of the star does not coincide

with the FITS coordinates probably because GJ 9827 is

a high proper motion star (Stephenson 1986).

Clear stellar modulation, presumably associated with

stellar rotation, is evident in the detrended light curve

of Figure 1. After we remove the first five days of data

which shows anomalies probably related to thermal set-

tling, the auto correlation function (McQuillan et al.

2013) of the detrended lightcurve exhibits a peak at

16.9+2.14
−1.51 days, which is consistent with our reported

v sin i value of 2±1km s−1 assuming stellar inclination

of 90◦. However, we also observed almost compara-

ble secondary peak at 29 days, which is congruous with

the value of 1.3+1.5
−1.3 km s−1 reported in Houdebine et al.

(2016). A longer baseline of observations would help to

determine the true stellar rotation period.

We perform a Box Least-Squared (BLS; Kovács et al.

2002) search on the flattened light curve to detect pres-

ence of any planetary signals. Once a transit signal is

identified, it is fitted and removed from the light curve.

In this fashion, we iteratively run the BLS algorithm

on the light curve for further detection of additional

transit signals. In GJ 9827, this showed a presence

of three transiting planets. A simultaneous fit for all

of the three identified transits is then performed with

the batman model supersampled by a factor of 15, and

adjusted for K2’s long cadence (Kreidberg 2015). We

use the affine invariant MCMC method implemented in

emcee (Foreman-Mackey et al. 2013) with 100 walkers

for 30000 steps; of this, the first 22500 steps were re-

moved as burn-in. The rest of the data is used to build

the posterior distributions and estimate the uncertain-

ties in our transit parameters.

We use uniform priors for the period, time of con-

junction, scaled planet radius and impact parameter for

all three planets. For limb darkening parameters, we

use triangular sampling suggested by Kipping (2013).

We additionally use Sing (2010) to introduce Gaussian

priors on limb darkening based on the stellar parame-

ters. We use mean value of 0.5782 for u1, and 0.1428

for u2, both with 0.1 standard deviation. Since this is

a short period multi-planetary system, we assume tidal

circularization of the orbits and adopt a fixed eccen-

tricity of e = 0 for all three planets (Van Eylen &

Albrecht 2015). As for the scaled semi-major axis of

GJ 9827 c and d, we assume they are constrained by

Kepler’s Third Law. As a result, we fit 15 indepen-

dent variables (Table 1). We additionally introduce a
Gaussian prior based on the spectroscopically derived
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Figure 2. Model Fit of MCMC obtained parameters for GJ 9827 b, GJ 9827 c, and GJ 9827 d. The parameters are available in Table 1.
Note the normalized flux scale is kept constant for comparison. 1σ error bars computed from the respective residuals are shown in
the right hand bottom corner for reference.

stellar density of 3.37±0.51 g cm−3. MCMC runs with-

out Gaussian priors on sometimes converged to unre-

alistic semi-major axis values, hence the choice. From

the posterior distribution, most of the variables are well

constrained except for limb darkening parameters. Due

to short transit duration and long integration time for

K2 , limb darkening parameters are not expected to be

well constrained (Kipping 2010). The introduction of

Gaussian prior for limb darkening parameters does not

noticeably affect the other fit parameters.

It is interesting to note that the transit duration is

longest for GJ 9827 c, and shortest for GJ 9827 d. This

is consistent with the fit’s prediction that GJ 9827 d has

a higher impact parameter than either GJ 9827 b or c.

Additional independent MCMC runs were performed by

our team using pyaneti (Barragán et al. 2017a), with

flattened lightcurves from independent pipelines devel-

oped in our group, and the results are within 1σ er-

rors. Note that the high impact parameter of GJ 9827 d

suggests additional planets, if present, are likely to be

non-transiting. This possibility will be explored in the

follow-up RV campaign.

Table 1. Planetary parameters of GJ 9827 b, c and d.

