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Abstract. We study an extension of Plotkin’s call-by-value lambda-calculus via two com-
mutation rules (sigma-reductions). These commutation rules are sufficient to remove harm-
ful call-by-value normal forms from the calculus, so that it enjoys elegant characterizations
of many semantic properties. We prove that this extended calculus is a conservative re-
finement of Plotkin’s one. In particular, the notions of solvability and potential valuability
for this calculus coincide with those for Plotkin’s call-by-value lambda-calculus. The proof
rests on a standardization theorem proved by generalizing Takahashi’s approach of parallel
reductions to our set of reduction rules. The standardization is weak (i.e. redexes are not
fully sequentialized) because of overlapping interferences between reductions.

1. Introduction

Call-by-value evaluation is the most common parameter passing mechanism for program-
ming languages: parameters are evaluated before being passed. The λv-calculus (λv for
short) has been introduced by Plotkin in [Plo75] in order to give a formal account of call-
by-value evaluation in the context of λ-calculus. Plotkin’s λv has the same term syntax
as the ordinary, i.e. call-by-name, λ-calculus (λ for short), but its reduction rule, βv , is a
restriction of β-reduction for λ: βv-reduction reduces a β-redex only in case the argument is
a value (i.e. a variable or an abstraction). While βv is enough for evaluation of closed terms
not reducing under abstractions, it turned out to be too weak in order to study semantical
and operational properties of terms in λv. This fact makes the theory of λv (see [EHR92])
more complex to be described than that of λ. For example, in λ, β-reduction is sufficient to
characterize solvability and (in addition with η) separability (see [Bar84] for an extensive
survey); but in order to characterize similar properties for λv, only reduction rules incorrect
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for call-by-value evaluation have been defined (see [PR99, Pao02, RP04]): for λv this is
disappointing and requires complex analyses. The reason of this mismatching is that in λv

there are stuck β-redexes such as (λy.M)(zz), i.e. β-redexes that βv-reduction will never fire
because their argument is normal but not a value (nor will it ever become one). The real
problem with stuck β-redexes is that they may prevent the creation of other βv-redexes,
providing “premature” βv-normal forms. The issue is serious, as it affects termination and
thus can impact on the study of observational equivalence and other operational properties
in λv. For instance, it is well-known that in λ all unsolvable terms are not β-normalizable
(more precisely, solvable terms coincide with the head β-normalizable ones). But in λv (see
[RP04, AP12, CG14]) there are unsolvable βv-normal terms, e.g. M and N in Eq. 1.1:

M = (λy.∆)(zz)∆ N = ∆((λy.∆)(zz)) (where ∆ = λx.xx) (1.1)

Such M and N contain the stuck β-redex (λy.∆)(zz) forbidding evaluation to keep going.
These βv-normal forms can be considered “premature” because they are unsolvable and so
one would expect them to diverge. The idea that M and N should behave like the famous
divergent term ∆∆ is corroborated by the fact that in λv they are observationally equivalent
to ∆∆ and have the same semantics as ∆∆ in all non-trivial denotational models of λv.

In a call-by-value setting, the issue of stuck β-redexes and then of premature βv-normal
forms arises only when one considers open terms (in particular, when the reduction under
abstractions is allowed, since it forces to deal with “locally open” terms). Even if to model
functional programming languages with a call-by-value parameter passing, such as OCaml,
it is usually enough to just consider closed terms and evaluation not reducing under abstrac-
tions (i.e. function bodies are evaluated only when all parameters are supplied), the impor-
tance to consider open terms in a call-by-value setting can be found, for example, in partial
evaluation (which evaluates a function when not all parameters are supplied, see [JGS93]),
in the theory of proof assistants such as Coq (in particular, for type checking in a system
based on dependent types, see [GL02]), or to reason about (denotational or operational)
equivalences of terms in λv that are congruences, or about other theoretical properties of
λv such as separability, potential valuability and solvability, as already mentioned.

We study the shuffling calculus λσ
v , the extension of λv proposed in [CG14]. It keeps the

same term syntax as λv (and λ) and it adds to βv-reduction two commutation rules, called
σ1 and σ3, which “shuffle” constructors in order to move stuck β-redexes and unblock βv-
redexes that are hidden by the “hyper-sequential structure” of terms. These commutation
rules for λv (referred also as σ-reduction rules) are similar to Regnier’s σ-rules for λ [Reg92,
Reg94] and inspired by linear logic proof-nets [Gir87]. It is well-known that βv-reduction can
be simulated by linear logic cut-elimination via the call-by-value “boring” translation (·)v of
λ-terms into proof-nets [Gir87, pp. 81-82], which decomposes the intuitionistic implication
as follows: (A ⇒ B)v = !(A ⊸ B)v (see also [Acc15]). It turns out that the images under
(·)v of a σ-redex and its contractum are equal modulo some non-structural cut-elimination
steps. Note that Regnier’s σ-rules are contained in β-equivalence, while in λv our σ-rules
are more interesting, as they are not contained into (i.e. they enrich) βv-equivalence.

One of the benefits of λσ
v is that its σ-rules make all normal forms solvable (indeed

M and N in Eq. 1.1 are not normal in λσ
v ). More generally, λσ

v allows one to characterize
semantical and operational properties which are relevant in a call-by-value setting, such as
solvability and potential valuability, in an internal and elegant way, as shown in [CG14].

The main result of this paper is the conservativity of λσ
v with respect to λv. Namely,

λσ
v is sound with respect to the operational semantics of λv (Corollary 5.4), and the notions
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of potential valuability and solvability characterize, respectively, the same classes of terms
in λσ

v and λv (Theorem 5.7). This fully justifies the project in [CG14] where λσ
v has been

introduced as a tool for studying λv by means of reductions sound for λv. These conser-
vativity results are a consequence of a standardization property for λσ

v (Theorem 4.6) that
formalizes the good interaction arising between βv-reduction and σ-reduction in λσ

v .

Let us recall the notion of standardization, which has been first studied in the ordinary
λ-calculus (see [CF58, Hin78, Mit79, Bar84]). A reduction sequence is standard if redexes
are fired in a given order, and the standardization theorem establishes that every reduction
sequence can be transformed into a standard one in a constructive way. Standardization is
a key tool to grasp the way in which reductions works and sheds some light on relationships
and dependencies between redexes. It is useful especially to characterize semantic properties
through reduction strategies, such as normalization and operational adequacy.

Standardization theorems for λv have been proved by Plotkin [Plo75], Paolini and
Ronchi Della Rocca [RP04, PR04] and Crary [Cra09]. Plotkin and Crary define the same
notion of standard reduction sequence, based on a partial order between redexes, while
Paolini and Ronchi Della Rocca define a different notion, based on a total order between
redexes. According to the terminology of [Klo80, Kri90], the former gives rise to a weak
standardization, while the latter to a strong one. These standardization theorems for λv

have been proved using a notion of parallel reduction adapted for βv-reduction. Parallel
reduction has been originally introduced for λ by Tait and Martin-Löf to prove confluence
of β-reduction: intuitively, it reduces a number of β-redexes in a term simultaneously.
Takahashi [Tak89, Tak95] has improved this approach and shown that it can be used also to
prove standardization for λ without involving the tricky notion of residual of a redex, unlike
the proofs in [CF58, Hin78, Mit79, Bar84]. Crary [Cra09] has adapted to λv Takahashi’s me-
thod for standardization. In order to prove our standardization theorem for λσ

v , we extend
the notion of parallel reduction to include all the reductions of λσ

v . So, we consider two
groups of redexes, βv-redexes and σ-redexes (putting together σ1 and σ3), and we induce a
total order between redexes of the two groups, without imposing any order between σ1- and
σ3-redexes. Whenever σ-redexes are missing, this notion of standardization coincides with
that presented in [PR04, RP04]. We show it is impossible to strengthen our standardization
by (locally) giving precedence to σ1-reduction over σ3-reduction or vice-versa.

As usual, our standardization proof is based on a sequentialization result: inner reduc-
tions can always be postponed to the head ones, according to a non-standard definition of
head reduction. However, our proof is peculiar with respect to other ones in the literature.
In particular, our parallel reduction does not enjoy the diamond property (we are unaware
of interesting parallel reductions that do not enjoy it), thus it cannot be used to prove the
confluence. This lack is crucially related to the second distinctive aspect of our study, viz.
the presence of several kinds of redexes being mutually overlapping (in the sense of [Ter03]).

The aim of this paper is first of all theoretical: to supply a tool for reasoning about
semantic and operational properties of Plotkin’s λv, such as observational equivalence, solv-
ability and potential valuability. The shuffling calculus λσ

v realizes this aim, as shown by
the conservativity results with respect to λv. These results are achieved since λσ

v avoids the
problem of premature βv-normal forms by dealing uniformly with open and closed terms,
so allowing one to use the classical reasoning by induction on the structure of terms, which
is essential in proving semantic and operational properties.
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In the light of its good behaviour, we believe that λσ
v is also an interesting calculus

deserving to be studied in itself and in comparison with other call-by-value extensions of
Plotkin’s λv dealing with the problem of stuck β-redexes, as done for instance in [AG16].

The approach supplied by λσ
v to circumvent the issue of stuck β-redexes might be prof-

itably used also in more practical settings based on a call-by-value evaluation dealing with
open terms, such as the aforementioned partial evaluation and theory of proof assistants.

Related work. Several variants of λv, arising from different perspectives, have been intro-
duced in the literature for modeling the call-by-value computation and dealing with stuck β-
redexes. We would like here to mention at least the contributions of Moggi [Mog88, Mog89],
Felleisen and Sabry [SF92, SF93], Maraist et al. [MOTW95, MOTW99], Sabry and Wadler
[SW97], Curien and Herbelin [CH00], Dyckhoff and Lengrand [DL07], Herbelin and Zimmer-
man [HZ09], Accattoli and Paolini [AP12], Accattoli and Sacerdoti Coen [AS15]. All these
proposals are based on the introduction of new constructs to the syntax of λv and/or new re-
duction rules extending βv, so the comparison between them is not easy with respect to syn-
tactical properties (some detailed comparison is given in [AP12, AG16]). We point out that
the calculi introduced in [Mog88, Mog89, SF92, SF93, MOTW95, SW97, MOTW99, HZ09]
present some variants of our σ1 and/or σ3 rules, often in a setting with explicit substitu-
tions. The shuffling calculus λσ

v has been introduced by Carraro and Guerrieri in [CG14]
and further studied in [GPR15, Gue15, AG16].

Regnier [Reg92, Reg94] introduced in λ the rule σ1 (but not σ3) and another similar
shuffling rule called σ2. The σ-rules for λ and λv are different because they are inspired by
two different translations of λ-terms into linear logic proof-nets (see [Gir87]). A generaliza-
tion of our and Regnier’s σ-rules is used in [EG16] for a variant of the λ-calculus subsuming
both call-by-name and call-by-value evaluations.

Our approach to prove standardization for λσ
v is inspired by Takahashi’s one [Tak89,

Tak95] for λ based on parallel reduction, adapted by Crary [Cra09] for Plotkin’s λv.
A preliminary version of this paper, focused essentially on the standardization result

for λσ
v , has been presented in [GPR15].

Outline. In Section 2 the syntax of λσ
v with its reduction rules is introduced; in Section 3

the sequentialization property is proved; Section 4 proves the standardization theorem for
λσ
v ; in Section 5 the main results are given, namely the conservativity of λσ

v with respect to
Plotkin’s λv-calculus. Section 6 provides some conclusions and hints for future work.

2. The shuffling calculus: a call-by-value λ-calculus with σ-rules

In this section we introduce the shuffling calculus λσ
v , namely the call-by-value λ-calculus

defined in [CG14] that adds two σ-reduction rules to the pure (i.e. without constants) call-
by-value λ-calculus λv proposed by Plotkin in [Plo75]. The syntax of terms of λσ

v is the
same as Plotkin’s λv and then the same as the ordinary (i.e. call-by-name) λ-calculus λ.

Definition 2.1 (Term, value). Given a countable set V of variables (denoted by x, y, z, . . . ),
the sets Λ of terms and Λv of values are defined by mutual induction as follows:

(Λv) V,U ::= x | λx.M values

(Λ) M,N,L ::= V | MN terms
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Clearly, Λv ( Λ. Terms of the form MN (resp. λx.M) are called applications (resp. ab-
stractions). All terms are considered up to α-conversion (i.e. renaming of bound variables).

