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Abstract. Some analytical and computational methods are outlined,
that are suitable to determine the upcrossing first passage time proba-
bility density for some Gauss-Markov processes that have been used to
model the time course of neuron’s membrane potential. In such a frame-
work, the neuronal firing probability density is identified with that of the
first passage time upcrossing of the considered process through a preas-
signed threshold function. In order to obtain reliable evaluations of these
densities, ad hoc numerical and simulation algorithms are implemented.

1 Introduction

This contribution deals with the implementation of procedures and methods
worked out in our group during the last few years in order to provide algorithmic
solutions to the problem of determining the first passage time (FPT) probability
density function (pdf) and its relevant statistics for continuous state-space and
continuous parameter stochastic processes modeling single neuron’s activity. In
the neurobiological context, a classical approach to view neuronal activity as an
FPT problem is to assume that a Markov process is responsible for the time
course of the membrane potential under the assumption of numerous simulta-
neously and independently acting input processes (see also [16] and references
therein). If one uses more realistic models based on correlated (non-Markov)
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Gaussian processes, serious difficulties arise because of lack of effective analyti-
cal methods for obtaining manageable closed-form expressions of the FPT pdf.

Here we shall focus on the FPT upcrossing problem that we define as an
FPT problem to a boundary S(t) ∈ C1[0,+∞) for the subset of sample paths
of a one-dimensional non-singular Gaussian process {X(t), t ≥ 0} originating at
time zero at a state X0, that in turn is viewed as a random variable with pdf

γε(x0) ≡






f(x0)
P{X(0) < S(0)− ε} , x0 < S(0)− ε

0, x0 ≥ S(0)− ε.
(1)

Here, ε > 0 is a fixed real number and f(x0) denotes the normal pdf of X(0).
Then,

T
(ε)
X0

= inf
t≥0
{t : X(t) > S(t)},

is the ε-upcrossing FPT of X(t) through S(t) and the related pdf is given by

g(ε)
u (t) =

∂

∂t
P (T (ε)

X0
< t) =

∫ S(0)−ε

−∞
g(t|x0) γε(x0) dx0 (t ≥ 0), (2)

where

g(t|x0) :=
∂

∂t
P

(

inf
u≥0
{u : X(u) > S(u)} < t

)

, X(0) = x0 < S(0), (3)

denotes the FPT pdf of X(t) through S(t).
The specific nature of various numerical methods available to compute the

ε-upcrossing pdf g(ε)
u (t) depends on the assumptions made on X(t).

2 Upcrossing FPT Densities for Gauss-Markov Processes

We recall that a non singular Gaussian process {X(t), t ≥ 0} with mean m(t) is
Markov if and only if its covariance is of the form

c(s, t) = h1(s)h2(t), 0 ≤ s ≤ t <∞, (4)

where for t > 0

r(t) =
h1(t)
h2(t)

(5)

is a monotonically increasing function and h1(t)h2(t) > 0 (cf. [8], [13]). Fur-
thermore, any Gauss-Markov (GM) process with covariance as in (4) can be
represented in terms of the standard Wiener process {W (t), t ≥ 0} as

X(t) = m(t) + h2(t) W
[
r(t)

]
. (6)

The class of all GM processes {X(t), t ∈ [0,∞)} with transition density function
such that f(x, t|y, τ) ≡ f(x, t − τ |y) is characterized by means and covariances
of the following two forms:
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m(t) = β1t+ c, c(s, t) = σ2s+ c1
(0 ≤ s ≤ t <∞, β1, c ∈ R, c1 ≥ 0, σ �= 0)

or

m(t) = −β1

β2
+ c eβ2t, c(s, t) = c1 e

β2t

[

c2 e
β2s − σ2

2c1β2
e−β2s

]

(

0 ≤ s ≤ t <∞, β1, c, c2 ∈ R, σ �= 0, c1 �= 0, β2 �= 0, c1c2 − σ2

2β2
≥ 0
)

.