Parameter Unit GJ 9827 b GJ 9827 c GJ 9827 d

Transit Epoch BJD–2450000 (T0) day 7738.82671 +0.00043
−0.00046 7738.5519 +0.0014

−0.0014 7740.96100 +0.00083
−0.00087

Period (Porb) day 1.208957 +0.000012
−0.000013 3.64802 +0.00011

−0.00011 6.20141 +0.00012
−0.00010

Scaled planet radius (Rp/R∗) - 0.0246 +0.0003
−0.0005 0.0192 +0.0004

−0.0005 0.0297 +0.0010
−0.0008

Scaled Semimajor axis (a/R∗) - 6.55 +0.30
−0.32 13.67 +0.66

−0.63 19.5 +0.95
−0.90

Impact Parameter (b) - 0.595 +0.056
−0.070 0.558 +0.068

−0.096 0.910 +0.011
−0.013

Derived Parameters

Planet Radius (Rp) R⊕ 1.75 +0.18
−0.18 1.36 +0.14

−0.14 2.11 +0.22
−0.21

Semi Major Axis (a) AU 0.020 +0.002
−0.002 0.041 +0.003

−0.003 0.059 +0.004
−0.005

Transit Duration (T14) hour 1.12 +0.06
−0.07 1.69 −0.11

+0.10 1.01 +0.05
−0.05

Orbital Inclination (i) deg 84.86+0.54
−0.54 87.66 +0.30

−0.31 87.32 +0.12
−0.13

Equilibrium Temperature (Teq) K 1075+38
−37

a 744 +26
−26

a 623−22
−22

a

Limb Darkening Coefficients

u1 - 0.35 +0.07
−0.07

b

u2 - 0.00+0.23
−0.13

b

Table 1 continued



5

Table 1 (continued)

Parameter Unit GJ 9827 b GJ 9827 c GJ 9827 d

Note: The values of eccentricity for all three planets is fixed at zero.
aWe calculate equilibrium temperature as Teq = T∗

√
R∗/2a(1 − α)1/4, where Bond Albedo (α) is adopted at

0.3.
bA single set of limb darkening parameters is fitted for three different transit light curves.

2.2. Spectroscopic Observations

We collected seven high-resolution (R≈ 67,000) spec-

tra of GJ 9827 using the FIbre-fed Échelle Spectro-

graph (FIES; Frandsen & Lindberg 1999; Telting et al.

2014) mounted at the 2.56 m Nordic Optical Telescope

(NOT) of Roque de los Muchachos Observatory (La

Palma, Spain). The follow-up was performed between

20 July and 1 August 2017 UT as part of the OPTI-

CON observing program 2017A/064, under clear and

stable weather conditions, with seeing ranging between

0.′′5 and 0.′′8. For each observation epoch, we took 3 con-

secutive sub-exposures of 900 seconds that were average

combined using a sigma-clipping algorithm to remove

cosmic ray hits. Following the observing strategy de-

scribed in Buchhave et al. (2010) and Gandolfi et al.

(2013), we traced the RV drift of the instrument by ac-

quiring ThAr spectra with long exposure (Texp = 65 sec)

taken immediately before and after each observation.

We reduced the FIES data using standard IRAF and

IDL routines, which include bias subtraction, flat field-

ing, order tracing and extraction, and wavelength cali-

bration. RV measurements were extracted using multi-

order cross-correlation technique with the RV standard

star HD 190007 – observed with the same instrument

set-up as the target object – for which we adopted a he-

liocentric RV of −30.40 km s−1 , as measured by Udry

et al. (1999). We report the RVs and their uncertainties

in Table 2. Our measurements show no significant RV

variation: the rms is 2.4 m s−1 , which is comparable to

the mean nominal uncertainty of 3.1 m s−1 .

We used the co-added FIES spectrum, which has a

SNR ratio of ∼150 per pixel at 5500 Å, to derive the

fundamental parameters of GJ 9827. The analysis was

performed following the procedures already adopted for

other K2 host stars (Barragán et al. 2017b; Fridlund et

al. 2017; Gandolfi et. al. 2017; Guenther et al. 2017;

Johnson et al. 2016). We took advantage of four differ-

ent spectral analysis packages applied independently by

different sub-groups within our team. The four analy-

ses provide consistent results well within the errors bars.

While we have no strong reason to prefer one method

Table 2. FIES RV measurements.