As usual, λ’s associate to the right and applications to the left, so λxy.N stands for
λx.(λy.N) and MNL for (MN)L. The set of free variables of a term N is denoted by fv(N):
N is open if fv(N) = ∅, closed otherwise. Given V1, . . . , Vn ∈ Λv and pairwise distinct vari-
ables x1, . . . , xn, N{V1/x1, . . . , Vn/xn} denotes the term obtained by the capture-avoiding si-
multaneous substitution of Vi for each free occurrence of xi in the term N (for all 1 ≤ i ≤ n).
Note that ifN ∈ Λv thenN{V1/x1, . . . , Vn/xn} ∈ Λv (values are closed under substitution).

Remark 2.2. Any term can be written in a unique way as V N1 . . . Nn (a value V recursively
applied to n terms N1, . . . , Nn) for some n ∈ N; in particular, values are obtained for n = 0.

From now on, we set I = λx.x and ∆ = λx.xx. One-hole contexts are defined as usual.

Definition 2.3 (Context). Contexts (with exactly one hole L·M), denoted by C, are defined
via the grammar:

C ::= L·M | λx.C | CM | MC .

Let C be a context. The set of free variables of C is denoted by fv(C). We use CLMM for
the term obtained by the capture-allowing substitution of the term M for the hole L·M in C.

The set of λσ
v -reduction rules contains Plotkin’s βv-reduction rule together with two

simple commutation rules called σ1 and σ3, studied in [CG14].

Definition 2.4 (Reduction rules). For any M,N,L ∈ Λ and any V ∈ Λv, we define the
following binary relations on Λ:

(λx.M)V 7→βv
M{V/x}

(λx.M)NL 7→σ1
(λx.ML)N with x /∈ fv(L)

V ((λx.L)N) 7→σ3
(λx.V L)N with x /∈ fv(V ).

We set 7→σ = 7→σ1
∪ 7→σ3

and 7→v = 7→βv
∪ 7→σ.

For any r ∈ {βv , σ1, σ3, σ, v}, ifM 7→r M
′ thenM is a r-redex andM ′ is its r-contractum.

In the same sense, a term of the shape (λx.M)N (for any M,N ∈ Λ) is a β-redex.

The side conditions for 7→σ1
and 7→σ3

in Definition 2.4 can be always fulfilled by α-
renaming. Clearly, any βv-redex is a β-redex but the converse does not hold: (λx.z)(yI) is
a β-redex but not a βv-redex. Redexes of different kind may overlap (in the sense of [Ter03]):
e.g. the term ∆I∆ is a σ1-redex and contains the βv-redex ∆I; the term ∆(I∆)(xI) is a
σ1-redex and contains the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

Remark 2.5. The relation 7→σ can be defined as a unique reduction rule, namely

EL(λx.M)NM 7→σ (λx.ELMM)N

where E is a context of the form L·ML or V L·M (for any L ∈ Λ and V ∈ Λv) such that x /∈ fv(E).

Let R be a binary relation on Λ. We denote by R
∗ (resp. R+; R=) its reflexive-transitive

(resp. transitive; reflexive) closure.

Definition 2.6 (Rewriting notations and terminology). Let r ∈ {βv, σ1, σ3, σ, v}.

• The r-reduction →r is the contextual closure of 7→r, i.e. M →r M ′ iff there is a
context C and N,N ′ ∈ Λ such that M = CLNM, M ′ = CLN ′M and N 7→r N

′.
• The r-equivalence =r is the congruence relation on Λ generated by 7→r, i.e. the
reflexive-transitive and symmetric closure of →r.
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• Let M be a term: M is r-normal if there is no term N such that M →r N ; M
is r-normalizable if there is a r-normal term N such that M →∗

r N , and we then
say that N is a r-normal form of M ; M is strongly r-normalizing if it does not
exist an infinite sequence of r-reductions starting from M . Finally, →r is strongly
normalizing if every N ∈ Λ is strongly r-normalizing.

From Definitions 2.4 and 2.6, it follows immediately that→v =→βv
∪ →σ with→σ (→v

and →βv
(→v, and also that →σ =→σ1

∪ →σ3
with →σ1

(→σ and →σ3
(→σ.

Remark 2.7. Given r ∈ {βv , σ1, σ3, σ, v} (resp. r ∈ {σ1, σ3, σ}), values are closed under r-
reduction (resp. r-expansion): for any V ∈ Λv, if V →r M (resp. M →r V ) then M ∈ Λv and
more precisely V = λx.N and M = λx.L for some N,L ∈ Λ with N →r L (resp. L→r N).

Proposition 2.8 (Basic properties of reductions, [Plo75, CG14]). The σ-reduction is con-
fluent and strongly normalizing. The βv- and v-reductions are confluent.

Proof. Confluence of βv-reduction has been proved in [Plo75]. The σ-reduction is strongly
confluent in the sense of [Hue80], whence confluence of σ-reduction follows. The v-reduction
is not strongly confluent and a more sophisticated proof is needed. All details (as well as
the proof that σ-reduction is strongly normalizing) are in [CG14].

By confluence (Proposition 2.8), for any r ∈ {βv , σ, v} we have that: M =r N iff
M →∗

r L
∗

r← N for some term L; and any r-normalizable term has a unique r-normal form.
The shuffling calculus or λσ

v -calculus (λσ
v for short) is the set Λ of terms endowed with

the reduction →v. The set Λ endowed with the reduction →βv
is the λv-calculus (λv for

short), i.e. Plotkin’s pure call-by-value λ-calculus [Plo75], a sub-calculus of λσ
v .

Example 2.9. Recalling the termsM and N in Eq. 1.1, one has that M=(λy.∆)(xI)∆→σ1

(λy.∆∆)(xI) →βv
(λy.∆∆)(xI) →βv

. . . and N = ∆((λy.∆)(xI)) →σ3
(λy.∆∆)(xI) →βv

(λy.∆∆)(xI)→βv
. . . are the only possible v-reduction paths from M and N respectively:

M and N are not v-normalizable and M =v N . But M and N are βv-normal ((λy.∆)(xI)
is a stuck β-redex) and different, hence M 6=βv

N by confluence of →βv
(Proposition 2.8).

Example 2.9 shows how σ-reduction shuffles constructors and moves stuck β-redex in
order to unblock βv-redexes which are hidden by the “hyper-sequential structure” of terms,
avoiding “premature” normal forms. An alternative approach to circumvent the issue of
stuck β-redexes is given by λvsub, the call-by-value calculus with explicit substitutions intro-
duced in [AP12], where hidden βv-redexes are reduced using rules acting at a distance. In
[AG16] it has been shown that λvsub and λσ

v can be embedded in each other preserving ter-
mination and divergence. Interestingly, both calculi are inspired by an analysis of Girard’s
“boring” call-by-value translation of λ-terms into linear logic proof-nets [Gir87, Acc15].

3. Sequentialization

Standardization is a consequence of a sequentialization property: every v-reduction sequence
can always be rearranged in such a way that head v-reduction steps precede internal ones.
To prove this sequentialization (Theorem 3.4), we adapt to λσ

v Takahashi’s method [Tak95,
Cra09] based on parallel reduction. This is the most technical part of the paper: for the
sake of readability, this proof together with all needed lemmas are collected in Section 3.1.

First, we partition v-reduction into head v-reduction and internal v-reduction. In turn,
head v-reduction divides up into head βv-reduction and head σ-reduction. Their definitions
are driven by the shape of terms, as given in Remark 2.2.
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Definition 3.1 (Head βv-reduction). We define inductively the head βv-reduction
h

→βv
by

the following rules (m ∈ N in both rules):

βv

(λx.M)V M1 . . .Mm
h

→βv
M{V/x}M1 . . .Mm

N
h

→βv
N ′

right

V NM1 . . .Mm
h

→βv
V N ′M1 . . .Mm

.

Head βv-reduction is the reduction strategy choosing at every step the (unique, if any)
leftmost-outermost βv-redex not in the scope of a λ: thus, it is a deterministic reduction
(i.e. a partial function from Λ to Λ) and does not reduce values. It coincides with the “left
reduction” defined in [Plo75, p. 136] for λv, called “evaluation” in [SF93, Las05, Cra09], and
it models call-by-value evaluation as implemented in functional programming languages such
as OCaml. Head βv-reduction is often equivalently defined either by using the rules

(λx.M)V
h

→βv
M{V/x}

N
h

→βv
N ′

V N
h

→βv
V N ′

M
h

→βv
M ′

MN
h

→βv
M ′N

or as the closure of the relation 7→βv
under evaluation contexts E ::= L·M | EM | V E. We

prefer our presentation since it allows more concise proofs and stresses in a more explicit
way how head βv-reduction acts on the general shape of terms, as given in Remark 2.2.

Definition 3.2 (Head σ-reduction). We define inductively the head σ-reduction
h

→σ by the
following rules (m ∈ N in all the rules, x /∈ fv(L) in the rule σ1, x /∈ fv(V ) in the rule σ3):

σ1

(λx.M)NLM1 . . .Mm
h

→σ (λx.ML)NM1 . . .Mm

N
h

→σ N ′

right

V NM1 . . .Mm
h

→σ V N ′M1 . . .Mm

σ3

V ((λx.L)N)M1 . . .Mm
h

→σ (λx.V L)NM1 . . .Mm

The head σ1-(resp. head σ3-)reduction is
h

→σ1
=→σ1

∩
h

→σ (resp.
h

→σ3
=→σ3

∩
h

→σ).

Head σ-reduction is a non-deterministic reduction, since it reduces at every step “one of
the leftmost-outermost” σ1- or σ3-redexes not in the scope of a λ: such head σ-redexes may
be not unique and overlap, e.g. the term N in Figure 1 is a head σ1-redex containing the
head σ3-redex (λy.y

′)(∆(xI)), or the term I(∆(I(xI))) is a head σ3-redex containing another
head σ3-redex ∆(I(xI)) (see Definition 3.3 below for the formal definition of head redex).

Definition 3.3 (Head v-reduction, internal v-reduction, head redex). The head v-reduction

is
h

→v =
h

→βv
∪

h

→σ. The internal v-reduction is
int

→v =→vr
h

→v.
Given r ∈ {βv, σ1, σ3, σ, v}, a head r-redex of a term M is a r-redex R occurring in M

such that M
h

→r N for some term N obtained from M by replacing R with its r-contractum.

Note that 7→βv
(

h

→βv
(→βv

and 7→σ (
h

→σ (→σ and 7→v(
h

→v (→v. It is immediate

to check that, for any M,M ′, N,L ∈ Λ, M →v M
′ implies NLM

int

→v NLM ′.
Head v-reduction is non-deterministic since head σ-reduction is so, and since head βv-

and head σ1-(resp. σ3-)redexes may overlap, as in the term I∆I (resp. I(∆I)). Also, Figure 1
shows that head σ- and head v-reductions are not confluent and a term may have several
head σ/v-normal forms, indeed N ′

0 and N ′

1 are head σ/v-normal forms of N but N ′

0 6= N ′

1.
However, this does not contradict the confluence of σ- and v-reductions because N ′

1 →σ N ′

0
by performing an internal v-reduction step. Corollary 5.1.2 in Section 5 implies that if a
term N has a head v-normal form V ∈ Λv, then V is the unique head v-normal form of N .

Now we can state the first main result of this paper, namely the sequentialization theo-
rem (Theorem 3.4), saying that any v-reduction sequence can be sequentialized into a head
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N = (λy.y′)(∆(xI))I
h

σ1

zz

h

σ3

##

N0 = (λy.y′I)(∆(xI))

h
σ3��

(λz.(λy.y′)(zz))(xI)I = N1

h
σ1 ��

N ′

0 = (λz.(λy.y′I)(zz))(xI) (λz.(λy.y′)(zz)I)(xI) = N ′

1σ1

oo

Figure 1: Overlapping of (head) σ-redexes.

βv-reduction sequence followed by a head σ-reduction sequence, followed by an internal
v-reduction sequence. In ordinary λ-calculus, the well-known result corresponding to Theo-
rem 3.4 says that a β-reduction sequence can be factorized in a head β-reduction sequence
followed by an internal β-reduction sequence (see for example [Tak95, Corollary 2.6]).

Theorem 3.4 (Sequentialization; its proof is in Section 3.1). If M →∗

v M
′ then there exist

L,N ∈ Λ such that M
h

−→
∗

βv
L

h

−→
∗

σ N
int

−→
∗

v M ′.

Sequentialization (Theorem 3.4) imposes no order on head σ-reduction steps, in accor-
dance with the notion of head σ-reduction (Definition 3.2) which puts together head σ1/σ3-
reduction steps. So, a natural question arises: is it possible to sequentialize them? More
precisely, we wonder if it is possible to anticipate a priori all the head σ1- or all the head
σ3-reduction steps. The answer is negative, as proved by the next two counterexamples.

