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Through the classical umbral calculus, we provide a unifying syntax for single and multivariate k-statistics,
polykays and multivariate polykays. From a combinatorial point of view, we revisit the theory as exposed
by Stuart and Ord, taking into account the Doubilet approach to symmetric functions. Moreover, by using
exponential polynomials rather than set partitions, we provide a new formula for k-statistics that results in
a very fast algorithm to generate such estimators.
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1. Introduction

The theory of k-statistics has a long history. Here, we outline the literature, beginning with Fisher
(1929), who rediscovered the half-invariants theory of Thiele (1897). He introduced k-statistics
(single and multivariate) as new symmetric functions of a random sample, aiming to estimate
cumulants without using moment estimators. Dressel (1940) developed a theory of more gen-
eral functions, later resumed by Tukey (1950), who named them polykays. Both Tukey (1956)
and Wishart (1952) developed methods to express polykays in terms of Fisher’s k-statistics.
These methods are straightforward enough, but their execution leads to intricate computations
and some cumbersome expressions, except in very simple cases. Later, many authors tried to
simplify the matter. Kaplan (1952) resorted to tensor notation in order to simplify multivariate
k-statistics. Good (1975) gave an interpretation of cumulants as coefficients of the Fourier trans-
form of the randomly ordered sample and used this formula in order to obtain expressions for
single k-statistics (1977). The whole subject was later described in great detail by Stuart and Ord
(1987).

In the 1980’s, tensor notation was employed by Speed (1983, 1986a, 1986b, 1986c), Speed
and Silcock (1988a, 1988b) and extended to polykays and single k-statistics. This extension re-
veals the coefficients defining polykays to be values of the Möbius function over the lattice of
set partitions. As a consequence, Speed used the set theoretic approach to symmetric functions
introduced by Doubilet (1972). In the same period, McCullagh (1984, 1987) simplified the ten-
sor notation of Kaplan by introducing the notion of generalized cumulants. Symbolic operators
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for expectation and the derivation of unbiased estimates for multiple sums were introduced by
Andrews (2001), Andrews and Stafford (1998, 2000). Algorithms to compute k-statistics and
their generalizations were derived from such techniques.

In 1994, Rota and Taylor brought new life to the celebrated umbral calculus, with the intention
of restoring (within a modern formal setting) the computational power originally dealt with in the
writings of Blissard, Cayley and Sylvester. Their basic device was the representation of a unital
sequence of numbers by a symbol, called the umbra, via an operator resembling the expectation
operator of random variables. This shifts the attention to the moment generating function rather
than the probability generating one, with the latter usually linking the umbral calculus of Roman
and Rota (1978) to probability theory (for a survey, see Di Bucchianico (1997)). The umbral
calculus of Rota and Taylor, known as the classical umbral calculus, has been developed by Di
Nardo and Senato (2001, 2006a), paying particular attention to relations with probability theory.
It has also been successfully applied in wavelet theory (Saliani and Senato (2006) and Shen
(1999)).

In this paper, we show how the classical umbral calculus provides a unifying framework for
k-statistics and their generalizations. Most of the results can be found in some form in the lit-
erature; nevertheless, we feel that the umbral approach unifies, generalizes and simplifies their
presentation. In order to demonstrate the power of the umbral methodologies, we conclude the
paper by presenting an algorithm that generates k-statistics in a very short computational time
compared with existing procedures.

Section 2 is aimed at readers unaware of the classical umbral calculus. Here, we recall basic
definitions and terminology. In Section 3, we consider symmetric polynomials in umbral frame-
works and introduce some combinatorial tools. If the indeterminates of symmetric polynomials
are replaced by uncorrelated umbrae, surprisingly compact expressions for both symmetric poly-
nomials and relations between bases can be achieved. From a statistical point of view, this means
obtaining elementary formulae connecting symmetric polynomials in the data points. Thus, the
umbral approach recovers the methods exposed by Stuart and Ord, whose main limitation is the
complexity of both the expressions and the procedures. In Section 4, the theory of k-statistics
and polykays is completely rewritten, stressing the power of the umbral methods by means of
some examples. In Section 5, we introduce the notion of umbra indexed by a multiset, in order to
get umbral expressions for multivariate k-statistics and multivariate polykays. Through this de-
vice, we represent multivariate moments and multivariate cumulants by umbrae. Moreover, we
state identities involving multivariate moments and multivariate cumulants by simply character-
izing a suitable multiset indexing. In the last section, we give a very fast algorithm to compute
k-statistics, originating from a new umbral expression for such estimators. Comparisons of com-
putational times achieved by the Andrews and Stafford algorithm, that of MATHSTATICA (Rose
and Smith (2002)) and the proposed umbral algorithm end this paper.

2. Background to classical umbral calculus

This section reviews notation and terminology useful when handling umbrae. More details and
technicalities can be found in Di Nardo and Senato (2001, 2006a).

Formally, umbral calculus is a syntax consisting of the following data:
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(i) a set A = {α,β, . . .}, called the alphabet, whose elements are named umbrae;
(ii) a commutative integral domain R whose quotient field is of characteristic zero;

(iii) a linear functional E, called the evaluation, defined on the polynomial ring R[A] and
taking values in R such that

• E[1] = 1;
• E[αiβj · · ·γ k] = E[αi]E[βj ] · · ·E[γ k] for any set of distinct umbrae in A and for

i, j, . . . , k non-negative integers (uncorrelation property);

(iv) an element ε ∈ A, called an augmentation, such that E[εn] = 0 for every n ≥ 1;
(v) an element u ∈ A, called a unity umbra, such that E[un] = 1 for every n ≥ 1.

An umbral polynomial is a polynomial p ∈ R[A]. The support of p is the set of all umbrae
occurring in p. If p and q are two umbral polynomials, then

(i) p and q are uncorrelated if and only if their supports are disjoint;
(ii) p and q are umbrally equivalent iff E[p] = E[q] (in symbols, p � q).

The moments of an umbra α are the elements an ∈ R such that E[αn] = an for n ≥ 0 and we say
that the umbra α represents the sequence of moments 1, a1, a2, . . . .

It is possible that two distinct umbrae represent the same sequence of moments. In such a case,
they are called similar umbrae. More formally, two umbrae α and γ are said to be similar when

E[αn] = E[γ n] for every n ≥ 0 (in symbols, α ≡ γ ).

Furthermore, given a sequence 1, a1, a2, . . . in R, there are infinitely many distinct, and thus
similar, umbrae representing the sequence.

The factorial moments of an umbra α are the elements a(n) ∈ R corresponding to umbral
polynomials (α)n = α(α −1) · · · (α −n+1), n ≥ 1, via the evaluation E, that is, E[(α)n] = a(n).

Example 2.1 (Singleton umbra). The singleton umbra χ is the umbra whose moments are all
zero, except the first E[χ] = 1. Its factorial moments are x(n) = (−1)n−1(n − 1)!.

Example 2.2 (Bell umbra). The Bell umbra β is the umbra whose factorial moments are all
equal to 1, that is, E[(β)n] = 1 for every n ≥ 1. Its moments are the Bell numbers.

Thanks to the notion of similar umbrae, it is possible to extend the alphabet A with the so-
called auxiliary umbrae obtained via operations among similar umbrae. This leads to the con-
struction of a saturated umbral calculus in which auxiliary umbrae are treated as elements of the
alphabet (Rota and Taylor (1994)). Auxiliary umbrae come into play when dealing with products
of moments. Note that aiaj �= E[αiαj ], with ai = E[αi] and aj = E[αj ], but aiaj = E[αiα′j ],
with α ≡ α′ and α′ uncorrelated with α. As a consequence, the umbra α + α′ represents the
sequence

n∑
k=0

(
n

k

)
an−kak.
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We may then denote the umbra similar to α + α′ by the auxiliary umbra 2.α. In a saturated
umbral calculus, the umbra 2.α is considered as an element of the alphabet A.