BJDTDB RV Error

−2, 450, 000 (km s−1 ) (km s−1 )

7954.617085 31.7746 0.0033

7955.612895 31.7724 0.0032

7956.627456 31.7751 0.0025

7964.582846 31.7796 0.0028

7965.593839 31.7739 0.0032

7966.573354 31.7728 0.0033

7966.707233 31.7735 0.0035

over the other, we adopted the results obtained using

SpecMatch-Emp (Yee et al. 2017). This technique relies

on the use of high-resolution template spectra of stars

whose effective temperature (Teff), radius (R?), and iron

abundance ([Fe/H]), have been accurately measured by

interferometry, spectrophotometry, and spectral synthe-

sis. We use Mann et al. (2015)’s empirical relations to

derive the stellar mass. Our stellar parameters are pre-

sented in Table 3. The values are consistent with those

reported by Houdebine et al. (2016).

2.3. Limits on a stellar companion

We investigate the probability that the transit signals

are of a non-planetary origin coming from a background

source or a companion. Lissauer et al. (2012) estimate

the false positive probability for systems with three tran-

siting planet candidates at < 0.4% with the extremely

conservative assumption of a 50% false positive rate for

single planet candidates. The probabilities for detecting

1 planet+2 false positives or 2 planets+1 false positive

are even lower than the 3 planet case. The short orbital

periods also argue against a massive triple system, which

would be dynamically unstable and produce very large

transit timing variations (TTV) (Lissauer et al. 2011),

which are not observed (see Section 3.1).

Using high-resolution Lucky Imaging I -band observa-

tions, Jódar et al. (2013) find no evidence of a stellar

companion to GJ 9827. They rule out all companions
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with Teff & 3200 K, or earlier than spectral type M4,

at angular separations & 0.5′′. The constraints are even

tighter for angular separations & 1.0′′, ruling out all

companions with Teff & 2800 K, or earlier than spectral

type ∼M6.5.

We can also rule out companions with Teff & 3200 at

any separation by assuming normal main sequence dwarf

parameters (Pecaut & Mamajek 2013): if a bound, unre-

solved companion is present, anything with Teff & 3000

K would result in J . 7.95. This is incompatible with

the measured 2MASS J-magnitude of J = 7.984± 0.020

(Skrutskie et al. 2006). Thus, any undetected bound

stellar companions to GJ 9827 must have a spectral type

later than ∼M5. Using optical and infrared photome-

try, including the Wide-Field Infrared Survey Explorer

(WISE) 3.4, 4.6, 12.0, and 22.0 µm magnitudes (Wright

et al. 2010), we also find no evidence of any infrared

excess. Although we cannot rule out the existence of a

faint late-type companion, we currently favor GJ 9827

as the host star. We note that the planetary radii nec-

essary to produce the observed transits depths are still

∼3-5 R⊕ if the candidates orbit an undetected late-type

companion, placing them in the mini-Neptune regime.

Follow-up RV observations and high-contrast adaptive

optics imaging will help confirm the nature of the plan-

ets’ parent star.

Given its large proper motion (≈ 400 mas yr−1), we

are able to rule out the possibility of an unbound back-

ground contamination using the archival data. Using

the STScI Digitized Sky Survey3, we identify GJ 9827

images as early as 1953 (see Figure 3). By comparing

the image to the latest epoch (2012), we determine that

there is no background object coincident with its current

position visible in the 1953 plate. In order to estimate

the limiting magnitude of the 1953 image, we considered

an object near to our target which is faint, but clearly

above the detection threshold of the image. By reference

to the SDSS catalog, we determined that this object

has r = 19.0 (cf. R = 10.1 for GJ 9827). We, there-

fore, conclude that the 1953 plate is sensitive to objects

about 9 magnitudes fainter than GJ 9827, and we can

rule out the presence of unbound contaminants brighter

than this. An equal mass eclipsing binary system with a

combined magnitude of r = 19.0 would produce at most

a 125 ppm deep signal in the light curve of GJ 9827,

which is shallower than the observed transits.