• M = x((λy.z′)(zI))∆
h

→σ3
(λy.xz′)(zI)∆

h

→σ1
(λy.xz′∆)(zI) = N , but there exists

no L such that M
h

−→
∗

σ1
L

h

−→
∗

σ3
N . In fact, M contains only a head σ3-redex and

(λy.xz′)(zI)∆ has only a head σ1-redex, created by firing the head σ3-redex in M .

• M = x((λy.z′)(zI)∆)
h

→σ1
x((λy.z′∆)(zI))

h

→σ3
(λy.x(z′∆))(zI) = N , but there is

no L such that M
h

−→
∗

σ3
L

h

−→
∗

σ1
N . In fact, M contains only a head σ1-redex and

x((λy.z′∆)(zI)) has only a head σ3-redex, created by firing the head σ1-redex in M .

The impossibility of prioritizing a kind of head σ-reduction over the other is due to the fact
that a head σ1-reduction step can create a new head σ3-redex, and vice-versa. Thus, sequen-
tialization (and then standardization) does not force a total order on head σ-redexes. This
is not a serious issue, since head σ-reduction is strongly normalizing (by Proposition 2.8, as
h

→σ ⊆→σ) and hence the order in which head σ-reduction steps are performed is irrelevant.
Moreover, following Remark 2.5, it seems natural to treat head σ1- and head σ3-reductions
as a same reduction also because the two axiom schemes σ1 and σ3 in the definition of head
σ-reduction (Definition 3.2) can be equivalently replaced by the unique axiom scheme

σ

EL(λx.M)NMM1 . . .Mm
h

→σ (λx.ELMM)NM1 . . .Mm

where E is a context of the form L·ML or V L·M such that x /∈ fv(E).

Sequentialization (Theorem 3.4) says that any v-reduction sequence from a term M to a
term M ′ can be rearranged into an initial head βv-reduction sequence (whose steps reduce,
in a deterministic way, the unique leftmost-outermost βv-redex not under the scope of a λ)
from M to some term L, followed by a head σ-reduction sequence (whose steps reduce, non-
deterministically, one of the leftmost-outermost σ-redexes not in the scope of a λ) from L to
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some term N, followed by an internal v-reduction sequence fromN toM ′. For this internal v-
reduction sequence, the same kind of decomposition can be iterated on the subterms of N .

3.1. Proof of the Sequentialization Theorem. In this subsection we present a detailed
proof, with all auxiliary lemmas, of Theorem 3.4. First, we define parallel reduction.

Definition 3.5 (Parallel reduction). We define inductively the parallel reduction ⇒ by the
following rules (x /∈ fv(L) in the rule σ1, x /∈ fv(V ) in the rule σ3):

V ⇒ V ′ Mi ⇒M ′

i (m ∈ N, 0 ≤ i ≤ m)
βv

(λx.M0)VM1 . . .Mm⇒M ′

0
{V ′/x}M ′

1
. . .M ′

m

N ⇒ N ′ L⇒ L′ Mi ⇒M ′

i (m∈N, 0 ≤ i ≤ m)
σ1

(λx.M0)NLM1 . . .Mm⇒(λx.M ′

0
L′)N ′M ′

1
. . .M ′

m

V ⇒ V ′ N ⇒ N ′ L⇒ L′ Mi ⇒M ′

i (m ∈ N, 1 ≤ i ≤ m)
σ3

V ((λx.L)N)M1 . . .Mm ⇒ (λx.V ′L′)N ′M ′

1
. . .M ′

m

Mi ⇒M ′

i (m ∈ N, 0 ≤ i ≤ m)
λ

(λx.M0)M1 . . .Mm ⇒ (λx.M ′

0
)M ′

1
. . .M ′

m

Mi ⇒M ′

i (m ∈ N, 1 ≤ i ≤ m)
var

xM1 . . .Mm ⇒ xM ′

1
. . .M ′

m

The rule var , in Definition 3.5, has no premises when m = 0: this is the base case of
the inductive definition of⇒. The rules σ1 and σ3 have exactly three premises when m = 0.
Intuitively, M ⇒M ′ means that M ′ is obtained from M by reducing a number of βv-, σ1-
and σ3-redexes (existing in M) simultaneously.

Definition 3.6 (Internal parallel reduction, strong parallel reduction). We define induc-

tively the internal parallel reduction
int

⇒ by the following rules:

N ⇒ N ′

λ

λx.N
int

⇒ λx.N ′

var

x
int

⇒ x
V ⇒ V ′ N

int

⇒ N ′ Mi ⇒M ′

i (m ∈ N, 1 ≤ i ≤ m)
right

V NM1 . . .Mm
int

⇒ V ′N ′M ′

1
. . .M ′

m

The strong parallel reduction ⇛ is defined by: M ⇛ N iff M ⇒ N and there exist

M ′,M ′′ ∈ Λ such that M
h

−→
∗

βv
M ′

h

−→
∗

σ M ′′
int

⇒ N .

Notice that the rule right in Definition 3.6 has exactly two premises when m = 0.

Lemma 3.7 (Reflexivity). The relations ⇒, ⇛ and
int

⇒ are reflexive.

Proof. The reflexivity of⇛ follows immediately from the reflexivity of⇒ and
int

⇒. The proofs

of reflexivity of⇒ and
int

⇒ are both by structural induction on a term: in the case of⇒, recall
that any term is of the form (λx.N)M1 . . .Mm or xM1 . . .Mm for somem ∈ N (Remark 2.2),
and then apply the rule λ or var respectively, together with the inductive hypothesis; in

the case of
int

⇒, recall that every term is of the form λx.M or x or V NM1 . . .Mm for some
m ∈ N, and then apply the rule λ (together with the reflexivity of ⇒) or var or right
(together with the reflexivity of ⇒ and the inductive hypothesis) respectively.

We have
int

⇒(⇛⊆⇒ (first, prove that
int

⇒⊆⇒ by induction on the derivation ofN
int

⇒ N ′,

the other inclusions follow from the definition of ⇛; note that II ⇛ I but II 6
int

⇒ I) and,

by reflexivity of ⇒ (Lemma 3.7),
h

→βv
(⇒ and

h

→σ (⇒. Observe that ∆∆ R ∆∆ for any

R ∈ {7→βv
,

h

→βv
,→βv

,⇒,
int

⇒,⇛}, even if for different reasons: for example, ∆∆
int

⇒ ∆∆ by

reflexivity of
int

⇒ (Lemma 3.7), whereas ∆∆
h

→βv
∆∆ by reducing the only βv-redex.

Some useful properties relating values and reductions follow. Note that Lemmas 3.8.1-2
imply that all values are head v-normal ; the converse fails, since xI is head v-normal but not
a value. It can be shown that closed head v-normal forms are values (actually, abstractions).
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Lemma 3.8 (Values vs. reductions).

(1) The head βv-reduction
h

→βv
does not reduce a value (i.e. values are head βv-normal).

(2) The head σ-reduction
h

→σ does neither reduce a value nor reduce to a value.

(3) Variables and abstractions are preserved by
int

⇐, more precisely: if M
int

⇒ x (resp.

M
int

⇒ λx.N ′) then M = x (resp. M = λx.N for some N ∈ Λ such that N ⇒ N ′).

(4) If M ⇒M ′ then λx.M R λx.M ′ for any R ∈ {⇒,
int

⇒,⇛}.

(5) For any V, V ′ ∈ Λv, one has V
int

⇒ V ′ iff V ⇒ V ′ iff V ⇛ V ′.

Proof. (1) For every M ∈ Λ and every V ∈ Λv, we have V 6
h

→βv
M , because the head

βv-reduction does not reduce under λ’s.

(2) For any N ∈ Λ and V ∈ Λv, V 6
h

→σ N and N 6
h

→σ V since in the conclusion of any

rule of Definition 3.2 the terms on the right and on the left of
h

→σ are applications.

(3) By simple inspection of the rules of
int

⇒ (Definition 3.6), ifM
int

⇒ x (resp.M
int

⇒ λx.N ′)
then the last rule in the derivation is necessarily var (resp. λ).

(4) For R ∈ {⇒,
int

⇒} we apply the rule λ to conclude that λx.M R λx.M ′, therefore

λx.M ⇛ λx.M ′ according to the definition of ⇛, since
h

−→
∗

βv
and

h

−→
∗

σ are reflexive.

(5) First we show that V
int

⇒ V ′ iff V ⇒ V ′. The left-to-right direction holds since
int

⇒⊆⇒.

Conversely, assume V ⇒V ′: if V is a variable then V = V ′ and hence V
int

⇒ V ′ by

applying the rule var for
int

⇒; otherwise V = λx.N for some N ∈ Λ, and then

necessarily V ′ = λx.N ′ with N ⇒ N ′, so V
int

⇒ V ′ by applying the rule λ for
int

⇒.
Now we prove that V ⇒ V ′ iff V ⇛ V ′. The right-to-left direction follows

immediately from the definition of ⇛ (Definition 3.6). Conversely, if V ⇒ V ′ then

we have just shown that V
int

⇒ V ′, so V ⇛ V ′ since
h

−→
∗

βv
and

h

−→
∗

σ are reflexive.

We collect some basic closure properties and relations that hold for reductions.

Lemma 3.9.

(1) If M ⇒M ′ and N ⇒ N ′ then MN ⇒M ′N ′.

(2) If R ∈ {
h

→βv
,

h

→σ} and M R M ′, then MN R M ′N for any N ∈ Λ.

(3) If M
int

⇒M ′ and N ⇒ N ′ where M ′ /∈ Λv, then MN
int

⇒ M ′N ′.
(4) →v⊆⇒⊆→

∗

v and hence ⇒∗ =→∗

v.

(5)
int

→v⊆
int

⇒⊆
int

−→
∗

v and hence
int

⇒
∗

=
int

−→
∗

v .
(6) ⇒ is confluent.

(7) If M
int

−→
∗

v x (resp. M
int

−→
∗

v λx.N ′) then M = x (resp. M = λx.N with N →∗

v N
′).

(8) For any R ∈ {
h

→βv
,

h

→σ}, if M R M ′ then M{V/x} R M ′{V/x} for any V ∈ Λv.

Proof. (1) Just add the derivation of N ⇒ N ′ as the “rightmost” premise of the last
rule of the derivation of M ⇒M ′.

(2) In the conclusion of the derivation of M R M ′, replace M R M ′ with MN R M ′N .

(3) The last rule in the derivation ofM
int

⇒M ′ can be neither λ nor var becauseM ′ /∈ Λv,
so it is right and hence we can add the derivation of N ⇒ N (which exists since ⇒
is reflexive, Lemma 3.7) as its rightmost premise. Note that the hypothesis M ′ /∈ Λv

is crucial: for example, x
int

⇒ x and I∆⇒ ∆ but I∆ 6
int

⇒ ∆ and thus x(I∆) 6
int

⇒ x∆.
(4) The proof that M →v M ′ implies M ⇒ M ′ is by induction on M ∈ Λ, using the

reflexivity of ⇒ (Lemma 3.7) and Lemma 3.9.1. The proof that M ⇒ M ′ implies
M →∗

v M
′ is by straightforward induction on the derivation of M ⇒M ′.
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(5) We prove that M
int

→v M ′ implies M
int

⇒ M ′ by induction on M ∈ Λ. According to
Remark 2.2, M = V N1 . . . Nn for some n ∈ N, V ∈ Λv and N1, . . . , Nn ∈ Λ. Since

M →v M
′ and M 6

h

→v M
′, there are only three cases:

• either M ′ = V ′N1 . . . Nn with V →v V
′, then V = λx.N and V ′ = λx.N ′ with

N →v N ′ by Remark 2.7, so N ⇒ N ′ according to Lemma 3.9.4, and thus

V = λx.N
int

⇒ λx.N ′ = V ′ by applying the rule λ for
int

⇒; if n = 0 then M =
λx.N and M ′ = λx.N ′ and we are done; otherwise n > 0 and hence V ⇒ V ′

(Lemma 3.8.5), so M
int

⇒ M ′ by applying the rule right for
int

⇒, since N1
int

⇒ N1

and Ni ⇒ Ni for any 2 ≤ i ≤ n by reflexivity of
int

⇒ and ⇒ (Lemma 3.7);

• or n > 0 and M ′ = V N ′

1N2 . . . Nn with N1
int

→v N
′

1, then N1
int

⇒ N ′

1 by induction
hypothesis, and V ⇒ V and Ni ⇒ Ni for any 2 ≤ i ≤ n by reflexivity of ⇒

(Lemma 3.7); hence M
int

⇒M ′ by applying the rule right for
int

⇒;
• or n > 1 and M ′ = V N1 . . . N

′

i . . . Nn with Ni →v N
′

i for some 2 ≤ i ≤ n, then
Ni ⇒ N ′

i by Lemma 3.9.4, V ⇒ V and Nj ⇒ Nj for any 2 ≤ j ≤ n with j 6= i

and N1
int

⇒ N1 by reflexivity of ⇒ and
int

⇒ (Lemma 3.7); hence M
int

⇒ M ′ by

applying the rule right for
int

⇒.