In the following, we focus attention on auxiliary umbrae which will subsequently have a spe-
cial role. Let {α1, α2, . . . , αn} be a set of n uncorrelated umbrae similar to an umbra α. The
symbol n.α denotes an auxiliary umbra similar to the sum α1 + α2 + · · · + αn. The symbol
α.ndenotes an auxiliary umbra similar to the product α1α2 · · ·αn. Properties of these auxiliary
umbrae are extensively described in Di Nardo and Senato (2001) and will be recalled whenever
necessary.

Remark 2.1. If n �= m, then n.α is uncorrelated with m.α and α.n is uncorrelated with α.m. If
p and q are correlated umbral polynomials, then n.p � p1 + · · · + pn is correlated with n.q �
q1 + · · · + qn, and pi is correlated with qi , but uncorrelated with qj if i �= j .

If the umbra α represents the sequence 1, a1, a2, . . . , then E[(α.n)k] = an
k for non-negative

integers k and n.
In Di Nardo and Senato (2006a), the moments of n.α have been expressed in terms of mo-

ments of α, by means of the Bell exponential polynomials. Here, we adopt a different point of
view referring to the notion of integer partitions, obviously connected to the Bell exponential
polynomials through well-known relations.

Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . . , λt ), where λj are weakly
decreasing integers and

∑t
j=1 λj = i. The integers λj are named parts of λ. The length of λ

is the number of its parts and will be indicated by νλ. A different notation is λ = (1r1,2r2, . . .),
where rj is the number of parts of λ equal to j and r1 + r2 + · · · = νλ. We use the classical
notation λ � i to denote that λ is a partition of i. Through the multinomial expansion theorem,
powers of n.α can be seen to be umbrally equivalent to the umbral polynomials

(n.α)i �
∑
λ�i

(n)νλdλαλ, (2.1)

where the sum is over all partitions of the integer i, (n)νλ = 0 when νλ > n,

dλ = i!
r1!r2! · · ·

1

(1!)r1(2!)r2 · · · and αλ ≡ (αj1)
.r1(α2

j2
).r2 · · · , (2.2)

with {ji} distinct integers chosen in {1,2, . . . , n} = [n]. In particular, when evaluating the powers
of n.α in (2.1), we have

E[(n.α)i] =
∑
λ�i

(n)νλdλaλ, (2.3)

where aλ = a
r1
1 a

r2
2 · · ·.

A feature of classical umbral calculus is the construction of new auxiliary umbrae by symbolic
substitution. For example, if we replace the integer n in n.α with an umbra γ , then, from (2.1),
the new auxiliary umbra γ .α has powers

(γ .α)i �
∑
λ�i

(γ )νλdλαλ. (2.4)
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Equivalence (2.4) has been formally proven by using the notion of the generating function of an
umbra; for further details, see Di Nardo and Senato (2001).

In the dot product γ .α, replacing the umbra γ with the umbra γ .β , we obtain the composition
umbra of α and γ , that is, γ .β.α. Its powers are

(γ .β.α)i �
∑
λ�i

γ νλdλαλ. (2.5)

The compositional inverse of an umbra α is the umbra α<−1> such that

α<−1>.β.α ≡ α.β.α<−1> ≡ χ.

The compositional inverse of an umbra was introduced in Di Nardo and Senato (2001) in order
to invert exponential power series. It has also been used to give a simple proof of the Lagrange
inversion formula in umbral terms. Moreover, the compositional inverse of an umbra provides
a link between the Bell and singleton umbra. For the purpose of this paper, we consider the
compositional inverse of the unity umbra.

In the following examples, powers of fundamental auxiliary umbrae are given via (2.4). Prop-
erties of such umbrae are described in Di Nardo and Senato (2001, 2006a).

Example 2.3 (α-partition umbra). The umbra β.α, with β the Bell umbra, is called the
α-partition umbra. By virtue of (2.4), its powers are

(β.α)i �
∑
λ�i

dλαλ (2.6)

because the factorial moments of the Bell umbra are all equal to 1 (see Example 2.2). In particu-
lar, we have

β.u<−1> ≡ χ, β.u ≡ β, β.χ ≡ u, (2.7)

where u<−1> denotes the compositional inverse of u.

Example 2.4 (α-cumulant umbra). The umbra χ.α, with χ the singleton umbra, is called the
α-cumulant umbra. By virtue of (2.4), its powers are

(χ.α)i �
∑
λ�i

x(νλ) dλαλ, (2.8)

where x(νλ) are the factorial moments of the umbra χ (see Example 2.1). In particular, it is
possible to prove that

χ.β ≡ u, χ.χ ≡ u<−1>.

Example 2.5 (α-factorial umbra). The umbra α.χ is called the α-factorial umbra and its mo-
ments are the factorial moments of α, that is, (α.χ)i � (α)i .
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The disjoint sum of α and γ is the umbra whose moments are the sum of nth moments of α

and γ respectively (Di Nardo and Senato (2006a))—in symbols,

(α
.+ γ )n � αn + γ n for every n > 0.

For instance, it is possible to prove

χ.α
.+ χ.γ ≡ χ.(α + γ ), (2.9)

the well-known additive property of cumulants. In the following, we denote by
.+n

i=1 αi the

disjoint sum of n umbrae and by
.+n α the disjoint sum of n times the umbra α.

3. Symmetric polynomial umbrae

We begin by recalling the definitions of the four classical bases of the algebra of symmetric
polynomials in the variables x1, x2, . . . , xn. They are:
elementary symmetric polynomials

ek =
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · ·xjk
;

power sum symmetric polynomials

sr =
n∑

i=1

xr
i , r = 1,2, . . . ;

monomial symmetric polynomials

mλ =
∑

x
λ1
1 · · ·xλt

t ,

where the sum is over all distinct monomials having exponents λ1, . . . , λt ;
complete homogeneous symmetric polynomials

hi =
∑
λ�i

mλ =
∑

1≤j1≤j2≤···≤jk≤n

xj1xj2 · · ·xjk
.

In the following, we replace the commutative integral domain R by K[x1, x2, . . . , xn], where
K is a field of characteristic zero and x1, x2, . . . , xn are variables. Therefore, the uncorrelation
property (iii) of Section 2 must be rewritten as

E[1] = 1; E[xixj · · ·αkβl · · ·] = xixj · · ·E[αk]E[βl] · · ·
for any set of distinct umbrae in A, for i, j, . . . ∈ [n] and for non-negative integers k, l, . . . .

In K[x1, x2, . . . , xn][A], an umbra is said to be a scalar umbra when its moments are el-
ements of K, while it is said to be a polynomial umbra if its moments are polynomials of
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K[x1, x2, . . . , xn]. A polynomial umbra is said to be symmetric when its moments are symmetric
polynomials in K[x1, x2, . . . , xn].

A sequence of polynomials p0,p1, . . . ∈ K[x1, x2, . . . , xn] is umbrally represented by a poly-
nomial umbra if p0 = 1 and pn is of degree n for every nonnegative integer n. The four classical
bases of the algebra of symmetric polynomials are all represented by symmetric polynomial
umbrae. In particular, we call the polynomial umbra ε such that

E[εk] =
{

ek, k = 1,2, . . . , n,

0, k = n + 1, n + 2, . . .

elementary polynomial umbra. We call the polynomial umbra σ such that E[σ r ] = sr for every
nonnegative integer r , power sum polynomial umbra.

Proposition 3.1 (Elementary polynomial umbra). If χ1, . . . , χn are n uncorrelated umbrae
similar to the singleton umbra, then

εk � (χ1x1 + · · · + χnxn)
k

k! , k = 1,2, . . . , (3.1)

where ε is the elementary polynomial umbra.

Proof. For k = 1, . . . , n, the result follows by applying the evaluation E to the multinomial
expansion of (χ1x1 + · · · + χnxn)

k . There are vanishing terms corresponding to the powers of χ

greater than 1. Only k! monomials of the form χj1xj1χj2xj2 · · ·χjk
xjk

have a non-zero evaluation.
Instead, for k = n+1, n+2, . . . , the evaluation E gives zero since at least one power of χ greater
than 1 occurs in each monomial of the multinomial expansion. �

Proposition 3.2 (Power sum polynomial umbra). If u is the unity umbra and σ is the power
sum polynomial umbra, then

σ ≡ ( .+n

i=1 uxi

)
.