3 http://stdatu.stsci.edu/cgi-bin/dss form

Table 3. Stellar Parameters of GJ 9827 (EPIC 246389858)

Parameter Units Value

V mag - 10.39a

J mag - 7.984b

Distance pc 30.3 ± 1.6c

Spectral Type - K6Vd

Effective Temperature (Teff) K 4255 ± 110d

Surface gravity (log g) cgs 4.70 ± 0.15 d

Iron Abundance ([Fe/H]) dex -0.28±0.12d

Radius (R∗) R� 0.651 ± 0.065d

Mass (M∗) M� 0.659 ± 0.060d

v sin i km s−1 2 ± 1d

Rotational Period (Prot) day 16.9+2.14
−1.51

d

aAdopted from Zacharias et al. (2013)

bAdopted from Cutri et al. (2003)

cHipparcos (van Leeuwen 2007)

dThis work

3. DISCUSSION

3.1. A Closely Packed super-Earth System

Multi-transiting planetary systems offer more than

conventional ways for characterizing the systems.

Through transit timing variations (TTV) and transit

duration variation (TDV), planetary masses and or-

bital elements in these systems can be constrained to

higher precision than single transiting systems (Agol et

al. 2005; Ragozzine & Holman 2010). In addition, they

provide opportunity to test in-situ vs. ex-situ planetary

formation, which continues to be a topic of debate in

the regime of super-Earths (Chiang & Laughlin 2013;

Schlichting 2014; D’Angelo & Bodenheimer 2016).

No TTV greater than 3 minutes were found for the

planets GJ 9827 b, c, and d as shown in Figure 4. An

order of magnitude calculation of the expected TTV am-

plitude, based on work by Agol et al. (2005), indicates

that the expected amplitude of TTVs is smaller than

3 minutes. Occurring near commensurability of 1:3:5,

GJ 9827 c and b period ratio deviate from 3:1 ratio

by +0.5%, whereas period of GJ 9827 d and c deviates

5:3 by +2.0%. Such small positive deviation from the

exact resonance has been reported in other Kepler mul-

tiple planet systems (Fabrycky et al. 2014). In fact, the

period ratio of GJ 9827 c and d is 1.69994 ± 0.00003

(∼1.7), where Steffen & Hwang (2015) reported the

presence of a modest peak in their sample of Kepler

multiple planet systems. Examples of second order res-

onances in our own solar system, as well as in exoplane-

http://stdatu.stsci.edu/cgi-bin/dss_form
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Figure 3. Archival image in r band of GJ 9827 from the POSS-I and II from year 1953 and 1991. The third image is from more recent
Pan-STARRS in g band from year 2012. No background objects concurrent with current position of GJ 9827 is seen in the archival image.
The green circle in each image shows 20” aperture size used for K2 photometry, meanwhile the reference position of GJ 9827 at the J2000
epoch is indicated with a red reticle.

tary architectures have motivated a dynamical explana-

tion regarding their origin (Mustill & Wyatt 2011; Xu

& Lai 2017), and a dynamical study of GJ 9827 could

be useful in answering questions pertaining to such ar-

chitecture.

We also phase folded and binned the transit removed

data at the period of the first planet to investigate the

presence of a phase curve or of a secondary eclipse. None

were evident as the overall noise in the light curve is

too dominant to make any statistically significant claim.

The GJ 9827 planets may be excellent candidates for

searching for such signals in the infrared.

Detected phase curves and secondary eclipse, com-

bined with TTV observations, could help to determine

the orbital and planetary parameters with greater preci-

sion. The estimated mass of the GJ 9827 super-Earths

based on the mass-radius relation proposed by Weiss

& Marcy (2014): Mp/M⊕ = 2.69(Rp/R⊕)0.93 are 4.5,

3.5, and 5.4 M⊕. Based on these mass estimates and
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Figure 4. O-C Diagram for GJ 9827 b, c and d. The O-C signal
and errors are estimated using MCMC fit using model created
with transit parameters. No significant TTVs greater than three
minutes is detected.

orbital parameters, the semi-amplitude of RV signals of

the three planets are 3.5, 1.9 and 2.5 m s−1 . The thresh-

old of 1.5 R⊕, as proposed by Weiss & Marcy (2014),

suggests GJ 9827 c to be a rocky, and GJ 9827 d to be

a gaseous planet. As for GJ 9827 b, its radius lies close

to the boundary itself, and in the light that the exact

value of the threshold is not well known (Lopez & Fort-

ney 2014; Rogers 2015; Weiss & Marcy 2014), we expect

RV follow-up to shed more light on its density. Details

of a concentrated RV campaign will be discussed in a

future paper.