The first type includes the Wiener process, while the second type includes the
Ornstein–Uhlenbeck process.

For a non singular GM process with m(t) and covariance c(s, t) = h1(s)h2(t)
for s ≤ t, the pdf (1) can be immediately evaluated. Indeed, f(x0) is a normal
pdf with mean m(0) and variance h1(0)h2(0) and

P{X(0) < S(0)− ε} =
1
2

{

1 + Erf
[
S(0)− ε−m(0)
√

2h1(0)h2(0)

]}

. (7)

Furthermore, the ε-upcrossing FPT pdf is the unique solution of the second kind
Volterra integral equation (cf. [6]):

g(ε)
u (t) = −2ψ(ε)

u [S(t), t] + 2
∫ t

0
ψ[S(t), t|S(τ), τ ] g(ε)

u (t) dτ (8)

where

Ψ [S(t), t|y, τ ] =
{
S′(t)−m′(t)

2
− S(t)−m(t)

2
h′

1(t)h2(τ)− h′
2(t)h1(τ)

h1(t)h2(τ)− h2(t)h1(τ)

−y −m(τ)
2

h′
2(t)h1(t)− h2(t)h′

1(t)
h1(t)h2(τ)− h2(t)h1(τ)

}

f [S(t), t|y, τ ],

ψ(ε)
u [S(t), t] =

∫ S(0)−ε

−∞
ψ[S(t), t|x0] γε(x0) dx0.

A fast and accurate computational method is proposed in [6] to solve integral
equation (8), that make use of the repeated Simpson rule. The proposed iteration
procedure allows one to compute g̃(ε)

u (kp), for k = 2, 3, ..., with time discretiza-
tion step p in terms of computed values at the previous times p, 2p, ..., (k − 1)p.
The noteworth feature of this algorithm is its being implementable after simply
specifying the parameter ε, functions m(t), h1(t), h2(t) that characterize the pro-
cess, boundary S(t) and discretization step p. Furthermore, it does not involve
any heavy computation, neither it requires use of any library subroutines, Monte
Carlo methods or other special software packages to calculate high dimension
multiple integrals.

3 Kostyukov Model

In the context of single neuron’s activity modeling a completely different, ap-
parently not well known, approach was proposed by Kostyukov et al. in [10] and
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[11] in which a non-Markov process of a Gaussian type is assumed to describe
the time course of the neural membrane potential.

Kostyukov model (K-model) makes use of the notion of correlation time.
Namely, let X(t) be a stationary Gaussian process with zero mean, unit variance
and correlation function R(t). Then,

ϑ =
∫ +∞

0
|R(τ)| dτ < +∞

is defined as the correlation time of the process X(t). Under the assumption that
limε→0 P{X(0) < S(0) − ε} � 1, i.e. limε→0 γε(x0) � f(x0), Kostyukov works
out an approximation q(t) to the upcrossing FPT pdf. This approximation is
obtained as solution of the integral equation

∫ t

0
q(τ)K(t, τ) dτ = 1− Φ[S(t)], (9)

where

K(t, τ) =






1
2
, t = τ

1− Φ
{

(t− τ + ϑ)S(t)− ϑS(τ)
√

(t− τ + ϑ) (t− τ)

}

, t > τ,

and where Φ(z) is the distribution function of a standard Gauss random variable.
Note that equation (9) can be solved by routine methods. Furthermore, under
the above approximation, in equation (9) the unique parameter ϑ characterizes
the considered class of stationary standard Gaussian processes.