The following theorem gives an umbral relation between the elementary polynomial umbra
and the power sum polynomial umbra.

Theorem 3.1. If χ1, . . . , χn are n uncorrelated umbrae similar to the singleton umbra χ and σ

is the power sum polynomial umbra, then

χ.(χ1x1 + · · · + χnxn) ≡ (χ.χ)σ. (3.2)

Proof. Equivalence (3.2) follows from (2.9), observing that

χ.(χ1x1 + · · · + χnxn) ≡ .+n

i=1 χ.(χixi) ≡ .+n

i=1 (χ.χ)xi ≡ (χ.χ)σ. (3.3)

�
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The next corollary points out a deeper meaning of Theorem 3.1, that is, by evaluating the
moments of the umbrae in (3.2), the well-known relations between power sum symmetric poly-
nomials {sr } and elementary symmetric polynomials {ek} are recovered.

Corollary 3.1. If {sr} are the power symmetric polynomials and {ek} are the elementary sym-
metric polynomials, then

(−1)i−1

i
si =

∑
λ�i

x(νλ)

e
r1
1

r1!
e
r2
2

r2! · · · ei = 1

i!
∑
λ�i

dλ

(
x(1)s1

)r1
(
x(2)s2

)r2 · · · . (3.4)

Proof. From (3.1), we have

E[(χ1x1 + · · · + χnxn)λ] = E[χ1x1 + · · · + χnxn]r1E[(χ1x1 + · · · + χnxn)
2]r2 · · ·

= (1!)r1e
r1
1 (2!)r2e

r2
2 · · ·

and so

E
[(

χ.(χ1x1 + · · · + χnxn)
)i] = i!

∑
λ�i

x(νλ)

e
r1
1

r1!
e
r2
2

r2! · · · .

By Theorem 3.1, we have

E
[(

χ.(χ1x1 + · · · + χnxn)
)i] = E[(χ.χ)iσ i]

and the former identity in (3.4) follows, observing that

E[(χ.χ)iσ i] = (−1)i−1(i − 1)!si .
Taking the right dot product with the Bell umbra β in (3.2), we have

β.[(χ.χ)σ ] ≡ β.χ.(χ1x1 + · · · + χnxn)

and, by virtue of the third equivalence in (2.7), we have

β.[(χ.χ)σ ] ≡ χ1x1 + · · · + χnxn.

Equivalence (2.6) gives

(β.[(χ.χ)σ ])i �
∑
λ�i

dλ(χ.χ)λσλ � i!εi .

The latter identity in (3.4) follows by observing that E[σλ] = (s1)
r1(s2)

r2 · · · and E[(χ.χ)λ] =
(x(1))

r1(x(2))
r2 · · · . �

The umbral expression of mλ requires the introduction of augmented monomial symmetric
polynomials m̃λ. Let λ = (1r1,2r2, . . .) be a partition of the integer i ≤ n. Augmented monomial
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symmetric polynomials are defined as

m̃λ =
∑

j1 �=···�=jr1 �=jr1+1 �=···�=jr1+r2 �=···
xj1 · · ·xjr1

x2
jr1+1

· · ·x2
jr1+r2

· · · .

The next proposition can be proven using the same approach as used in the proof of Proposi-
tion 3.1.

Proposition 3.3. If χ1, . . . , χn are n uncorrelated umbrae similar to the singleton umbra, then

m̃λ � (χ1x1 + · · · + χnxn)
r1(χ1x

2
1 + · · · + χnx

2
n)r2 · · · . (3.5)

The next corollary follows by recalling that mλ = m̃λ/(r1!r2! · · ·).

Corollary 3.2.

mλ � (χ1x1 + · · · + χnxn)
r1

r1!
(χ1x

2
1 + · · · + χnx

2
n)r2

r2! · · · .

In order to characterize the symmetric polynomial umbra representing the complete homo-
geneous symmetric polynomials, we need to recall the notion of the inverse of an umbra. Two
umbrae α and γ are said to be inverse to each other when α + γ ≡ ε. The inverse of the umbra
α is denoted by −1.α. Note that, in dealing with a saturated umbral calculus, the inverse of an
umbra is not unique, but any two inverse umbrae of the same umbra are similar.

Proposition 3.4 (Complete homogeneous polynomial umbra). If χ1, . . . , χn are n uncorre-
lated umbrae similar to the singleton umbra, then

hi � {−1.[χ1(−x1) + · · · + χn(−xn)]}i
i! , i = 1,2, . . . . (3.6)

Proof. From the multinomial expansion theorem, we have

[−1.(−χ1x1) + · · · + −1.(−χnxn)]i

� i!
∑
|λ|=i

[−1.(−χj1)].r1([−1.(−χj2)]2).r2 · · · m̃λ

(1!)r1r1!(2!)r2r2! · · · ,

where j1, j2, . . . are distinct integers chosen in [n]. As ([−1.(−χ)]i ).ri � (i!)ri , the result follows
from Corollary 3.2 and Proposition 3.3. �

Note that equivalences (3.1) and (3.6) are umbral versions of the well-known identities

∑
k

ekt
k =

n∏
i=1

(1 + xit),
∑

k

hkt
k = 1∏n

i=1(1 − xit)
.
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Proposition 3.5. If χ1, . . . , χn are n uncorrelated umbrae similar to the singleton umbra χ and
σ is the power sum polynomial umbra, then

−χ.[χ1(−x1) + · · · + χn(−xn)] ≡ [−χ.(−χ)]σ. (3.7)

Proof. Equivalence (3.7) follows by replacing the umbra χ with −χ and the umbra u<−1> ≡
χ.χ with (−u)<−1> ≡ (−χ).(−χ) in (3.3). �

Equivalence (3.7) is an umbral version of the well-known relations between power sum sym-
metric polynomials {sr} and complete homogeneous symmetric polynomials {hk}.

3.1. Umbral symmetric polynomials

Assume that we replace the variables x1, x2, . . . , xn in the umbral polynomials χ1x1 +· · ·+χnxn

with n uncorrelated umbrae α1, α2, . . . , αn similar to an umbra α. Since

χ1α1 + · · · + χnαn ≡ n.(χα),

from Proposition 3.1, we have

[n.(χα)]k
k! � ek(α1, . . . , αn),

where ek(α1, . . . , αn) are umbral elementary symmetric polynomials in K[A]. The same substi-
tution in ux1

.+ · · · .+ uxn gives

.+n

i=1uαi ≡ .+n α ⇒ (
.+n α)k � αk

1 + · · · + αk
n ≡ n.αk

so that n.αk ≡ sk(α1, . . . , αn), where sk(α1, . . . , αn) are umbral power sum symmetric polyno-
mials in K[A]. By using the latter identity in (3.4), we prove the following proposition.

Proposition 3.6. If χ is the singleton umbra and α ∈ A, then

[n.(χα)]k �
∑
λ�k

dλ(χ.χ)λ(n.α)r1(n.α2)r2 · · · . (3.8)

Due to (3.5), umbral augmented symmetric polynomials m̃λ take the form

m̃λ � [n.(χα)]r1 [n.(χα2)]r2 · · · .

Theorem 3.2. If λ � i, then

[n.(χα)]r1 [n.(χα2)]r2 · · · � (n)νλαλ. (3.9)
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(For the proof, see Di Nardo and Senato (2006b).)
Statistically speaking, the last theorem states how to estimate products of moments by using

only n sampled items. Moreover, by using Theorem 3.2 and (2.1), we are able to give a sort of
inversion formula of equivalence (3.8), that is,

(n.α)k �
∑
λ�k

dλ[n.(χα)]r1 [n.(χα2)]r2 · · · . (3.10)

Equivalences (3.8) and (3.10) can be rewritten by using set partitions instead of integer partitions.
Afterward, the use of set partitions allows a natural generalization of these equivalences.

Let C be a subset of K[A] such that |C| = n. Recall that a partition π of C is a collection
π = {B1,B2, . . . ,Bk} with k ≤ n disjoint and non-empty subsets of C whose union is C. We
denote by �n the set of all partitions of C.