3.2. Prospects for Atmospheric Characterization
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Figure 5. Relative S/N ratio of an atmospheric signal for all
exoplanet candidates with R < 3R⊕. The GJ 9827 planets are the
filled colored symbols with GJ 9827 b used as the S/N reference.
Using this metric, GJ 9827 b is ranked as the sixth most favorable
super-Earth for atmospheric characterization.

Atmospheric characterization provides an opportunity

to not only measure the current conditions in the plane-

tary atmosphere, but also put constraints on formation

history and interior structure (Owen et al. 1999), inter-
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actions with host star (Cauley et al. 2017), atmospheric

and planetary evolution (Öberg et al. 2011), and biolog-

ical processes (Meadows & Seager 2010). The planets

in the GJ 9827 system offer excellent opportunities to

characterize their atmospheres. Figure 5 displays a rel-

ative atmospheric detection S/N metric (normalized to

GJ 9827 b) all well characterized with Rp < 3R⊕. The

sample of small exoplanets, totaling 7894, is taken from

the NASA Exoplanet Archive5. The atmospheric signal

is calculated in a similar way to Gillon et al. (2016) with

an effective scale height (heff = 7H; Miller-Ricci et al.

2009) using the equilibrium temperature, a Bond albedo

of α = 0.3, and an atmospheric mean molecular weight

µ = 20. However, since we calculate the relative sig-

nal and assume identical properties for all atmospheres,

these values do not affect our results but are included

for completeness. The atmospheric signal is dominated

by the atmospheric scale height, favoring hot, extended

atmospheres, and the host star radius, favoring small,

cool stars. The relative S/N calculation scales the atmo-

spheric signal with the properties that make it possible

to detect and measure this signal,

S/N

S/NRef
=

W

WRef

√
10−0.4(J−JRef )

√
PRefT14

PT14Ref

, (1a)

W =
2Rpheff

R2
∗

. (1b)

We use the J-band flux (e.g., H2O measurements with

JWST; Beichman et al. 2014), and scale by the duration

of the transit and the frequency of transits. Given that

sensitive atmospheric observations will likely require

many transits to build sufficient signal (e.g., Cowan et

al. 2015), we have used a metric that optimizes the S/N

over a period of time rather than a per-transit metric.

Out of this sample of super-Earth exoplanets, all three

planets in the GJ 9827 system are in the top 20 in terms

of the S/N for atmospheric characterization. This is

mainly a consequence of the brightness of this nearby

cool, small, star. This highlights the powerful impact

nearby stars have on exoplanet characterization given

the relative brightness of even small host stars, provid-

ing strong atmospheric signals at high S/N. Using this

metric, GJ 9827 b is ranked the 6th best target for at-

mospheric characterization, after GJ 1214 b, 55 Cnc e,

TRAPPIST-1 b, HD 219134 b, and HD 3167 b. Given

that all three of the GJ 9827 planets are near commensu-

rability, there are regular opportunities to observe two,

or even all three transits at approximately the same

time. For example, see the K2 signal at BJD 2457753,

4 as of 15 September, 2017

5 https://exoplanetarchive.ipac.caltech.edu

which occurs on average every 150 days (assuming 6

hours of observation). The wait is shorter for simulta-

neous transits of two planets. Transit overlap occurs for

GJ 9827 b and c over 6 hours of observation on average

every 8.7 days; for GJ 9827 c and d around 53 days, and

for GJ 9827 b and d around 15 days.

4. CONCLUSION

Super-Earths are intrinsically interesting objects, as

universally abundant despite being absent from our so-

lar system. Hosting at least three super-Earths, GJ 9827

lies at a distance of a mere 30 parsecs, the closest plan-

etary system discovered by Kepler or K2. The planets

occur on the both side of rocky gaseous divide, there-

fore are likely to have different range of densities and

provide a test of the precise location of this division. Its

three body second order resonant system is also intrigu-

ing from the viewpoint of planetary architecture and for-

mation. In addition, GJ 9827 is an excellent candidate

for follow-up atmospheric characterization with JWST

and other facilities. All these exciting features mean

GJ 9827, like other nearby planetary systems around

bright stars, will be a great asset for exploring the most

fundamental questions of our field.
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