4 Upcrossing FPT Densities for Stationary Gaussian
Processes

Let X(t) be a stationary Gaussian process with mean m(t) = 0 and covariance
E[X(t)X(τ)] = c(t, τ) = c(t − τ) such that c(0) = 1, ċ(0) = 0 and c̈(0) < 0.
By using a straightforward variant of a method proposed by Ricciardi and Sato
([14], [15]) for the determination of the conditional FPT density g, in [7] we have
obtained the following series expansion for the upcrossing FPT pdf:

g(ε)
u (t) = W

(u)
1 (t) +

∞∑

i=1

(−1)i

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

ti−1

dtiW
(u)
i+1(t1, . . . , ti, t). (10)

Here,

W
(u)
i+1(t1, . . . , ti, t) =

[∫ S(0)−ε

−∞
f(z)dz

]−1∫ S(0)−ε

−∞
Wi+1(t1, . . . , ti, t|x0)f(x0)dx0,

(11)
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where Wn(t1, . . . , tn|x0)dt1 · · · dtn, ∀n ∈ N and 0 < t1 < . . . < tn, denotes
the joint probability that X(t) crosses S(t) from below in the time intervals
(t1, t1 + dt1), . . . , (tn, tn + dtn) given that X(0) = x0.

The evaluation of the partial sums of the above series expansion is made
hardly possible because of the outrageous complexity of the functions W (u)

n and
of their integrals. However, approximations of upcrossing FPT density can be
carried out by evaluating first of all W (u)

1 (t). The explicit expression of W (u)
1 (t)

is (cf. [4]):

W
(u)
1 (t) =

exp
{
−S

2(t)
2

}

2π
[

1 + Erf
(
S(0)− ε√

2

)]

{

[−c̈(0)]1/2 exp

(

− [Ṡ(t)]2

2[−c̈(0)]

)

[1 + Erf(Uε(t))]

− ċ(t)
√

1− c2(t) exp
(

− [S(0)− ε− S(t)c(t)]2

2[1− c2(t)]
)

[1− Erf(Vε(t))] (12)

− Ṡ(t)
√

1− c2(t)

∫ S(0)−ε

−∞
exp

(

− [x0 − S(t)c(t)]2

2[1− c2(t)]
)[

1− Erf
(
σ(t|x0)√

2

)]

dx0

}

where:

Λ3 =




1 c(t) ċ(t)
c(t) 1 0
ċ(t) 0 −c̈(0)





σ(t|x0) =
(

1− c2(t)
‖Λ3‖

)1/2{

Ṡ(t) +
ċ(t)[c(t)S(t)− x0]

1− c2(t)
}

Erf(z) :=
2√
π

∫ z

0
e−y2

dy

Uε(t) :=
−c̈(0)[S(0)− ε− S(t)c(t)]− ċ(t)Ṡ(t)

√
2 ‖Λ3‖ [−c̈(0)]

Vε(t) :=
−ċ(t)[S(0)− ε− S(t)c(t)] + Ṡ(t)[1− c2(t)]

√
2 ‖Λ3‖ [1− c2(t)] ·

A numerical approximation of (12) was proposed in [4] and evaluated by using
NAG routines based on an adaptative procedure described in [1]. For each t > 0,
the function W (u)

1 (t) provides an upper bound to the upcrossing FPT pdf. The
numerical computations indicate that this can be taken as a good approximation
of g̃(ε)

u (t) only for small values of t.
Equations (10) and (11) call for alternative procedures to gain more infor-

mation on upcrossing FPT pdf. To this aim, we have updated an algorithm (cf.
[2]) for the construction of sample paths of the specified stationary Gaussian
process X(t), with random initial point, under the assumption of rational spec-
tral density such that the degree of the polynomial in its denominator is larger
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than that in the numerator. Since the sample paths of the simulated process are
generated independently of each other, the simulation procedure is particularly
suited to run on supercomputers. A parallel simulation procedure has been im-
plemented on a IBM SP-Power4 machine to generate the sample paths of X(t)
and to record their upcrossing FPT times through the preassigned boundary
in order to construct reliable histograms estimating the FPT pdf g̃(ε)

u (t). To
evaluate the upcrossing FPT densities, we have chosen X0 randomly according
to the initial pdf γε(x0). To this purpose, we have made use of the following
acceptance-rejection method (cf. for instance [12]):

Step 1 Generation of pseudo-random numbers U1, U2 uniformely distributed in
(0, 1);

Step 2 Y ← logU2 + S(0)− ε;
Step 3 if U1 < exp

{

− (Y + 1)2

2

}

then X0 ← Y else goto step 1;

Step 4 STOP.