Let {α1, α2, . . . , αn} be a set of n uncorrelated umbrae similar to an umbra α. We will denote
by α.π the umbra

α.π ≡ α
|B1|
i1

α
|B2|
i2

· · ·α|Bk |
ik

, (3.11)

where π = {B1,B2, . . . ,Bk} is a partition of {α1, α2, . . . , αn} and i1, i2, . . . , ik are distinct inte-
gers chosen in [n]. In particular, α.π ≡ αλ, where λ is the partition of the integer n determined
by π . Indeed, a set partition is said to be of type λ = (1r1,2r2, . . .) if there are r1 blocks of car-
dinality 1, r2 blocks of cardinality 2 and so on. The number of set partitions of type λ is dλ, as
given in (2.2).

Proposition 3.7. If �k is the set of all partitions of [k] and α ∈ A, then

(n.α)k �
∑

π∈�k

[n.(χα)]r1 [n.(χα2)]r2 · · · , (3.12)

[n.(χα)]k �
∑

π∈�k

(χ.χ).π (n.α)r1(n.α2)r2 · · · . (3.13)

Proof. Equivalence (3.12) follows directly from (3.10). From (3.11) we have (χ.χ)λ ≡ (χ.χ).π .
Hence equivalence (3.8) imples (3.13). �

In order to write products like (n.α)r1(n.α2)r2 · · · using a single symbol such as αλ or α.π , we
need the notion of the multiset. This will be introduced in the next section.

3.2. Some necessary combinatorics

A multiset M is a pair (M̄, f ), where M̄ is a set, called the support of the multiset, and f is a
function from M̄ to the non-negative integers. For each µ ∈ M̄ , f (µ) is called the multiplicity
of µ. The length of the multiset (M̄, f ), usually denoted by |M|, is the sum of multiplicities of
all elements of M̄ , that is,

|M| =
∑
µ∈M̄

f (µ).
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From now on, we denote a multiset (M̄, f ) simply by M . A multiset Mi = (M̄i, fi) is called a
submultiset of M = (M̄, f ) if M̄i ⊆ M̄ and fi(µ) ≤ f (µ) for every µ ∈ M̄i .

Let M be a multiset of umbral monomials. When the support of M is a finite set, say M̄ =
{µ1,µ2, . . . ,µk}, we will write

M = {
µ

(f (µ1))

1 ,µ
(f (µ2))

2 , . . . ,µ
(f (µk))
k

}
or M = {µ1, . . . ,µ1︸ ︷︷ ︸

f (µ1)

, . . . ,µk, . . . ,µk︸ ︷︷ ︸
f (µk)

}.

Set

µM =
∏
µ∈M̄

µf (µ). (3.14)

When f (µ) = 1 for every µ ∈ M̄ , the multiset M is simply a set B of umbral monomials in
K[A] and hence (3.14) becomes

µB =
∏
µ∈B

µ.

If B = {α1, . . . , αi}, with uncorrelated umbrae similar to an umbra α, then αB = α.|B|.
The notation (3.14) can be easily extended to umbral polynomials and dot products as follows:

pM =
∏
p∈M̄

pf (p), (α.p)M =
∏
p∈M̄

(α.p)f (p), [n.(χp)]M =
∏
p∈M̄

[n.(χp)]f (p),

where p are umbral polynomials in K[A] and α ∈ A. For example, using this notation, equiva-
lence (3.9) can be rewritten as

[n.(χα)]Pλ � (n)νλαλ, (3.15)

where Pλ = {α(r1), α2(r2)
, . . .}. To avoid misunderstandings, we will specify the multiset M

where necessary, in order to know which umbrae occur in M .
The notion we are going to introduce is quite natural and allows us to compress and simplify

notation.

Definition 3.1. A subdivision of a multiset M is a multiset S of k ≤ |M| non-empty submultisets
Mi = (M̄i, fi) of M such that

(i)
⋃k

i=1 M̄i = M̄ ;
(ii)

∑k
i=1 fi(µ) = f (µ) for every µ ∈ M̄ .

We note that the notion of subdivision is different from that of multiset partition.

Example 3.1. Let M = {µ(2)
1 ,µ

(1)
2 ,µ

(2)
3 }, hence |M| = 5. Subdivisions of M are {{µ(1)

1 ,µ
(1)
2 },

{µ(1)
1 }, {µ(2)

3 }} and {{µ(1)
1 }(2), {µ(1)

2 ,µ
(2)
3 }}.
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Let S = (S̄, g) be a subdivision of the multiset M . Extending the notation (3.14), we set

µS =
∏

Mi∈S̄

µ
g(Mi)
Mi

(3.16)

and so

(n.µ)S =
∏

Mi∈S̄

(n.µMi
)g(Mi), [n.(χµ)]S =

∏
Mi∈S̄

[n.(χµMi
)]g(Mi). (3.17)

Remark 3.1. A special case of (3.16) is the partition of a set. The notation (3.16) becomes

µπ =
∏
B∈π

µB.

We may construct a subdivision of the multiset M in the following steps: assume that the
elements of M are all distinct, build a set partition and then replace each element in any block
with the original one. Thus, any set partition gives rise to a subdivision. More formally, consider
a set [k] of k umbral polynomials. Define the function

s : [k] → M̄ (3.18)

such that f (µ1) elements of [k] go in µ1, f (µ2) elements of [k] go in µ2 and so on. Now
consider a partition π = {B1,B2, . . . ,Bm} of [k] into m blocks. Set

(i) M̄i = s(Bi) ⊆ M̄ ;
(ii) for any µ ∈ M̄i , fi(µ) = the number of p ∈ Bi such that s(p) = µ.

The multiset Sπ , built with Mi = (M̄i, fi), i = 1,2, . . . ,m, is the subdivision of M correspond-
ing to the partition π . Note that |π | = |Sπ |. Moreover, it could be Sπ1 = Sπ2 for π1 �= π2.

Remark 3.2. If M is a set, it is natural to define s as the identity function so that Sπ = π . If M

is a subdivision, then s(p) is a multiset.

We simplify equivalences (3.12) and (3.13) by means of the notion of subdivision.

Proposition 3.8. If Sπ is the subdivision of the multiset M = {α(k)} corresponding to a partition
π ∈ �k , then

[n.(χα)]k �
∑

π∈�k

(χ.χ).π (n.α)Sπ , (n.α)k �
∑

π∈�k

[n.(χα)]Sπ . (3.19)

Proof. Subdivisions of M = {α(k)} are of the type

S = {{α}, . . . , {α}︸ ︷︷ ︸
r1

,
{
α(2)

}
, . . . ,

{
α(2)

}︸ ︷︷ ︸
r2

, . . .
}
, (3.20)
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with r1 + r2 + · · · ≤ k and r1 + 2r2 + · · · = k. Via the function s in (3.18), the multiset S corre-
sponds to a partition π of [k] with r1 blocks of cardinality 1, r2 blocks of cardinality 2 and so
on, so that

(n.α)Sπ =
∏

Mi∈S̄

(n.αMi
)g(Mi) = (n.α)r1(n.α2)r2 · · · ,

by which the former equivalence in (3.19) is the result of (3.13). The latter equivalence follows
from (3.12) by similar arguments. �

A natural extension of the notation to umbral polynomials leads to the following corollary.

Corollary 3.3. If M is a multiset of umbral polynomials, then

[n.(χp)]M �
∑

π∈�k

(χ.χ).π (n.p)Sπ , (n.p)M �
∑

π∈�k

[n.(χp)]Sπ , (3.21)

where k is the length of M and Sπ is the subdivision corresponding to the partition π ∈ �k .

4. k-statistics and polykays

If a1, a2, . . . are moments of a random variable and κ1, κ2, . . . are its cumulants, then

κi =
∑
λ�i

(−1)νλ−1(νλ − 1)!dλaλ, (4.1)

where λ = (1r1,2r2, . . .), aλ = a
r1
1 a

r2
2 · · · and dλ is given in (2.2). If the umbra α represents the se-

quence a1, a2, . . . , then the sequence of its cumulants κ1, κ2, . . . is represented by the α-cumulant
umbra χ.α, as follows by comparing (2.8) and (4.1) (for more details, see Di Nardo and Senato
(2006a)). The ith k-statistic ki is the unique symmetric unbiased estimator of the cumulant κi of
a given statistical distribution, that is,

E[ki] = κi

(see Stuart and Ord (1987)). k-statistics are usually expressed in terms of sums of the r th powers
of the data points

sr =
n∑

i=1

Xr
i .