The proof that M
int

⇒ M ′ implies M
int

−→
∗

v M ′ is by straightforward induction on

the derivation of M
int

⇒M ′, using that ⇒⊆→∗

v (Lemma 3.9.4).
(6) Since⇒∗=→∗

v according to Lemma 3.9.4, Proposition 2.8 just says that⇒ is conflu-
ent. Anyway, we remark that⇒ does not enjoy the diamond property, see Section 6.

(7) Since
int

⇒
∗

=
int

−→
∗

v (Lemma 3.9.5) and ⇒⊆→∗

v (Lemma 3.9.4), then Lemma 3.8.3 can

be reformulated substituting
int

−→
∗

v for
int

⇒, and →∗

v for ⇒.

(8) The proof is by induction on the derivation of M R M ′, for any R ∈ {
h

→βv
,

h

→σ}.

Parallel reduction is closed under substitution, as stated by the following lemma.

Lemma 3.10 (Substitution vs. ⇒). If M⇒M ′ and V ⇒V ′ then M{V/x}⇒M ′{V ′/x}.

Proof. By induction on the derivation of M ⇒M ′. Let us consider its last rule r.

• If r = var then M = yM1 . . .Mm and M ′ = yM ′

1 . . .M
′

m with m ∈ N and Mi ⇒M ′

i

for any 1 ≤ i ≤ m. By induction hypothesis, Mi{V/x} ⇒ M ′

i{V
′/x} for any

1 ≤ i ≤ m. If y 6= x then M{V/x} = yM1{V/x} . . .Mm{V/x} and M ′{V ′/x} =
yM ′

1{V
′/x} . . .M ′

m{V
′/x}, so M{V/x} ⇒M ′{V ′/x} by applying the rule var for⇒.

Otherwise y = x and then M{V/x} = VM1{V/x} . . .Mm{V/x} and M ′{V ′/x} =
V ′M ′

1{V
′/x} . . .M ′

m{V
′/x}, hence M{V/x} ⇒M ′{V ′/x} by Lemma 3.9.1.

• If r = λ then M = (λy.M0)M1 . . .Mm and M ′ = (λy.M ′

0)M
′

1 . . .M
′

m with m ∈ N

and Mi ⇒ M ′

i for all 0 ≤ i ≤ m; we can suppose without loss of generality that
y /∈ fv(V )∪{x}. By induction hypothesis, Mi{V/x} ⇒M ′

i{V
′/x} for all 0 ≤ i ≤ m.

By applying the rule λ for ⇒, M{V/x} = (λy.M0{V/x})M1{V/x} . . . Mm{V/x} ⇒
(λy.M ′

0{V
′/x})M ′

1{V
′/x} . . . M ′

m{V
′/x} = M ′{V ′/x}.

• If r = σ1 then M = (λy.M0)NLM1 . . .Mm and M ′ = (λy.M ′

0L
′)N ′M ′

1 . . .M
′

m

with m ∈ N, L ⇒ L′, N ⇒ N ′ and Mi ⇒ M ′

i for any 0 ≤ i ≤ m; we can
suppose without loss of generality that y /∈ fv(V ) ∪ {x}. By induction hypothe-
sis, L{V/x} ⇒ L′{V ′/x}, N{V/x} ⇒ N ′{V ′/x} and Mi{V/x} ⇒ M ′

i{V
′/x} for

any 0 ≤ i ≤ m. Hence M{V/x} ⇒ M ′{V ′/x} by applying the rule σ1, since
M{V/x} = (λy.M0{V/x})N{V/x}L{V/x}M1{V/x} . . . Mm{V/x} and M ′{V ′/x} =
(λy.M ′

0{V
′/x}L′{V ′/x})N ′{V ′/x}M ′

1{V
′/x} . . .M ′

m{V
′/x}.
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• If r = σ3 then M = U((λy.L)N)M1 . . .Mm and M ′ = (λy.U ′L′)N ′M ′

1 . . .M
′

m with
m ∈ N and U,U ′ ∈ Λv, U ⇒ U ′, L⇒ L′, N ⇒ N ′ and Mi ⇒M ′

i for any 1 ≤ i ≤ m;
we can suppose without loss of generality that y /∈ fv(V ) ∪ {x}. By induction hy-
pothesis, U{V/x} ⇒ U ′{V ′/x}, L{V/x} ⇒ L′{V ′/x}, N{V/x} ⇒ N ′{V ′/x} and
Mi{V/x} ⇒ M ′

i{V
′/x} for any 1 ≤ i ≤ m. So, M{V/x} ⇒ M ′{V ′/x} by applying

the rule σ3, sinceM{V/x} = U{V/x}((λy.L{V/x})N{V/x})M1{V/x} . . . Mm{V/x}
and M ′{V ′/x} = (λy.U ′{V ′/x}L′{V ′/x})N ′{V ′/x}M ′

1{V
′/x} . . .M ′

m{V
′/x}.

• Finally, if r = βv , then M = (λy.M0)V0M1 . . .Mm and M ′ = M ′

0{V
′

0/y}M
′

1 . . .M
′

m

with m ∈ N, V0 ⇒ V ′

0 and Mi ⇒M ′

i for any 0 ≤ i ≤ m; we can suppose without loss
of generality that y /∈ fv(V ) ∪ {x}. By induction hypothesis, V0{V/x} ⇒ V ′

0{V
′/x}

and Mi{V/x} ⇒M ′

i{V
′/x} for any 0 ≤ i ≤ m. So, M{V/x} ⇒M ′{V ′/x} by apply-

ing the rule βv , since M{V/x} = (λy.M0{V/x})V0{V/x}M1{V/x} . . . Mm{V/x} and

M ′{V ′/x} = M ′

0{V
′

0/y}{V
′/x}M ′

1{V
′/x} . . .M ′

m{V
′/x}

= M ′

0{V
′/x}{V ′

0{V
′/x}/y}M ′

1{V
′/x} . . .M ′

m{V
′/x}.

The following lemma will play a crucial role in the proof of Lemmas 3.15-3.16 and shows

that head σ-reduction
h

→σ can be postponed to head βv-reduction
h

→βv
.

Lemma 3.11 (Commutation of head reductions).

(1) If M
h

→σ L
h

→βv
N then there exists L′ ∈ Λ such that M

h

→βv
L′ h

−→
=
σ N .

(2) If M
h

−→
∗

σ L
h

−→
∗

βv
N then there exists L′ ∈ Λ such that M

h

−→
∗

βv
L′

h

−→
∗

σ N .

(3) If M
h

−→
∗

v M ′ then there exists N ∈ Λ such that M
h

−→
∗

βv
N

h

−→
∗

σ M ′.

Proof. (1) By induction on the derivation of M
h

→σ L. Let us consider its last rule r.
• If r = σ1 then M = (λx.M0)N0L0M1 . . .Mm and L = (λx.M0L0)N0M1 . . .Mm

where m ∈ N and x /∈ fv(L0). Since L
h

→βv
N , there are only two cases:

– either N0
h

→βv
N ′

0 and N = (λx.M0L0)N
′

0M1 . . .Mm (according to the

rule right for
h

→βv
), then M

h

→βv
(λx.M0)N

′

0L0M1 . . .Mm
h

→σ N ;
– or N0 ∈ Λv and N = M0{N0/x}L0M1. . .Mm (according to the rule βv

for
h

→βv
, since x /∈ fv(L0)), therefore M

h

→βv
N .

• If r = σ3 then M = V ((λx.L0)N0)M1 . . .Mm and L = (λx.V L0)N0M1 . . .Mm

with m ∈ N and x /∈ fv(V ). Since L
h

→βv
N , there are only two cases:

– either N0
h

→βv
N ′

0 and N = (λx.V L0)N
′

0M1 . . .Mm (according to the rule

right for
h

→βv
), then M

h

→βv
V ((λx.L0)N

′

0)M1 . . .Mm
h

→σ N ;
– or N0 ∈ Λv and N = V L0{N0/x}M1 . . .Mm (according to the rule βv for

h

→βv
, because x /∈ fv(V )), so M

h

→βv
N .

• Finally, if r = right then M = V N0M1 . . .Mm and L = V N ′

0M1 . . .Mm with

m ∈ N and N0
h

→σ N ′

0. By Lemma 3.8.2, N ′

0 /∈ Λv and thus, since L
h

→βv
N ,

the only possibility is that N ′

0
h

→βv
N ′′

0 and N = V N ′′

0M1 . . .Mm (according to

the rule right for
h

→βv
). By induction hypothesis, there exists N ′′′

0 ∈ Λ such

that N0
h

→βv
N ′′′

0
h

−→
=
σ N ′′

0 . Therefore, M
h

→βv
V N ′′′

0 M1 . . .Mm
h

−→
=
σ N .

(2) By hypothesis, there exist m,n ∈ N and M0, . . . ,Mm, N0, . . . , Nn ∈ Λ such that

M = M0
h

→σ . . .
h

→σ Mm = L = N0
h

→βv
. . .

h

→βv
Nn = N . We prove by induction

on m ∈ N that M
h

−→
∗

βv
L′ h

−→
∗

σ N for some L′ ∈ Λ.
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• If m = 0 (resp. n = 0) then we conclude by taking L′ = N (resp. L′ = M).
• Suppose m,n > 0: by applying Lemma 3.11.1 at most n times, there exist

N ′

0, . . . , N
′

n−1 ∈ Λ such that Mm−1
h

→βv
N ′

0
h

−→
=

βv
. . .

h

−→
=

βv
N ′

n−1
h

−→
=

v N . By

induction hypothesis (applied to M = M0
h

→σ . . .
h

→σ Mm−1
h

−→
∗

βv
N or M =

M0
h

→σ . . .
h

→σ Mm−1
h

−→
∗

βv
N ′

n−1 depending on whether N ′

n−1
h

→βv
N or

N ′

n−1
h

−→
=
σ N , respectively), there exists L′ ∈ Λ such that M

h

−→
∗

βv
L′

h

−→
∗

σ N .

(3) By hypothesis, there exist n ∈ N and L,M1, N1, . . . ,Mn, Nn ∈ Λ such that M
h

−→
∗

βv

L
h

−→
+

σ M1
h

−→
+

βv
N1

h

−→
+

σ . . .
h

−→
+

βv
Nn−1

h

−→
+

σ Mn
h

−→
+

βv
Nn

h

−→
∗

σ M ′ (i.e. n is the number

of subsequences of the shape
h

→σ
h

→βv
in the head v-reduction sequence from M to

M ′). We prove by induction on n ∈ N that M
h

−→
∗

βv
N

h

−→
∗

σ M ′ for some N ∈ Λ.

• If n = 0 then M
h

−→
∗

βv
L

h

−→
∗

σ M ′ and hence we conclude by taking N = L.
• Suppose n > 0. By applying the induction hypothesis to the head v-reduction

sequence from M to Mn, M
h

−→
∗

βv
N ′

h

−→
∗

σ Mn
h

−→
+

βv
Nn

h

−→
∗

σ M ′ for some N ′ ∈ Λ.

By Lemma 3.11.2, M
h

−→
∗

βv
N ′

h

−→
∗

βv
N

h

−→
∗

σ Nn
h

−→
∗

σ M ′ for some N ∈ Λ.

We are now ready to retrace Takahashi’s method [Tak95] in our setting with βv- and
σ-reductions. The next four lemmas govern strong parallel reduction and will be used to
prove Lemma3.16, the key lemma stating that ⇒ can be “sequentialized” according to ⇛.

Lemma 3.12. If M ⇛ M ′ and N ⇒ N ′ and M ′ /∈ Λv, then MN ⇛ M ′N ′.

Proof. From the definition of M ⇛ M ′ it follows that M ⇒M ′ and M
h

−→
∗

βv
L

h

−→
∗

σ L′ int

⇒M ′

for some L,L′ ∈ Λ. Hence, MN ⇒ M ′N ′ by Lemma 3.9.1, and MN
h

−→
∗

βv
LN

h

−→
∗

σ L′N by

Lemma 3.9.2. Since M ′ /∈ Λv, L
′N

int

⇒M ′N ′ by Lemma 3.9.3. Therefore, MN ⇛ M ′N ′.

Lemma 3.13 (Applicative closure of ⇛). If M ⇛ M ′ and N ⇛ N ′ then MN ⇛ M ′N ′.

Proof. If M ′ /∈ Λv then MN ⇛ M ′N ′ by Lemma 3.12, since N ⇛ N ′ implies N ⇒ N ′.
Assume M ′ ∈ Λv: MN ⇒ M ′N ′ by Lemma 3.9.1, since M ⇒ M ′ and N ⇒ N ′.