In the following, we will give an umbral expression of k-statistics by using umbral power sum
symmetric polynomials in n uncorrelated and similar umbrae, that is, n.αr .

Theorem 4.1 (k-statistics). For i ≤ n, we have

(χ.α)i �
∑
λ�i

(χ.χ)νλ

(n)νλ

dλ

∑
π∈�νλ

(χ.χ).π (n.α)Sπ , (4.2)
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where λ = (1r1,2r2, . . .) runs over all partitions of the integer i and Sπ is the subdivision of the

multiset Pλ = {α(r1), α2(r2)
, . . .} corresponding to the partition π ∈ �νλ .

Proof. By replacing equivalence (3.15) in (2.8), we have

(χ.α)i �
∑
λ�i

(χ.χ)νλ

(n)νλ

dλ[n.(χα)]Pλ,

where Pλ = {α(r1), α2(r2)
, . . .}. Equivalence (4.2) is the result of the former in (3.21), where p

has been replaced by α and the multiset M by Pλ. �

Since E[(χ.α)i] = κi, equivalence (4.2) gives the umbral expression of the ith cumulant in
terms of umbral power sum symmetric polynomials, that is, the ith k-statistic.

Example 4.1. The partitions of the integer 3 are {(13), (11,21), (31)}, of length 3,2,1, respec-
tively. Hence,

x(νλ) =



2, for λ = (13),
−1, for λ = (11,21),
1, for λ = (31),

dλ =



1, for λ = (13),
3, for λ = (11,21),
1, for λ = (31).

From (4.2) and Table 1, we have

k3 = 2

(n)3
(2s3 − 3s1s2 + s3

1) − 3

(n)2
(−s3 + s1s2) + 1

n
s3

= n2s3 − 3ns1s2 + 2s3
1

(n)3
,

which is the well-known k-statistic of order 3.

Products of k-statistics are known as polykays. Indeed, the symmetric statistic kr,...,t such that

E[kr,...,t ] = κr · · ·κt

Table 1. Formula (4.2)

λ Pλ π ∈ �νλ Sπ Sπ (χ .χ).π (n.α)Sπ

(13) {α(3)} {{p1,p2,p3}} {{α,α,α}} 1 2(n.α3)

{{p1}, {p2,p3}} {{α}, {α,α}} 3 −(n.α)(n.α2)

{{p1}, {p2}, {p3}} {{α}, {α}, {α}} 1 (n.α)3

(11,21) {α(1), α2(1)} {{α,α2}} {{α,α2}} 1 −(n.α3)

{{α}, {α2}} {{α}, {α2}} 1 (n.α)(n.α2)

(31) {α3} {{α3}} {{α3}} 1 (n.α3)
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(where κr , . . . , κt are cumulants) generalizes k-statistics and these were originally called gener-
alized k-statistics by Dressel (1940). Being a product of cumulants, the umbral expression of a
polykay is simply

kr,...,t � (χ.α)r · · · (χ ′.α′)t , (4.3)

with χ, . . . , χ ′ being uncorrelated umbrae likewise α, . . . , α′ satisfying α ≡ · · · ≡ α′. The follow-
ing proposition provides the right-hand product of (4.3) in terms of umbral power sum symmetric
polynomials.

Theorem 4.2 (Polykays). If r + · · · + t ≤ n, then

kr,...,t =
∑

(λ�r,...,η�t)

(χ.χ)νλ · · · (χ.χ)νη dλ · · ·dη

(n)νλ+···+νη

∑
π∈�νλ+···+νη

(χ.χ).π (n.α)Sπ , (4.4)

where λ = (1r1,2r2, . . .) runs over all partitions of r , η = (1t1,2t2 , . . .) runs over all partitions
of t and Sπ is the subdivision of the multiset

Pλ+···+η = {
α(r1+···+t1), α2(r2+···+t2)

, . . .
}

corresponding to the partition π ∈ �νλ+···+νη .

Proof. Note that

αλ · · ·α′
η � (αj1)

.(r1+···+t1)(α2
j2

).(r2+···+t2) · · · � αλ+···+η,

where we have denoted by λ + · · · + η the integer partition (1r1+···+t1 ,2r2+···+t2, . . .). Replacing
the right-hand product in (4.3) by the product of uncorrelated (2.8) and using (3.15), we have

kr,...,t �
∑

(λ�r,...,η�t)

(χ.χ)νλ · · · (χ.χ)νη dλ · · ·dη

(n)νλ+···+νη

[n.(χα)]Pλ+···+η .

Equivalence (4.4) is the result of the former in (3.21), where p has been replaced by α and the
multiset M by Pλ+···+η . �

Example 4.2. Assume r = t = 2. In order to express k2,2, we need to consider the pairs of
partitions {((2), (2)); ((12), (2)); ((2), (12)); ((12), (12))}. Hence,

(n)νλ+νη =
{

(n)2, for (λ, η) = ((2), (2)),
(n)3, for (λ, η) = ((12), (2)) and (λ, η) = ((2), (12)),
(n)4, for (λ, η) = ((12), (12))

and xν(2)
= 1, xν

(12)
= −1, d(2) = d(12) = 1. From Table 2, we have

k2,2 = −s4 + s2
2

(n)2
− 2(2s4 − s2

2 − 2s3s1 + s2
1s2)

(n)3
+ −6s4 + 8s3s1 + 3s2

2 − 6s2
1s2 + s4

1

(n)4
.
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Table 2. Formula (4.4)

λ + η Pλ+η Sπ Sπ (χ .χ).π (n.α)Sπ

(22) {α2, α2} {{α2, α2}} 1 −(n.α4)

{{α2}, {α2}} 1 (n.α2)2

(12,2) {α,α,α2} {{α,α,α2}} 1 2(n.α4)

{{α,α}, {α2}} 1 −(n.α2)2

{{α,α2}, {α}} 2 −(n.α3)(n.α)

{{α}, {α}, {α2}} 1 (n.α)2(n.α2)

(14) {α,α,α,α} {{α,α,α,α}} 1 −6(n.α4)

{{α}, {α,α,α}} 4 2(n.α)(n.α3)

{{α,α}, {α,α}} 3 (n.α2)2

{{α}, {α}, {α,α}} 6 −(n.α)2(n.α2)

{{α}, {α}, {α}, {α}} 1 (n.α)4

5. Multivariate moments and multivariate cumulants

In this section, we define multivariate moments and multivariate cumulants of umbral monomials
by means of technicalities introduced in Section 3.2. In the following, M = {µ(f (µ1))

1 ,µ
(f (µ2))

2 ,

. . . ,µ
(f (µr ))
r } denotes a multiset of length k.

Definition 5.1. A multivariate moment is the element of K corresponding to the umbral mono-
mial µM via the evaluation E, that is,

E[µM ] = mt1...tr ,

where ti = f (µi) for i = 1,2, . . . , r .

For example, if M = {µ(1)
1 ,µ

(2)
2 ,µ

(1)
3 }, we have E[µM ] = m121. When the umbral monomials

µi are uncorrelated, mt1...tr becomes the product of moments of µi .

Definition 5.2. A multivariate cumulant is the element of K corresponding to

E[(χ.µ)M ] = κt1...tr , (5.1)

where ti = f (µi) for i = 1,2, . . . , r .

Replacing the umbra χ in (5.1) by the unity umbra u, we get multivariate moments. Setting
µi = α for i = 1,2, . . . , r, we have M = {α(k)} and (χ.α)M = (χ.α)k , that is, the ordinary kth
cumulant.