By hypothesis, there are M0,M
′

0, N0, N
′

0 ∈ Λ such that M
h

−→
∗

βv
M0

h

−→
∗

σ M ′

0
int

⇒ M ′ and

N
h

−→
∗

βv
N0

h

−→
∗

σ N ′

0
int

⇒ N ′ . By Lemma 3.8.3, M ′

0 ∈ Λv since M ′ ∈ Λv, thus M0 = M ′

0

by Lemma 3.8.2 (and M0 ⇒ M ′ since
int

⇒⊆⇒). Since M0 ∈ Λv, using the rules right

for
h

→βv
and

h

→σ, we have M0N
h

−→
∗

βv
M0N0 and M0N0

h

−→
∗

σ M0N
′

0. By Lemma 3.9.2,

MN
h

−→
∗

βv
M0N . By applying the rule right for

int

⇒, we have M0N
′

0
int

⇒ M ′N ′. Therefore,

MN
h

−→
∗

βv
M0N

h

−→
∗

βv
M0N0

h

−→
∗

σ M0N
′

0
int

⇒M ′N ′ and hence MN ⇛ M ′N ′.

Lemma 3.14 (Substitution vs.
int

⇒). If M
int

⇒M ′ and V
int

⇒ V ′ then M{V/x}
int

⇒M ′{V ′/x}.

Proof. By induction on M ∈ Λ. Let us consider the last rule r of the derivation of M
int

⇒M ′.

• If r = var then M = M ′ and there are only two cases: either M = x and then

M{V/x} = V
int

⇒ V ′ = M ′{V ′/x}; or M = y 6= x and then M{V/x} = y =

M ′{V ′/x}, therefore M{V/x}
int

⇒M ′{V ′/x} by reflexivity of
int

⇒ (Lemma 3.7).
• If r = λ then M = λy.N and M ′ = λy.N ′ with N ⇒ N ′; we can suppose without
loss of generality that y /∈ fv(V )∪ {x}. We have N{V/x} ⇒ N ′{V ′/x} according to

Lemma 3.10, since V
int

⇒ V ′ implies V ⇒ V ′ (Lemma 3.8.5). By applying the rule λ

for
int

⇒, we have M{V/x} = λy.N{V/x}
int

⇒ λy.N ′{V ′/x} = M ′{V ′/x}.
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• Finally, if r = right then M = UNM1 . . .Mm and M ′ = U ′N ′M ′

1 . . .M
′

m for some

m ∈ N with U,U ′ ∈ Λv such that U ⇒ U ′, N
int

⇒ N ′ and Mi ⇒ M ′

i for any

1 ≤ i ≤ m. By induction hypothesis, N{V/x}
int

⇒ N ′{V ′/x}. By Lemma 3.10,

U{V/x} ⇒ U ′{V ′/x} and Mi{V/x} ⇒ M ′

i{V
′/x} for any 1 ≤ i ≤ m, since V

int

⇒ V ′

implies V ⇒ V ′ (Lemma 3.8.5). By applying the rule right for
int

⇒, we have

M{V/x} = U{V/x}N{V/x}M1{V/x} . . . Mm{V/x}
int

⇒ U ′{V ′/x}N ′{V ′/x}M ′

1{V
′/x} . . .M ′

m{V
′/x} = M ′{V ′/x}.

Lemma 3.14 is used to prove the following substitution lemma for ⇛.

Lemma 3.15 (Substitution vs. ⇛). If M⇛M ′ and V ⇛V ′ then M{V/x}⇛ M ′{V ′/x}.

Proof. According to Lemma 3.10, M{V/x} ⇒ M ′{V ′/x} since M ⇒ M ′ and V ⇒ V ′. By

hypothesis, there exist N,L ∈ Λ such that M
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒ M ′. By Lemma 3.9.8,

M{V/x}
h

−→
∗

βv
L{V/x} and L{V/x}

h

−→
∗

σ N{V/x}. By Lemma 3.14 (since V ⇛ V ′ implies

V
int

⇒ V ′ according to Lemma 3.8.5), we have N{V/x}
int

⇒ M ′{V ′/x}, thus M{V/x}
h

−→
∗

βv

L{V/x}
h

−→
∗

σ N{V/x}
int

⇒M ′{V ′/x} and therefore M{V/x}⇛ M ′{V ′/x}.

Now we prove a key lemma, stating that parallel reduction ⇒ coincides with strong
parallel reduction ⇛ (the inclusion ⇛⊆⇒ holds trivially by definition of ⇛). In its proof,
as well as in the proof of Corollary 3.18 and Theorem 3.4, our Lemma 3.11 plays a crucial
role: indeed, since head σ-reduction well interacts with head βv-reduction, Takahashi’s
method [Tak95] is still working when adding the reduction rules σ1 and σ3 to βv-reduction.

Lemma 3.16 (Key Lemma). If M ⇒M ′ then M ⇛ M ′.

Proof. By induction on the derivation of M ⇒M ′. Let us consider its last rule r.

• If r = var then M = xM1 . . .Mm and M ′ = xM ′

1 . . .M
′

m where m ∈ N and
Mi ⇒ M ′

i for all 1 ≤ i ≤ m. By reflexivity of ⇛ (Lemma 3.7), x ⇛ x. By
induction hypothesis, Mi ⇛ M ′

i for all 1 ≤ i ≤ m. Therefore, M ⇛ M ′ by applying
Lemma 3.13 m times.
• If r = λ then M = (λx.M0)M1 . . .Mm and M ′ = (λx.M ′

0)M
′

1 . . .M
′

m where m ∈ N

and Mi ⇒ M ′

i for all 0 ≤ i ≤ m. By induction hypothesis, Mi ⇛ M ′

i for all
1 ≤ i ≤ m. According to Lemma 3.8.4, λx.M0 ⇛ λx.M ′

0. So, M ⇛ M ′ by applying
Lemma 3.13 m times.
• If r = βv then M = (λx.M0)VM1 . . .Mm and M ′ = M ′

0{V
′/x}M ′

1 . . .M
′

m where m ∈
N, V ⇒ V ′ and Mi ⇒M ′

i for all 0 ≤ i ≤ m. By induction hypothesis, V ⇛ V ′ and
Mi ⇛ M ′

i for all 0 ≤ i ≤ m. Moreover, M0{V/x}M1 . . .Mm ⇛ M ′ by Lemma 3.15

and by applying Lemma 3.13 m times, thusM0{V/x}M1. . .Mm
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒M ′

for some L,N ∈ Λ. Therefore, M ⇛ M ′ since M
h

→βv
M0{V/x}M1. . .Mm.

• If r = σ1 then M = (λx.M0)N0L0M1 . . .Mm and M ′ = (λx.M ′

0L
′

0)N
′

0M
′

1 . . .M
′

m

where m ∈ N, L0 ⇒ L′

0, N0 ⇒ N ′

0 and Mi ⇒ M ′

i for any 0 ≤ i ≤ m. By
induction hypothesis, N0 ⇛ N ′

0 and Mi ⇛ M ′

i for any 1 ≤ i ≤ m. By applying

the rule σ1 for
h

→σ, we have M
h

→σ (λx.M0L0)N0M1 . . .Mm. By Lemma 3.9.1,
M0L0 ⇒ M ′

0L
′

0 and thus λx.M0L0 ⇛ λx.M ′

0L
′

0 according to Lemma 3.8.4. So
(λx.M0L0)N0M1 . . .Mm ⇛ M ′ by applying Lemma 3.13 m + 1 times, hence there
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are L,N ∈ Λ such that M
h

→σ (λx.M0L0)N0M1 . . .Mm
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒ M ′. By

Lemma 3.11.2, there is L′∈Λ such that M
h

−→
∗

βv
L′ h

−→
∗

σ L
h

−→
∗

σ N
int

⇒M ′, so M ⇛ M ′.

• Finally, if r = σ3 thenM = V ((λx.L0)N0)N1 . . . Nn andM ′= (λx.V ′L′

0)N
′

0N
′

1 . . . N
′

n

with n ∈ N, V ⇒ V ′, L0 ⇒ L′

0 and Ni ⇒ N ′

i for any 0 ≤ i ≤ n. By induction

hypothesis, Ni ⇛ N ′

i for any 0 ≤ i ≤ n. By the rule σ3 for
h

→σ, we have M
h

→σ

(λx.V L0)N0N1 . . . Nn. By Lemma 3.9.1, V L0 ⇒ V ′L′

0 and thus λx.V L0 ⇛ λx.V ′L′

0
according to Lemma 3.8.4. So (λx.V L0)N0N1 . . . Nn ⇛ M ′ by applying Lemma 3.13

n + 1 times, hence there are L,N ∈ Λ such that M
h

→σ (λx.V L0)N0N1 . . . Nn
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒ M ′. By Lemma 3.11.2, there is L′ ∈Λ such that M
h

−→
∗

βv
L′

h

−→
∗

σ

L
h

−→
∗

σ N
int

⇒M ′, therefore M ⇛ M ′.

Next Lemma 3.17 and Corollary 3.18 show that internal parallel reduction can be shifted
after head v-reduction.

Lemma 3.17 (Postponement, version 1). If M
int

⇒ L and L
h

→βv
N (resp. L

h

→σ N) then

there exists L′ ∈ Λ such that M
h

→βv
L′ (resp. M

h

→σ L′) and L′ ⇒ N .

Proof. By induction on the derivation of M
int

⇒ L. Let us consider its last rule r.

• If r = var , then M = x = L which contradicts L
h

→βv
N and L

h

→σ N by Lem-
mas 3.8.1-2.
• If r = λ then L = λx.L′ for some L′ ∈ Λ, which contradicts L

h

→βv
N and L

h

→σ N
by Lemmas 3.8.1-2.
• Finally, if r = right thenM = VM0M1 . . .Mm and L = V ′L0L1 . . . Lm wherem ∈ N,

V ⇒ V ′ (so V
int

⇒ V ′ by Lemma 3.8.5), M0
int

⇒ L0 (thus M0 ⇒ L0 since
int

⇒⊆⇒) and
Mi ⇒ Li for any 1 ≤ i ≤ m.

– If L
h

→βv
N then there are only two cases, depending on the last rule r

′ of the

derivation of L
h

→βv
N .

∗ If r
′ = βv then V ′ = λx.N ′

0, L0 ∈ Λv and N = N ′

0{L0/x}L1 . . . Lm,
thus M0 ∈ Λv and V = λx.N0 with N0 ⇒ N ′

0 by Lemma 3.8.3. By
Lemma 3.10, N0{M0/x} ⇒ N ′

0{L0/x}. Let L′ = N0{M0/x}M1 . . .Mm:

so M = (λx.N0)M0M1 . . .Mm
h

→βv
L′ (apply the rule βv for

h

→βv
) and

L′ ⇒ N by applying Lemma 3.9.1 m times.

∗ If r′ = right then N = V ′N0L1 . . . Lm with L0
h

→βv
N0. By induction

hypothesis, there exists L′

0 ∈ Λ such that M0
h

→βv
L′

0 ⇒ N0. Let L′ =

V L′

0M1 . . .Mm: so M
h

→βv
L′ (apply the rule right for

h

→βv
) and L′ ⇒ N

by applying Lemma 3.9.1 m+ 1 times.

– If L
h

→σ N then there are only three cases, depending on the last rule r
′ of the

derivation of L
h

→σ N .
∗ If r′ = σ1 then m > 0, V ′ = λx.N ′

0 and N = (λx.N ′

0L1)L0L2 . . . Lm, thus
V = λx.N0 with N0 ⇒ N ′

0 by Lemma 3.8.3. Using Lemmas 3.9.1 and
3.8.4, we have λx.N0M1 ⇒ λx.N ′

0L1. Let L
′ = (λx.N0M1)M0M2 . . .Mm:

so M = (λx.N0)M0M1 . . .Mm
h

→σ L′ (apply the rule σ1 for
h

→σ) and
L′ ⇒ N by applying Lemma 3.9.1 m times.
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∗ If r′ = σ3 then L0 = (λx.L01)L02 and N = (λx.V ′L01)L02L1 . . . Lm. Since

M0
int

⇒ (λx.L01)L02, then by simple inspection of the rules for
int

⇒ (Defini-

tion 3.6) we infer that M0 = V0M02 with V0 ⇒ λx.L01 and M02
int

⇒ L02

(so M02 ⇒ L02 because
int

⇒⊆⇒). By Lemmas 3.8.5 and 3.8.3, from V0 ⇒
λx.L01 it follows that V0 = λx.M01 with M01 ⇒ L01. By Lemmas 3.9.1
and 3.8.4, λx.V M01 ⇒ λx.V ′L01. Let L

′ = (λx.V M01)M02M1 . . .Mm: so

M = V ((λx.M01)M02)M1 . . .Mm
h

→σ L′ (apply the rule σ3 for
h

→σ) and
L′ ⇒ N by applying Lemma 3.9.1 m+ 1 times.