The notion of the generalized cumulant, introduced by McCullagh (1984), is translated into
the umbral framework as follows:

E[(χ.µ)π ] = κπ ,
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where π is a partition of a set of umbral monomials. For example, when

π = {{µ1,µ2}, {µ3}, {µ4,µ5}},
we have

E[(χ.µ)π ] = E[(χ.µ1µ2)(χ.µ3)(χ.µ4µ5)] = κ12,3,45,

where κ12,3,45 is the McCullagh’s notation. In particular, when π = {{µ1}, . . . , {µr}}, we have
(χ.µ)π ≡ (χ.µ)[r], that is, the joint cumulant of µ1, . . . ,µr .

The next proposition allows us to express multivariate cumulants in terms of multivariate mo-
ments. We only need an extension of (3.11), where the partition π is replaced by a subdivision S.

Assume S = {M(g(M1))

1 ,M
(g(M2))

2 , . . . ,M
(g(Mj ))

j } to be a subdivision of the multiset M . Let

µ.S ≡ (µM1)
.g(M1) · · · (µ′

Mj
).g(Mj ), (5.2)

where µMt are uncorrelated umbral monomials. If M = {α(k)}, then subdivisions are of
type (3.20) and α.S ≡ αλ, with λ = (1r1,2r2, . . .) � k.

Proposition 5.1. If Sπ is the subdivision of the multiset M corresponding to the partition π ∈
�k , then

(χ.µ)M �
∑

π∈�k

(χ.χ)|π |µ.Sπ . (5.3)

Proof. By using set partitions instead of integer partitions, equivalence (2.8) can be written as

(χ.α)k �
∑

π∈�k

(χ.χ)|π |α.π �
∑

π∈�k

(χ.χ)|π |α.S,

as has already been done for (3.12) and (3.13). We replace (χ.α)k by (χ.µ)N , where N = {α(k)},
and α.S by µ.Sπ , where Sπ is the subdivision corresponding to the partition π . We have

(χ.µ)N �
∑

π∈�k

(χ.χ)|π |µ.Sπ

and the result holds for a more general multiset M by using umbral substitutions. �

When M is a set of k different elements, Proposition 5.1 gives the following well-known
relations among joint cumulants and multivariate moments of a random vector (X1, . . . ,Xk):

κ(X1, . . . ,Xk) =
∑

π∈�k

(|π | − 1)!(−1)|π |−1
∏
B∈π

E

(∏
j∈B

Xj

)
.

Equivalence (5.3) can be inverted in order to express multivariate moments in terms of multi-
variate cumulants. Indeed, as proven in Di Nardo and Senato (2006a), if κ is the µ-cumulant,
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then µ ≡ β.κ , where β is the Bell umbra. In (5.3), replace the umbra χ by the umbra β and the
umbral monomial µj by a more general polynomial pj . Since the factorial moments of the Bell
umbra are all equal to 1 (see Example 2.2), we have

E[(β.p)M ] =
∑

π∈�k

p.Sπ .

Now replace the umbral polynomial p by the umbral polynomial κµ ≡ χ.µ. From the third
equivalence in (2.7), we have β.χ.µ ≡ µ. This last equivalence allows to prove the following
proposition.

Proposition 5.2. If Sπ is the subdivision of the multiset M corresponding to the partition π ∈
�k , then

µM �
∑

π∈�k

(χ.µ).Sπ .

The next propositions and corollary are given by Speed (1983) and McCullagh (1984), using
different methods and notation.

Proposition 5.3. Assume the set of umbral monomials {µ1,µ2, . . . ,µi} to be the union of two
subsets {µj1, . . . ,µjt } and {µk1, . . . ,µks }, with s + t = i, such that umbral monomials belonging
to different subsets are uncorrelated. We have

(χ.µ)[i] = (χ.µ1) · · · (χ.µi) � 0. (5.4)

Proof. Let P = ∑t
l=1 µjl

and Q = ∑s
l=1 µkl

. The polynomials P and Q are uncorrelated. By
virtue of (2.9), we have

χ.(P + Q) ≡ χ.P +̇χ.Q,

that is, products involving powers of χ.P and χ.Q vanish, (5.4) being a special case. �

When the umbral monomials µj are interpreted as random variables, equivalence (5.4) states
a well-known result: if some of the random variables are uncorrelated with all others, then their
joint cumulant is zero.

Corollary 5.1. If π is a partition of the set {µ1, . . . ,µi}, then

µ.π �
∑
τ∈�i

τ≤π

(χ.µ).τ .

Proof. Observe that any partition τ satisfying τ > π , has at least one block, say B , that is the
union of two or more blocks of the partition π . By Proposition 5.3, we have E[(χ.µ)B ] = 0
since, in B , there is at least one umbral monomial uncorrelated with each other. �
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Proposition 5.4. If π is a partition of the set {µ1, . . . ,µi}, then

(χ.µ)π �
∑
ρ∈�i

ρ≥π

(χ.χ)|ρ|µ.ρ.

Proof. Assume that the partition π = {B1,B2, . . . ,Bk} has k ≤ i blocks. From (5.3), we have

(χ.p)[k] �
∑
τ∈�k

(χ.χ)|τ |p.τ ,

where pj = µBj
for j = 1,2, . . . , k. This result follows by observing that (χ.p)[k] � (χ.µ)π and

that each partition τ ∈ �k corresponds to a partition ρ ∈ �i such that ρ ≥ τ and p.τ � µ.ρ . �

Corollary 5.1 and Proposition 5.4 give the following result.

Corollary 5.2. If π is a partition of the set {µ1, . . . ,µi}, then

(χ.µ)π �
∑
ρ∈�i

ρ≥π

(χ.χ)|ρ| ∑
τ∈�i

τ≤ρ

(χ.µ).τ . (5.5)

Following the same arguments used by McCullagh (1984), equivalence (5.5) can be rewritten
as

(χ.µ)π �
∑
ρ∈�i

ρ∨π=1

(χ.µ).ρ,

where ∨ means the least upper bound and 1 is the full set.

6. Multivariate k-statistics and multivariate polykays

In order to introduce an umbral version of multivariate k-statistics, we must generalize the result
of Theorem 3.2.

Theorem 6.1. Let S = {M(g(M1))

1 ,M
(g(M2))

2 , . . . ,M
(g(Mj ))

j } be a subdivision of M . We have

µ.S � 1

(n)|S|
[n.(χµ)]S, (6.1)

where µ.S has been defined in (5.2).

Proof. Observe that if M = {α(k)}, then

[n.(χα)]S ≡ [n.(χα)]r1 [n.(χα2)]r2 · · · ,
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where S is a subdivision of M of type (3.20). Equivalence (3.15) can then be rewritten as

[n.(χα)]S � (n)|S|α.S

and, by using umbral substitutions, the result holds for a more general multiset M . �

Theorem 6.2 (Multivariate k-statistics). If n > |M| = k, then

(χ.µ)M �
∑

π∈�k

(χ.χ)|π |

(n)|π |

∑
τ∈�|π |

(χ.χ).τ (n.µ)Sτ , (6.2)

where Sτ is the subdivision of M corresponding to the partition τ of the set built with the blocks
of π .

Proof. By Theorem 6.1 and Proposition 5.1, we have

(χ.µ)M �
∑

π∈�k

(χ.χ)|π |

(n)|Sπ |
[n.(χµ)]Sπ .

The result follows from the first part of (3.21) and by recalling that |π | = |Sπ |. �

It is interesting to note the similarity between expressions (4.2) and (6.2). On the right-hand
side of (6.2), the set partition replaces the integer partition, the support of M having a cardinality
greater than 1.

Example 6.1. In order to express k21, take the multiset M = {µ(2)
1 ,µ

(1)
2 } of length k = 3.

Define the function s : [3] → {µ1,µ2} such that s(p1) = s(p2) = µ1 and s(p3) = µ2. Let
sp,q � n.(µ

p

1 µ
q

2). From Table 3, we have

k21 � (χ.µ1)
2(χ.µ2) � 1

(n)3
[n2s2,1 − 2ns1,0s1,1 − ns2,0s0,1 + 2s2

1,0s0,1].

Multivariate polykays were introduced by Robson (1957). The symmetric statistic kt1...tr ,...,l1...lm

such that

E[kt1...tr ,...,l1...lm] = κt1...tr · · ·κl1...lm

(where κt1...tr is a multivariate cumulant) generalizes polykays. Being a product of uncorrelated
multivariate cumulants, the umbral expression of a multivariate polykay is simply

kt1...tr ,...,l1...lm � (χ.µ)T · · · (χ ′.µ′)L,

where χ and χ ′ are uncorrelated likewise the umbral monomials µ ∈ T and µ′ ∈ L where

T = {
µ

(t1)
1 , . . . ,µ(tr )

r

}
, . . . ,L = {

µ′(l1)
1 , . . . ,µ′(lm)

m

}
.

Let S be a subdivision of T and S∗ a subdivision of L.
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Table 3. Formula (6.2)

π τ Sτ (n.µ)Sτ

{{p1,p2,p3}} {B1} {{µ1,µ1,µ2}} n.(µ2
1µ2)

{{p1}, {p2,p3}} {B1,B2} {{µ1,µ1,µ2}} n.(µ2
1µ2)

{{B1}, {B2}} {{µ1}, {µ1,µ2}} n.(µ1)n.(µ1µ2)

{{p2}, {p1,p3}} {B1,B2} {{µ1,µ1,µ2}} n.(µ2
1µ2)

{{B1}, {B2}} {{µ1}, {µ1,µ2}} n.(µ1)n.(µ1µ2)

{{p3}, {p1,p2}} {B1,B2} {{µ2,µ1,µ1}} n.(µ2
1µ2)

{{B1}, {B2}} {{µ2}, {µ1,µ1}} n.(µ2)n.(µ2
1)

{{p1}, {p2}, {p3}} {B1,B2,B3} {{µ1,µ1,µ2}} n.(µ2
1µ2)

{{B1}, {B2,B3}} {{µ1}, {µ1,µ2}} n.(µ1)n.(µ1µ2)

{{B2}, {B1,B3}} {{µ1}, {µ1,µ2}} n.(µ1)n.(µ1µ2)

{{B3}, {B1,B2}} {{µ2}, {µ1,µ1}} n.(µ2)n.(µ2
1)

{{B1}, {B2}, {B3}} {{µ1}, {µ1}, {µ2}} n.(µ2)[n.(µ1)]2

Theorem 6.3 (Multivariate polykays). For n > |T | + · · · + |L|, we have

kt1...tr ,...,l1...lm �
∑

(π∈�|T |,...,π̃∈�|L|)

(χ.χ)|π | · · · (χ ′.χ ′)|π̃ |

(n)|π |+···+|π̃ |

∑
τ∈�|π |+···+|π̃ |

(χ.χ).τ (n.p)Sτ , (6.3)

where Sτ is the subdivision of the multiset obtained by the disjoint union of T , . . . ,L, with no
uncorrelation labels and corresponding to the partition τ of the set built with the blocks of
{π, . . . , π̃}.

Proof. Observe that if Sπ is the subdivision of T corresponding to the partition π ∈ �|T | and
Sπ̃ is the subdivision of L corresponding to the partition π̃ ∈ �|L|, then we have

µ.Sπ · · ·ν.Sπ̃ � µSπ+···+Sπ̃
,

where we have denoted by Sπ + · · · + Sπ̃ the subdivision obtained by placing side by side the
blocks of subdivisions with no uncorrelated elements. By equivalences (5.3) and (6.1), we have

kt1...tr ,...,l1...lm �
∑

(π∈�|T |,...,π̃∈�|L|)

(χ.χ)|π | · · · (χ ′.χ ′)|π̃ |

(n)|π |+···+|π̃ |
[n.(χp)]Sπ+···+Sπ̃

,

where p is the generic element of Sπ + · · · + Sπ̃ . The result follows by applying the first part
of (3.21). �

Also in this case, note the similarity between expressions (4.4) and (6.3). The sum of subdivi-
sions in the second case corresponds to the sum of integer partitions.
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Table 4. Formula (6.3)

{π, π̃} τ Sτ (n.p)S′
τ

{{µ1,µ2}, {µ′
1}} {B1,B2} {{µ1,µ1,µ2}} n.(µ2

1µ2)

{{B1}, {B2}} {{µ1,µ2}, {µ1}} n.(µ1µ2)n.µ1
{{µ1}, {µ2}, {µ′

1}} {{B1,B2,B3}} {{µ1,µ1,µ2}} n.(µ2
1µ2)

{{B1,B2}, {B3}} {{µ1,µ1}, {µ2}} n.(µ2
1)n.µ2

{{B1,B3}, {B2}} {{µ1,µ2}, {µ1}} n.(µ1µ2)n.µ1
{{B2,B3}, {B1}} {{µ1,µ2}, {µ1}} n.(µ1µ2)n.µ1
{{B1}, {B2}, {B3}} {{µ1}, {µ2}, {µ1}} (n.µ1)2n.µ2

Example 6.2. In order to express k11,1, let T = {µ1,µ2},L = {µ′
1} and sp,q � n.(µ

p

1 µ
q

2). From
Table 4, we have

k11,1 � 1

(n)2
[s1,0s1,1 − s2,1] − 1

(n)3
[s2

1,0s0,1 − 2s1,0s1,1 + 2s2,1 − s2,0s0,1].

7. A fast algorithm for k-statistics

It is possible to build a very fast algorithm for k-statistics by forfeiting the elegant idea of pro-
ducing only one algorithm for the whole subject. We are going to prove that k-statistics can be
recovered through cumulants of compound Poisson random variables. This connection allows us
to insert exponential polynomials in formula (4.2), eliminating set partitions.

In order to construct such an algorithm, we need ratios of umbrae. Therefore, we introduce
the notion of the multiplicative inverse of an umbra. Two umbrae are said to be multiplicatively
inverse to each other when

αγ ≡ u. (7.1)

In dealing with a saturated umbral calculus, the multiplicative inverse of an umbra is not unique,
but any two multiplicatively inverse umbrae of the umbra α are similar. From (7.1), we have

angn = 1 for every n = 0,1,2, . . . , that is, gn = 1

an

,

where an and gn are moments of α and γ , respectively. In the following, a multiplicative inverse
of an umbra α will be denoted by 1/α.

7.1. Cumulants of compound Poisson random variables

The main result of this section is that cumulants of an umbra α can be expressed via cumulants
of compound Poisson random variables.
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Let us consider the umbra χ.y.β introduced in Di Nardo and Senato (2006a), where y is an
indeterminate. As well as the umbra χ.β has moments all equal to 1, the moments of this umbra
are all equal to y, as the following lemma states.

Lemma 7.1. If χ is the singleton umbra and β is the Bell umbra, then

(χ.y.β)i � y, i = 1,2, . . . . (7.2)

Proof. Observe that χ.y.β ≡ χ.y.β.u ≡ (χ.y).β.u, where the last equivalence follows from
the associative law. So, by virtue of (2.5), we have

[(χ.y).β]i � [(χ.y).β.u]i �
∑
λ�i

(χ.y)νλdλuλ. (7.3)

On the other hand, (χ.y) ≡ χy and the only power of (χ.y) different from zero is the one
corresponding to νλ = 1 for which λ = (i). Therefore, the sum in (7.3) reduces to y. �

As stated in Example 2.4, the umbra (χ.y.β).α ≡ χ.(y.β.α) is the cumulant umbra of a
polynomial α-partition umbra and corresponds to a compound Poisson random variable of para-
meter y (Di Nardo and Senato (2001)). Such an umbra is the keystone for building cumulants.

First, let us compute the moments of n.χ.(y.β.α), that is, the sum of n uncorrelated cumulant
umbrae of a polynomial α-partition umbra.

Proposition 7.1. The polynomial umbra n.χ.(y.β.α) has moments

ci(y) =
∑
λ�i

yνλ(n)νλdλaλ, (7.4)

with c0(y) = 1 and ci(y) of degree i for every integer i.

Proof. Due to the associative law, we have n.χ.(y.β.α) ≡ (n.χ.y).β.α so that

[(n.χ.y).β.α]i �
∑
λ�i

(n.χ.y)νλdλαλ (7.5)

is the result of (2.5). Let ci(y) = E[(n.χ.y.β.α)i]. From (2.1), we have

(n.χ.y)j � [n.(χy)]j �
∑
λ�j

(n)νλdλ(χy)λ.