∗ If r′ = right then N = V ′N0L1 . . . Lm with L0
h

→σ N0. By induction

hypothesis, there exists L′

0 ∈ Λ such that M0
h

→σ L′

0 ⇒ N0. Let L′ =

V L′

0M1 . . .Mm: so M
h

→σ L′ (apply the rule right for
h

→σ) and L′ ⇒ N
by applying Lemma 3.9.1 m+ 1 times.

Corollary 3.18 (Postponement, version 2). If M
int

⇒ L and L
h

→βv
N (resp. L

h

→σ N), then

there exist L′, L′′ ∈ Λ such that M
h

−→
+

βv
L′

h

−→
∗

σ L′′
int

⇒ N (resp. M
h

−→
∗

βv
L′

h

−→
∗

σ L′′
int

⇒ N).

Proof. Immediate from Lemmas 3.17 and 3.16, applying Lemma 3.11.2 if L
h

→σ N .

Proof of Sequentialization (Theorem 3.4 on page 8).
By Lemma 3.9.4, M ⇒∗ M ′ and thus there are m ∈ N and M0, . . . ,Mm ∈ Λ such that
M = M0, Mm = M ′ and Mi ⇒Mi+1 for any 0 ≤ i < m. We prove by induction on m ∈ N

that there are L,N ∈ Λ such that M
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒
∗

M ′, so N
int

−→
∗

v M ′ by Lemma 3.9.5.

• If m = 0 then M = M0 = M ′ and hence we conclude by taking L = M ′ = N .
• Supposem > 0. By induction hypothesis applied toM1 ⇒

∗ M ′, there are L′, N ′ ∈ Λ

such that M1
h

−→
∗

βv
L′

h

−→
∗

σ N ′
int

⇒
∗

M ′. By applying Lemma 3.16 to M ⇒ M1, there

exist L0, N0 ∈ Λ such that M
h

−→
∗

βv
L0

h

−→
∗

σ N0
int

⇒ M1. By applying Corollary 3.18

repeatedly, there is N ∈ Λ such that N0
h

−→
∗

v N
int

⇒ N ′, and hence M
h

−→
∗

v N
int

⇒
∗

M ′.

According to Lemma 3.11.3, there is L ∈ Λ such that M
h

−→
∗

βv
L

h

−→
∗

σ N
int

⇒
∗

M ′.

4. Standardization

This section is devoted to prove the standardization theorem for λσ
v , stating that if N →∗

v L
then there is a “standard” v-reduction sequence from N to L (Theorem 4.6). Roughly
speaking, a reduction sequence is standard if the “positions” of the reduced redexes move
from left to right.1 Actually, in a call-by-value λ-calculus (such as λσ

v ), this “left-to-right”
order is more delicate to define, since β-redexes can be fired only after their arguments have
been reduced to a value,2 but the essence is the same: a standard reduction sequence begins
with head reduction steps, and then continues with internal reduction steps selecting redexes
according to a “left-to-right” order. Our choice to prioritize head reduction over internal

1In ordinary λ-calculus, standard sequences (for β-reduction) can be described as follows: “After each
contraction of a redex R, index the λ’s of redexes to the left of R. Redexes with indexed λ’s are not allowed
to be contracted anymore. Indexed λ’s remain indexed after contractions of other redexes” [Bar84, p. 297].

2E.g., according to [Bar84, Cra09] (and us), in λv the βv-reduction sequence ∆(II)
h

→βv
∆I

h

→βv
II is

standard, even if the (only) βv-redex in ∆(II) seems to be “on the right” of the βv-redex ∆I reduced later.
The subtlety is that in λv, unlike λ, new redexes can be created in the following way: a βv-reduction step in
the argument of a β-(not βv-)redex R may turn the argument itself into a value, turning R into a βv-redex.
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reduction (followed also by [Plo75, Cra09] for λv) entails that in a standard sequence some
changes of positions from right to left for the selected redexes may take place when passing
from the head reduction phase to the internal reduction one: e.g. according to [Plo75, Cra09]

(and us), in λv the sequence (λx.I∆)(y(II))
h

→βv
(λx.I∆)(zI) →βv

(λx.∆)(zI) is standard,
even if the βv-redex II is “on the right” of the βv-redex I∆ (fired later as internal, since it is
under the scope of a λ). Actually, in λσ

v another intricacy arises in defining a standard order:
there are not only β-redexes but also σ-redexes and they may overlap. Our approach is to
prioritize head βv-redexes over head σ-redexes (this idea extends iteratively to subterms).

We define the notion of standard reduction sequence by closely following the approach
used in [Plo75, Cra09], so the redex-order is defined by induction on the structure of terms,
without involving any (tricky) notion of residual redex.

Definition 4.1 (Standard head sequence). For any k,m ∈ N with k ≤ m, a standard head
sequence, denoted by ⌈M0, . . . ,Mk, . . . ,Mm⌉

head , is a finite sequence (M0, . . . ,Mk, . . . ,Mm)

of terms such that Mi
h

→βv
Mi+1 for any 0 ≤ i < k, and Mi

h

→σ Mi+1 for any k ≤ i < m.

In other words, a standard head sequence is a head v-reduction sequence where the head
βv-reduction steps precede all the head σ-reduction steps, without any order between head
σ1- and head σ3-reduction steps. Note that when k = m (resp. k = 0) then the standard
head sequence consists only of head βv-(resp. head σ-)reduction steps. It is easy to check
that ⌈M⌉head for any M ∈ Λ (apply Definition 4.1 with m = 0).

Using the above definition of standard head sequence, we define by mutual induction
the notions of standard sequence and standard inner sequence of terms (Definition 4.2).

Definition 4.2 (Standard and standard inner sequences). Standard sequences and standard
inner sequences of terms, denoted by ⌈N0, . . . , Nn⌉

std and ⌈N0, . . . , Nn⌉
in respectively (with

n ∈ N and N0, . . . , Nn ∈ Λ), are defined by mutual induction as follows:

(1) if ⌈M0, . . . ,Mm⌉
head and ⌈Mm, . . . ,Mm+n⌉

in , then ⌈M0, . . . ,Mm, . . . ,Mm+n⌉
std ;

(2) ⌈M⌉in , for any M ∈ Λ;
(3) if ⌈M0, . . . ,Mm⌉

std then ⌈λz.M0, . . . , λz.Mm⌉
in ;

(4) if ⌈V0, . . . , Vh⌉
std and ⌈N0, . . . , Nn⌉

in , then ⌈V0N0, . . . , VhN0, . . . , VhNn⌉
in (where

V0, . . . , Vh ∈ Λv);
(5) if ⌈N0, . . . , Nn⌉

in , ⌈L0, . . . , Ll⌉
std and N0 6∈ Λv, then ⌈N0L0, . . . , NnL0, . . . , NnLl⌉

in .

Remark 4.3. It is easy to show (by mutual induction on the definition of standard
and standard inner sequences) that, given n ∈ N and N0, . . . , Nn ∈ Λ, if ⌈N0, . . . , Nn⌉

in

(resp. ⌈N0, . . . , Nn⌉
std ) then Ni

int

→v Ni+1 (resp. Ni →v Ni+1) for any 0 ≤ i < n.

In fact, the presence of a standard or standard inner sequence means that not only there
is a v-reduction sequence or an internal v-reduction sequence, respectively, but also that this
v-reduction sequence is performed selecting v-redexes according to the aforementioned “left-
to-right” order, up to some intricacies already pointed out on p. 16. Indeed, in Definition 4.2,
the rule (1)— the only one yielding standard sequences—says that standard sequences start
by reducing first head βv-redexes, then head σ-redexes and then internal v-redexes, where
the head βv-redex in a term is its (unique, if any) leftmost-outermost βv-redex not under the
scope of λ’s, and head σ-redexes in a term are its (possibly not unique) leftmost-outermost
σ-redexes not under the scope of λ’s. Rules (4)-(5) in Definition 4.2 intuitively mean that
the positions of the v-redexes reduced in a standard inner sequence move from left to right.

In order to give informative examples about standard and standard inner sequences,

for any r ∈ {βv , σ1, σ3, σ} we set
int

−→r =→r ∩
int

→v.
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Example 4.4. Let L = (λy.Ix)(z(∆I))(II): one has that L
int

−→βv
(λy.Ix)(z(∆I))I

int

−→βv

(λy.x)(z(∆I))I and L
h

→σ1
(λy.Ix(II))(z(∆I))

h

→βv
(λy.Ix(II))(z(II)) are not standard

sequences; but L
int

−→βv
(λy.Ix)(z(∆I))I and L

h

→βv
(λy.Ix)(z(II))(II)

h

→βv
(λy.Ix)(zI)(II)

h

→σ1
(λy.Ix(II))(zI)

int

−→βv
(λy.x(II))(zI)

int

−→βv
(λy.xI)(zI) are standard sequences.

The next lemma states that standard head and inner sequences are standard sequences.

Lemma 4.5. Given n ∈ N, if ⌈N0, . . . , Nn⌉
in (resp. ⌈N0, . . . , Nn⌉

head ) then ⌈N0, . . . , Nn⌉
std .

Proof. ⌈N0⌉
head (resp. ⌈Nn⌉

in by Definition 4.2.2), so ⌈N0, . . . , Nn⌉
std by Definition 4.2.1.

In particular, ⌈N⌉std for any N ∈ Λ: apply Definition 4.2.2 and Lemma 4.5 for n = 0.
Note that the concatenation of two standard sequences is not standard, in general: take

for instance a standard inner sequence followed by a standard head sequence.
For all V0, . . . , Vh ∈ Λv, ⌈V0, . . . , Vh⌉

std iff ⌈V0, . . . , Vh⌉
in : the left-to-right implication

follows from the rule (1) of Definition 4.2 (the only one yielding standard sequences) and
Remarks 3.8.1-2 (⌈V0, . . . , Vh⌉

head is impossible for h > 0); the converse holds by Lemma 4.5.
We can now state and prove the standardization theorem for λσ

v , one of the main result
of this paper: if M v-reduces to M ′ then there exists a standard sequence from M to M ′.
The idea to build this standard sequence is to sequentialize (as stated in Theorem 3.4) the
v-reduction sequence from M to M ′ iteratively according to a “left-to-right” order.

Theorem 4.6 (Standardization). Let M and M ′ be terms.

(1) If M
h

−→
∗

v M ′ then there is a standard head sequence ⌈M, . . . ,M ′⌉head .

(2) If M
int

−→
∗

v M ′ then there is a standard inner sequence ⌈M, . . . ,M ′⌉in .
(3) If M →∗

v M
′ then there is a standard sequence ⌈M, . . . ,M ′⌉std .

Proof. Theorem 4.6.3 is an immediate consequence of Theorems 4.6.1-2 and Theorem 3.4:

indeed, if M →∗

v M
′ then there is a term M ′′ such that M

h

−→
∗

v M ′′
int

−→
∗

v M ′ by sequentializa-

tion (Theorem 3.4), moreover M
h

−→
∗

v M ′′ implies that there is a sequence ⌈M, . . . ,M ′′⌉head

by Theorem 4.6.1, and M ′′
int

−→
∗

v M ′ implies that there is a sequence ⌈M ′′, . . . ,M ′⌉in by
Theorem 4.6.2. According to the rule (1) of Definition 4.2, ⌈M, . . . ,M ′′, . . . ,M ′⌉std .

It remains to prove Theorems 4.6.1-2.
Now, Theorem 4.6.1 is exactly our Lemma 3.11.3, already proved.
Theorem 4.6.2 is proved by induction on M ′ ∈ Λ, using Theorem 4.6.1.

• If M ′ = z then M = z by Lemma 3.9.7, thus ⌈z⌉in by the rule (2) of Definition 4.2.
• If M ′ = λz.L′ then there is L ∈ Λ such that M = λz.L and L →∗

v L′, by
Lemma 3.9.7. By sequentialization (Theorem 3.4), there exists a term N such that

L
h

−→
∗

v N
int

−→
∗

v L′. By Theorem 4.6.1, from L
h

−→
∗

v N it follows that there is a sequence

⌈L, . . . ,N⌉head . By induction hypothesis applied to N
int

−→
∗

v L′, there is a sequence
⌈N, . . . , L′⌉in . According to the rule (1) of Definition 4.2, ⌈L, . . . ,N, . . . , L′⌉std . By
the rule (3) of Definition 4.2, ⌈λz.L, . . . , λz.N, . . . , λz.L′⌉in , that is ⌈M, . . . ,M ′⌉in .