Since

(χy)λ �
{

yj , for λ = (1j ),

0, otherwise,

we have (n.χ.y)νλ � (n)νλy
νλ . Replacing this last equivalence in (7.5), the result follows. �
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The next theorem is the key to producing a fast algorithm for k-statistics. It states that the
α-cumulant umbra has moments umbrally equivalent to umbral polynomials obtained by replac-
ing y with the umbra χ.χ/n.χ in ci(y), i = 1,2, . . . .

Theorem 7.1. If ci(y) = E[(n.χ.y.β.α)i], then

(χ.α)i � ci

(
χ.χ

n.χ

)
, i = 1,2, . . . . (7.6)

Proof. In (7.4), replace y by the umbra χ.χ/n.χ . We have

ci

(
χ.χ

n.χ

)
�

∑
λ�i

(
χ.χ

n.χ

)νλ

(n)νλdλαλ. (7.7)

Due to the uncorrelation property, we have

E

[
ci

(
χ.χ

n.χ

)]
=

∑
λ�i

E[(χ.χ)νλ ]
E[(n.χ)νλ ] (n)νλdλaλ.

Recalling that E[(χ.χ)νλ ] = (−1)νλ(νλ − 1)! and E[(n.χ)νλ ] = (n)νλ, the result follows. �

7.2. k-statistics via compound Poisson random variables

In the previous section, we have stated the connection between cumulants of an umbra and those
of compound Poisson random variables. In order to recover the umbral expressions of k-statistics
given in (4.2), it is sufficient to express the moments of n.χ.x.β.α in terms of power sums n.αi .
This task has been partially accomplished in Section 3.1 for the umbra n.(χα). We are going to
extend such relations to a more general umbra n.(γ α).

Lemma 7.2. In K[x1, x2, . . . , xn][A], we have

χ.(γ1x1 + · · · + γnxn) ≡ (χ.γ )σ, (7.8)

where σ is the power sum polynomial umbra and {γi}ni=1 are uncorrelated umbrae similar to an
umbra γ .

Proof. Due to property (2.9), we have

χ.(γ1x1 + · · · + γnxn) ≡ +̇n
i=1[χ.(γixi)] ≡ +̇n

i=1(χ.γi)xi,

where the last equivalence follows due to the fact that χ.(cγ ) ≡ c(χ.γ ) for every c ∈ K . Since
the umbrae γi are similar to the umbra γ , we have

+̇n
i=1(χ.γi)xi ≡ (χ.γ )

[+̇n
i=1uxi

]
,

from which (7.8) follows. �
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Corollary 7.1. If σ is the power sum polynomial umbra and {γi}ni=1 are uncorrelated umbrae
similar to the umbra γ , then

(γ1x1 + · · · + γnxn)
i �

∑
λ�i

dλ(χ.γ )λσλ.

Proof. Taking the left dot product with β in (7.8) and recalling that β.χ ≡ u, we have

(γ1x1 + · · · + γnxn) ≡ β.[(χ.γ )σ ]. (7.9)

The result follows via (2.4). �

Replacing the indeterminate xi by αi, the next theorem follows immediately.

Theorem 7.2. If α,γ ∈ A, then

[n.(γ α)]i �
∑
λ�i

dλ(χ.γ )λ(n.α)r1(n.α2)r2 · · · ,

where λ = (1r1,2r2, . . .) � i.

Since χ.y.β.α ≡ (χ.y.β)α (Di Nardo and Senato (2006a), formula (31)), Theorem 7.2 allows
us to express the polynomials ci(y) in terms of power sums n.αi . This is the starting point to
prove the following result.

Theorem 7.3. Let

pn(y) =
n∑

k=1

ykS(n, k)(−1)k−1(k − 1)!, (7.10)

where S(n, k) are the Stirling numbers of second type. We have

(χ.α)i �
∑
λ�i

dλpλ

(
χ.χ

n.χ

)
(n.α)r1(n.α2)r2 · · · ,

where λ = (1r1,2r2, . . .) � i and pλ(y) = [p1(y)]r1 [p2(y)]r2 · · ·.

Proof. From Theorem 7.2, we have

ci(y) �
∑
λ�i

dλ(χ.χ.y.β)λ(n.α)r1(n.α2)r2 · · · , (7.11)

with ci(y) the ith moment of n.[(χ.y.β)α]. Note that χ.χ.y.β ≡ u<−1>y.β , so powers of
χ.χ.y are umbrally equivalent to the exponential umbral polynomials

φn(γ ) =
n∑

k=0

S(n, k)γ k
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(Di Nardo and Senato (2006a)) with γ replaced by u<−1>y, that is,

φn(u
<−1>y) =

n∑
k=1

ykS(n, k)(u<−1>)k.

Observing that pn(y) = E[φn(u
<−1>y)], the result follows from (7.11) since (χ.χ.y.β)λ �

pλ(y). �

The MAPLE algorithm, which implements the result of Theorem 7.3, is the following:
makeTab := proc(N)

[seq([N !/mul((x!)̂numboccur(y, x) ∗ numboccur(y, x)!,
x = {op(y)}) ∗ mul(k[i], i = y),mul(S[i], i = y)], y = combinat
[‘partition’](N))]; end :

makeK := proc(N)

[seq(k[i] = add(combinat[’stirling2’](i, j) ∗ xj ∗ (−1)ˆ(j − 1) ∗ (j − 1)!,
j = 1..i), i = 1..N)]; end :

fd := proc(j, h)

expand(mul(n − t − h, t = 0..j − h)); end :
kstat := proc(N)

localu,v;
v := expand(eval(makeTab(N),makeK(N)));
u := [seq(xi = (−1)ˆ(i − 1) ∗ (i − 1)! ∗ fd(N − 1, i), i = 1..N)];
v := expand(eval(v,u));

1/mul((n − x), x = 0..N − 1) ∗ add(x[1] ∗ x[2], x = v); end :

8. Concluding remarks

Umbral formulae for k-statistics and polykays, either in single or multivariate cases, share a
common algorithm to construct multiset subdivisions. When the multiset has the form {α(i)},
this corresponds to computing partitions of the integer i, but integer partitions cannot be em-
ployed when the multiset has a more complex form. Even though the idea of constructing the
function s is fundamental in constructing umbral formulae involving multisets, this is not ef-
ficient from a computational point of view. Indeed, examples have shown how subdivisions
may occur more than once in the same formula. We have therefore constructed an algorithm
that generates only different subdivisions and enumerates how many times each subdivision oc-
curs; see Di Nardo et al. (2008). Such an algorithm is the heart of the procedure Polykays
which produces k-statistics, polykays, multivariate k-statistics and multivariate polykays using
less computational time than those implemented by Andrews and Stafford (2000). For single
and multivariate k-statistics Polykays has computational times comparable with MATHSTATICA

(Rose and Smith (2002)) up to order 7 and a little worse for higher orders. Moreover, Polykays
allows the computation of multivariate polykays, unlike MATHSTATICA.
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Table 5. Comparisons between computational times for single k-statistics obtained by using the MATHE-
MATICA procedures of Andrews and Stafford, those of MATHSTATICA and the algorithm constructed via
Theorem 7.3 (runs on PC 2.08 GHz, 512MB RAM)

i Andrews and Stafford MATHSTATICA Fast umbral algorithm

8 0.72 0.03 0.00
10 3.49 0.08 0.00
12 24.80 0.20 0.00
14 396.34 0.56 0.05
16 58002.60 1.69 0.11
18 – 5.42 0.20
20 – 19.11 0.41
22 – 69.66 0.81
24 – 285.58 1.66
26 – 1551.48 3.49
28 – 6324.28 7.78

Finally, in Section 7 of this paper, we have proven that the umbral techniques not only provide
a unifying structure for the whole subject, but also a new way of improving the computational
generation of such estimators. An immediate example is the formula stated in Theorem 7.3,
whose derived algorithm realizes the amazing computational times shown in Table 5.
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