• If M ′ = N ′L′ then M = NL for some N,L ∈ Λ by Remark 2.7, since
int

−→
∗

v ⊆→
∗

v

and M ′ /∈ Λv. By Lemma 3.9.5, NL
int

⇒
∗

N ′L′; clearly, for each step of
int

⇒ in

NL
int

⇒
∗

N ′L′, the last rule of its derivation is an instance of the rule right for
int

⇒
(the other rules deal with values, see Definition 3.6). There are two sub-cases.

– If N ∈ Λv then N ⇒∗ N ′ and L
int

⇒
∗

L′, so N →∗

v N ′ and L
int

−→
∗

v L′ by Lem-
mas 3.9.4-5. By sequentialization (Theorem 3.4), there is a term N ′′ such that
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N
h

−→
∗

v N ′′ int

−→
∗

v N ′, and actually N = N ′′ by Lemmas 3.8.1-2 since N is a value;

thus, N
int

−→
∗

v N ′. By induction hypothesis applied to N
int

−→
∗

v N ′ and L
int

−→
∗

v L′,
there are sequences ⌈N, . . . ,N ′⌉in (hence ⌈N, . . . ,N ′⌉std by Lemma 4.5) and
⌈L, . . . , L′⌉in . In particular, according to Remark 4.3, if ⌈N, . . . ,N ′⌉std =
(N0, . . . , Nn) for some n ∈ N and N0, . . . , Nn ∈ Λ (with N0 = N and Nn = N ′),
then Ni →v Ni+1 for all 0 ≤ i < n, and hence N0, . . . , Nn (that is, all the terms
in ⌈N, . . . ,N ′⌉std ) are values by Remark 2.7, since N0 is a value. By applying
the rule (4) of Definition 4.2, ⌈NL, . . . ,N ′L, . . . ,N ′L′⌉in .

– IfN /∈ Λv (i.e. N = VM1 . . .Mm withm > 0, by Remark 2.2) thenN
int

⇒
∗

N ′ and

L ⇒∗ L′, so N
int

−→
∗

v N
′ and L →∗

v L′ by Lemmas 3.9.4-5. By sequentialization

(Theorem 3.4), L
h

−→
∗

v L′′
int

−→
∗

v L′ for some term L′′. By Theorem 4.6.1, there is

a sequence ⌈L, . . . , L′′⌉head . By induction hypothesis applied to N
int

−→
∗

v N ′ and

L′′
int

−→
∗

v L′, there are sequences ⌈N, . . . ,N ′⌉in and ⌈L′′, . . . , L′⌉in . According to
the rule (1) of Definition 4.2, ⌈L, . . . , L′′, . . . , L′⌉std . By applying the rule (5)
of Definition 4.2, ⌈NL, . . . ,N ′L, . . . ,N ′L′⌉in , that is ⌈M, . . . ,M ′⌉in .

Theorem 4.6 gives only a weak standardization: it rearranges a v-reduction sequence
from M to M ′ so as to obtain a standard sequence from M to M ′, but a standard sequence
selects v-redexes following a partial (and not total, in general) order on v-redexes. Indeed,
a standard sequence is not uniquely determined by its starting and end terms, and this is
essentially due to two facts (exemplified by Examples 4.7-4.8, respectively):

(1) as already remarked on pp. 7-8, head σ-redexes may overlap and be incomparable;
(2) in a standard (head) sequence, there is no restriction on when ending a head βv-

reduction phase and beginning a head σ-reduction phase.

Example 4.7. The following σ-reduction sequences (fired σ-redexes are underlined)

I(∆I)I
h

→σ1
(λx.xI)(∆I)

h

→σ3
(λz.(λx.xI)(zz))I and

I(∆I)I
h

→σ3
(λz.I(zz))II

h

→σ1
(λz.I(zz)I)I

int

−→σ1
(λz.(λx.xI)(zz))I

are both—different—standard sequences from I(∆I)I to (λz.(λx.xI)(zz))I.

Example 4.8. The following head v-reduction sequences (fired v-redexes are underlined)

I(∆∆)I
h

→βv
I(∆∆)I

h

→σ1
(λx.xI)(∆∆) and I(∆∆)I

h

→σ1
(λx.xI)(∆∆)

are both—different—standard (head) sequences from I(∆∆)I to (λx.xI)(∆∆).

Finally, we compare our notion of standardization with that for Plotkin’s λv given in
[Plo75, p. 137] and [Cra09]. To make the comparison possible we neglect σ-reduction and

we recall that
h

→βv
is exactly Plotkin’s left-reduction [Plo75, p. 136]. As remarked in [HZ09,

p. 149], both (λz.II)(II)
int

−→βv
(λz.I)(II)

h

→βv
(λz.I)I and (λz.II)(II)

h

→βv
(λz.II)I

int

−→βv

(λz.I)I are standard sequences from (λz.II)(II) to (λz.I)I according to [Plo75, Cra09].
However, only the second sequence is standard in our sense (our standardization restricted to
→βv

is exactly the parametric standardization of [PR04] for λv, which imposes a total order
on βv-redexes). Without the distinction in Definition 4.2 between standard and standard
inner sequences, both the above sequences would be standard; indeed, [Plo75, Cra09] do not
make this distinction and their standardization imposes only a partial order on βv-redexes.
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5. Conservativity

We now present our main contribution: the shuffling calculus λσ
v is a conservative exten-

sion of λv. To be precise, we will prove that λσ
v is sound with respect to the observational

equivalence introduced by Plotkin in [Plo75] for λv (Corollary 5.4), and that the notions of
potential valuability and solvability for λv, introduced in [PR99], coincide with the respec-
tive notions for λσ

v (Theorem 5.7). This justifies the idea that λσ
v is a useful tool for studying

properties of λv, as stated in [CG14]. All these results can be proved using standardization
for λσ

v . Actually, the following corollary of sequentialization (Theorem 3.4) is enough.

Corollary 5.1 (Reduction to a value). Let M ∈ Λ and V ∈ Λv.

(1) If M →∗

v V then there exists V ′ ∈ Λv such that M
h

−→
∗

βv
V ′

int

−→
∗

v V .

(2) M
h

−→
∗

βv
V if and only if M

h

−→
∗

v V .

Proof. (1) By sequentialization (Theorem 3.4), M
h

−→
∗

βv
L

h

−→
∗

σ N
int

−→
∗

v V for some
N,L ∈ Λ. By Lemma 3.9.7, N ∈ Λv and thus L = N according to Lemma 3.8.2.

(2) ⇐: By Lemma 3.11.3, M
h

−→
∗

βv
N

h

−→
∗

σ V for some N , and N = V by Lemma 3.8.2.

⇒: Trivial, since
h

→βv
⊆

h

→v.

Let us recall the notion of observational equivalence introduced by Plotkin [Plo75] for
λv. Informally, two terms are observationally equivalent if they can be substituted for each
other in all contexts without observing any difference in their behaviour.

Definition 5.2 (Halting, observational equivalence). Let M ∈ Λ.

• We say that (the evaluation of ) M halts if there exists V ∈ Λv such that M
h

−→
∗

βv
V .

• The (call-by-value) observational equivalence is an equivalence relation ∼= on Λ de-
fined by: M ∼= N if, for every context C, one has that CLMM halts iff CLNM halts.

Original Plotkin’s definition of call-by-value observational equivalence [Plo75, p. 144]
also requires that CLMM and CLNM are closed terms, according to the tradition identifying
programs with closed terms. However, the two equivalences coincide.

Clearly, the notions of halting and observational equivalence can be defined also for

λσ
v , using

h

→v instead of
h

→βv
in Definition 5.2. But head σ-reduction plays no role neither

in deciding the halting problem for evaluation (Corollary 5.1.1), nor in reaching a partic-
ular value (Corollary 5.1.2). Therefore, we can conclude that the notions of halting and
observational equivalence in λσ

v coincide with those in λv, respectively.
Now we compare the equational theory of λσ

v with Plotkin’s observational equivalence.

Theorem 5.3 (Adequacy of v-reduction). If M →∗

v M
′ then: M halts iff M ′ halts.

Proof. If M ′ halts then M ′ h

−→
∗

βv
V ∈ Λv and hence M →∗

v M ′ →∗

v V since
h

→βv
⊆→v. By

Corollary 5.1.1, there exists V ′ ∈ Λv such that M
h

−→
∗

βv
V ′. Thus, M halts.

Conversely, ifM halts thenM
h

−→
∗

βv
V ∈ Λv, soM →

∗

v V since
h

→βv
⊆→v. By confluence

of→v (Proposition 2.8, sinceM→∗

vM
′) and Remark 2.7 (as V ∈Λv), V →

∗

v V
′andM ′ →∗

v V
′

for some V ′ ∈ Λv. By Corollary 5.1.1, M ′
h

−→
∗

βv
V ′′ for some V ′′∈Λv. Therefore, M

′ halts.

Corollary 5.4 (Soundness with respect to λv). If M =v N then M ∼= N .

Proof. Let C be a context. By confluence of →v (Proposition 2.8), M =v N implies that
there exists L ∈ Λ such thatM →∗

v L andN →∗

v L, hence CLMM→∗

v CLLM and CLNM→∗

v CLLM.
By Theorem 5.3, CLMM halts iff CLLM halts iff CLNM halts. Therefore, M ∼= N .
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Plotkin [Plo75, p. 144] has already proved that M =βv
N implies M ∼= N : we point

out that our Corollary 5.4 is not obvious since λσ
v equates more than Plotkin’s λv (indeed,

=βv
⊆=v since→βv

⊆→v, and Example 2.9 shows that this inclusion is strict). Corollary 5.4
means that λσ

v is sound with respect to the operational semantics of λv. In a way, adding σ-
reduction rules to βv-reduction is harmless with respect to Plotkin’s notion of observational
equivalence for λv: λ

σ
v does not equate too much.

The converse of Corollary 5.4 does not hold since λx.x(λy.xy) ∼= ∆ but λx.x(λy.xy) and
∆ are different v-normal forms, so λx.x(λy.xy) 6=v ∆ by confluence of→v (Proposition 2.8).

Another remarkable consequence of Corollary 5.1.1 is Theorem 5.7 below: the notions of
potential valuability and solvability for the shuffling calculus λσ

v (studied in [CG14]) coincide
with the corresponding ones for Plotkin’s λv (studied in [PR99, RP04, PPR05, PPR11]).

Definition 5.5 (Potential valuability, solvability). Let N be a term and x1, . . . , xk be
pairwise distinct variables (with k ∈ N) such that fv(N) = {x1, . . . , xk}:

• N is v-potentially valuable (resp. βv-potentially valuable) if there are values V1, . . . ,Vk,
V such that N{V1/x1, . . . , Vk/xk} →

∗

v V (resp. N{V1/x1, . . . , Vk/xk} →
∗

βv
V );

• N is v-solvable (resp. βv-solvable) whenever there are n ∈ N and terms M1, . . . ,Mn

such that (λx1 . . . xk.N)M1 · · ·Mn →
∗

v I (resp. (λx1 . . . xk.N)M1 · · ·Mn →
∗

βv
I).

The notions of potential valuability and solvability are parametric with respect to the
reduction rules, so any variant of the λ-calculus has its own notions of potential valuability
and solvability: Definition 5.5 introduces them for λv and λσ

v . Clearly, potential valuability
is interesting only in a call-by-value setting, where a β-redex can be reduced only when its
argument is a value: potentially valuable terms are those that, up to a suitable substitution,
can be evaluated or placed in argument position without yielding a stuck β-redex.

The relevance of β-solvability for ordinary (call-by-name) λ-calculus is clearly presented
in [Bar84], where this notion has been proved to grasp the idea of “meaningful program”,
i.e., a program that can produce any given output when supplied by suitable arguments. It
is well known that, in λ, β-solvability is operationally characterized by head β-reduction: a
term is β-solvable iff it is head β-normalizable. In a call-by-value setting, βv-solvability and
v-solvability are just the corresponding notions of solvability for λv and λσ

v , respectively.
In [PR99, RP04, PPR11] it has been proved that βv-solvable terms are a proper subset

of the βv-potentially valuable terms, and it has been pointed out that βv-reduction is too
weak in order to characterize both these properties: an operational characterization of βv-
potential valuability and βv-solvability cannot be given inside λv because of the problem of
“premature” βv-normal forms described in Section 1, e.g. the terms M and N in Eq. 1.1 are
βv-normal but neither βv-solvable nor βv-potentially valuable. In fact, βv-solvability and
βv-potential valuability have been operationally characterized using two lazy strategies on—
call-by-name— β-reduction (see [RP04, Theorems 3.1.9 and 3.1.14]), which is disappointing
and unsound for λv: according to these lazy strategies, stuck β-redexes can be fired (even
if the argument is not a value), for instance (λy.M)(xI) reduces to M{xI/y}.

On the other hand, concerning λσ
v , Theorems 24-25 in [CG14] give semantic and opera-

tional characterizations of v-potentially valuability and v-solvability. Interestingly, the op-
erational characterizations rest on v-reduction strategies and then are internal to λσ

v . Let
us recall these theorems (see Proposition 5.6 below) and, firstly, the notions involved in it.

For every term M with fv(M) ⊆ {x1, . . . , xn} and ~x = (x1, . . . , xn), we denote by JMK~x
(resp. JMKs~x) its semantics (resp. stratified semantics) in a relational model for λσ

v and λv.
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All the details about this denotational model are in [CG14], for our purpose it is enough to
recall that JMK~x is a set such that JMKs~x ⊆ JMK~x, and if M →v N then JMK~x = JNK~x.

The reductions →w and →s are the closures of 7→βv
∪ 7→σ1

∪ 7→σ3
under weak and

stratified contexts, respectively, where weak contexts (denoted by W) and stratified contexts
(denoted by S) are special kinds of contexts defined as follows (see [CG14] for more details):

W ::= L·M | WM |MW | (λx.W)M S ::= W | λx.S | SM .

Note that →w and →s are two (non-deterministic but confluent) sub-reductions of →v.

Proposition 5.6 (Semantic and operational characterization of v-potential valuability and
v-solvability, [CG14]). Let M be a term with fv(M) ⊆ {x1, . . . , xn} and ~x = (x1, . . . , xn).

(1) Semantic and operational characterization of v-potential valuability ([CG14, Theo-
rem 24]): M is v-potentially valuable iff JMK~x 6= ∅ iff M is w-normalizable.

(2) Semantic and operational characterization of v-solvability ([CG14, Theorem 25]):
M is v-solvable iff JMKs~x 6= ∅ iff M is s-normalizable.

Thanks to standardization for λσ
v (actually, Corollary 5.1.1), we can prove Theorem 5.7

below, which reconciles the results about solvability and potential valuability for λσ
v and λv.

Theorem 5.7 (Potential valuability and solvability for λσ
v and λv). Let M be a term:

(1) M is v-potentially valuable if and only if M is βv-potentially valuable;
(2) M is v-solvable if and only if M is βv-solvable.

Proof. In both points, the implication from right to left is trivial since →βv
⊆→v. Let us

prove the other direction. Let fv(M) = {x1, . . . , xm} for some m ∈ N.

(1) Since M is v-potentially valuable, there exist some values V, V1, . . . , Vm such that

M{V1/x1, . . . , Vm/xm} →
∗

v V ; then, by Corollary 5.1.1 and because
h

→βv
⊆→βv

,
M{V1/x1, . . . , Vm/xm} →

∗

βv
V ′ for some V ′ ∈ Λv. So, M is βv-potentially valuable.

(2) Since M is v-solvable, there exist terms N1, . . . , Nn (for some n ≥ 0) such that

(λx1 . . . xm.M)N1 · · ·Nn →
∗

v I; then, by Corollary 5.1.1 and because
h

→βv
⊆→βv

,

there exists V ∈ Λv such that (λx1 . . . xm.M)N1 · · ·Nn →
∗

βv
V

int

−→
∗

v I . According
to Lemma 3.9.7 , V = λx.N for some N ∈ Λ such that N →∗

v x. By Corollary 5.1.1,

there is V ′ ∈ Λv such that N
h

−→
∗

βv
V ′ int

−→
∗

v x, hence V ′ = x by Lemma 3.9.7 again.

Since
h

→βv
⊆→βv

, N →∗

βv
x and thus V = λx.N →∗

βv
I, so M is βv-solvable.

According to Theorem 5.7, the notions of potential valuability and solvability for λσ
v

coincide with the respective ones for Plotkin’s λv. So, the semantic (via a relational model)
and operational (via two sub-reductions of →v) characterizations of v-potential valuability
and v-solvability given in Proposition 5.6 are also semantic and operational characteriza-
tions of βv-potential valuability and βv-solvability. The difference is that these notions are
characterized operationally inside λσ

v (using call-by-value reductions), while it is impossible
to characterize them operationally inside λv. This shows how λσ

v is a useful, conservative
and “complete” tool for studying semantic and operational properties of Plotkin’s λv.

For the sake of completeness, we mention another conservativity result of λσ
v with

respect to λv, proved in [Gue15, Theorem 21] thanks to our sequentialization: it shows that
the notions of head reduction for λσ

v and λv are equivalent from the termination viewpoint.

Proposition 5.8 (Head normalization, [Gue15]). Let N ∈ Λ. The following are equivalent:
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(1) N is head v-normalizable;
(2) N is head βv-normalizable;

(3) N =v L for some head v-normal L;
(4) N is strongly head v-normalizing.

The equivalence (1)⇔(4) means that normalization and strong normalization are equiv-
alent for head v-reduction (for head βv-reduction they are trivially equivalent since head
βv-reduction is deterministic), therefore if one is interested in studying the termination of
head v-reduction, no difficulty arises from its non-determinism. The equivalence (4)⇔(2)
or (1)⇔(2) says that the evaluation defined for Plotkin’s λv (head βv-reduction) terminates
if and only if the evaluation defined for λσ

v (head v-reduction) terminates: σ-rules play no
role in deciding the termination of a head v-reduction sequence (in a way, this generalizes
Corollary 5.1.2), they can only activate hidden βv-redexes that are not in head position.

Standardization is related to normalization. In [Gue15, Theorem 24] a family of nor-
malizing strategies for λσ

v has been introduced: a term M is v-normalizable iff M v-reduces
to its v-normal form selecting v-redexes in a special order defined in [Gue15, Definition 22].
Actually, these normalizing strategies are a special case of standard sequences.

Definition 5.9 (Strict standard head sequence). A strict standard head sequence is a finite
sequence (M0, . . . ,Mk, . . . ,Mm) of terms (with k ≤ m) such that Mk is head βv-normal,

Mm is head v-normal, Mi
h

→βv
Mi+1 for any 0 ≤ i < k, and Mi

h

→σ Mi+1 for any k ≤ i < m.

A strict standard sequence is then defined by replacing the notion of standard head se-
quence with the notion of strict standard head sequence in Definition 4.2. So, normalization
theorem proved in [Gue15, Theorem 24] can be reformulated as follows:

Proposition 5.10 (Normalization, [Gue15]). Let M be a term: M is v-normalizable iff
there exists a strict standard sequence from M to its v-normal form.

The proof of the left-to-right direction of Proposition 5.10 (the right-to-left one is trivial)
relies on Proposition 5.8, see [Gue15] for details: the idea is that, given a v-normalizable (and
then head v-normalizable) term M , one performs—deterministically—head βv-reduction
steps from M as long as a head βv-normal form N is reached (according to Proposition 5.8,
a term is head v-normalizable iff it is head βv-normalizable); then, one performs head σ-
reduction steps from N (where head σ1- and head σ3-reduction steps can be performed
in whatever order) as long as a head v-normal form L is reached (such a L always exists

because
h

→σ is strongly normalizing and preserves βv-normal forms); finally, one performs
internal v-reduction steps starting from L by iterating this strategy on the subterms of L,
according to the standard left-to-right order, as long as the v-normal form of M is reached.

Clearly, Theorem 4.6 fails if in its statement “standard sequence” is replaced by “strict

standard sequence”: I∆I
h

→σ1
(λ.xI)∆ is a standard sequence but there is no strict standard

sequence from I∆I to (λ.xI)∆, since I∆I
h

→βv
∆I

h

→βv
II

h

→βv
I and I is (head) v-normal.

Similarly, (∆∆)(II)
int

−→βv
(∆∆)I is a standard sequence but there is no strict standard

sequence from (∆∆)(II) to (∆∆)I, since (∆∆)(II) is not head βv-normalizable.

6. Conclusions

It has been proved in [PR99, Pao02, RP04, PPR11] that βv-reduction is too weak to char-
acterize operationally some semantical properties of λv, such as separability, potentially
valuability and solvability. The main motivation behind the introduction of λσ

v in [CG14]
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was to achieve a call-by-value language where potential valuability and solvability can be
characterized operationally without resorting to reductions external the call-by-value para-
digm: λσ

v allows an internal operational characterization of such notions [CG14, Theorems
24-25]. In this paper we close the game, by proving that λσ

v is a conservative extension of λv:
in particular, λσ

v is sound with respect to the opeartional semantics of λv (Corollary 5.4),
and potential valuability and solvability for λσ

v coincide with the respective notions for λv

(Theorem 5.7). So, λσ
v is a useful framework for studying semantic and operational prop-

erties of λv. The technical tool on which the proofs of these conservativity properties are
based is an interesting result in its own, namely standardization for λσ

v (Theorem 4.6).
Standardization for λσ

v has been proved using parallel reduction. Let us recall that
parallel reduction in λ-calculus has been defined by Tait and Martin-Löf in order to prove
confluence of β-reduction, without referring to the tricky notion of residuals. Takahashi in
[Tak89, Tak95] has simplified this technique and showed that it can be successfully applied
also to prove standardization for λ. However, in λσ

v our parallel reduction⇒ cannot be used
to prove confluence of →v, since ⇒ does not enjoy the diamond property. Indeed, consider

(λx.M)
(

(λy.N)(zz)
)

L
(by applying the rule σ1)

nv ❡❡❡❡❡
❡

❡❡
❡❡
❡❡ (by applying the rule σ3)

(0❨❨
❨❨

❨❨

❨❨
❨❨

❨❨

M1 = (λx.ML)
(

(λy.N)(zz)
) (

λy.(λx.M)N
)

(zz)L = M2

It is easy to check that there is no term M ′ such that M1 ⇒M ′ and M2 ⇒M ′.
The proof of the standardization theorem is based on a sequentialization property, im-

posing a total order between βv-redexes, but a partial one between σ-redexes. We conjecture
that a total order between all v-redexes can be provided by defining a suitable notion of
head σ-reduction that properly interleaves head σ1- and head σ3-reduction steps. Anyway,
we do not fully explored this possibility because we are unaware of interesting applications.

Postponements of head σ-reduction to head βv-reduction (Lemma 3.11) and of internal
v-reduction to head v-reduction (Corollary 3.18) suggest the idea that, in order to avoid the
issues affecting λv when dealing with open terms and stuck β-redexes, it is enough to restrict
our shuffling calculus λσ

v by allowing (local head) σ-reduction steps only when a (local
head) βv-normal form is reached. This approach generalizes the idea behind strict standard
sequences defined in Section 5. In fact, this restricted shuffling calculus is a “minimalistic”
extension of Plotkin’s λv solving the problem of premature βv-normal forms. Since values
are head βv-normal and I is v-normal, Corollary 5.1.1 and Proposition 5.10 ensure that the
conservativity result given by Theorem 5.7 (as well as Corollary 5.4) would still hold in this
restricted shuffling calculus. But solving the problem of premature βv-normal forms is only
the first step in the direction of a deep analysis of λv and, more generally, of call-by-value
settings: the whole shuffling calculus λσ

v seems to be an adequate framework for this task
(Corollary 5.4 and Theorem 5.7 exemplify how call-by-value properties can be correctly
studied inside the whole λσ

v ) and its study is more elegant and simpler without imposing
any “clumsy” syntactic restrictions on the definition of shuffling calculus reduction rules.

Future work. We plan to continue to explore the call-by-value setting, using the shuffling
calculus λσ

v . As a first step, we would like to revisit and improve the Separability Theorem
given in [Pao02] for λv. Still the issue is more complex than in the call-by-name, indeed in
ordinary λ-calculus different βη-normal forms can be separated (by the Böhm Theorem),
while in λv there are different normal forms that cannot be separated, but which are only
semi-separable (e.g. I and λz.(λu.z)(zz)). We hope to completely characterize separable
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and semi-separable normal forms in λσ
v . This should be a first step aimed to define a

semantically meaningful notion of approximants. Then, we should be able to provide a new
insight on the denotational analysis of the call-by-value, maybe overcoming limitations as
that of the absence of fully abstract filter models [RP04, Theorem 12.1.25]. Last but not
least, an unexplored but challenging research direction is the use of our commutation σ-rules
to improve and speed up the call-by-value evaluation. We do not have any concrete evidence
supporting such possibility, but since λσ

v is strongly related to the calculi presented in
[HZ09, AP12] (see [AG16] for a comparison), which are endowed with explicit substitutions,
we believe that a sharp use of commutations could have a relevant impact on the evaluation.
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