Let us observe that the random variable Y in Step 2 is characterized by the pdf

h(y) =
{
ey−[S(0)−ε], if y < S(0)− ε
0, if y ≥ S(0)− ε. (13)

We point out that our simulation algorithm stems directly out of Franklin’s
algorithm [9]. We have implemented it in both vector and parallel modalities
(see [2], [5]) after suitably modifying it for our computational needs: Namely,
to obtain reliable approximations of upcrossing densities (cf. [3], [4], [5]). Thus
doing, reliable histograms of FPT densities of stationary Gaussian processes with
rational spectral densities can be obtained in the presence of various types of
boundaries.

5 Computational Results

In order to compare the results obtained via different methods for determining
the upcrossing FPT pdf, we start considering the particular stationary standard
Gaussian process X(t) having correlation function

R(t) = e−β|t| cos(αt), (14)

where α = 10−5 and β = ϑ−1. The approximation g̃u(t) for the FPT density of
this process in the presence of the threshold

S(t) = −t2/2− t+ 5 (15)

is estimated via 106 simulated paths with the following choices of correlation
times:

(i) ϑ = 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1.024,
in Fig. 1(a) and with

(ii) ϑ = 2.048, 4, 8, 16, 32, 64, 100, 200,
in Fig. 1(b).
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Fig. 1. Plot of the simulated g̃u(t) in Fig. 1(a) and in Fig. 1(b) and plot of g̃u(t) for
the OU-model in Fig. 1(c) and in Fig. 1(d), with threshold S(t) = −t2/2 − t + 5
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Fig. 2. Plot of the simulated g̃u(t) in Fig. 2(a) and in Fig. 2(b) and plot of g̃u(t) for
the OU-model in Fig. 2(c) and in Fig. 2(d), with threshold S(t) = −t2 − t + 5
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Fig. 3. Plot of g̃u(t) for the Wiener model in Fig. 3(a) and in Fig. 3(b) and plot of q(t)
for the Kostyukov-model in Fig. 3(c) and in Fig. 3(d), with threshold S(t) = −t2/2−t+5
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Fig. 4. Plot of g̃u(t) for the Wiener model in Fig. 4(a) and in Fig. 4(b) and plot of q(t)
for the Kostyukov-model in Fig. 4(c) and in Fig. 4(d),with threshold S(t) = −t2 − t+5
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Furthemore, for the stationary GM process X(t) with

m(t) = 0, c(s, t) = e−(t−s)/ϑ (s < t), (16)

known as the Ornstein-Uhlenbeck (OU) model, the FPT density approximation
g̃u(t) in the presence of threshold (15) is evaluated via (8) and is plotted in Fig.
1(c) and Fig. 1(d) for the values of ϑ respectively indicated in (i) and (ii). Note
that for values of α close to zero, (14) is near the OU correlation function, given
by

e−t/ϑ (t ≥ 0).

Figure 2 is the same of Fig. 1 for the threshold

S(t) = −t2 − t+ 5. (17)

We notice that for large correlation times the firing densities in Fig. 1(b) exhibit
features similar to those of the OU-model in Fig. 1(d). Similar considerations
hold for the case of Fig. 2(b) and Fig. 2(d).

Let us now focus our attention on a non stationary GM processX(t) (Wiener-
model) with

m(t) = 0, c(s, t) = s/ϑ (s < t). (18)

The approximation g̃u(t) for this process in the presence of threshold (15) is
estimated via (8) for the choices of the ϑ as (i) in Fig. 3(a) and as (ii) in Fig. 3(b).
Finally, the function q(t) of the K-model in the presence of threshold (15) is
evaluated via (9) with ϑ as (i) in Fig. 3(c) and as (ii) in Fig. 3(d). Figure 4 is
the same as Fig. 3 but for threshold (17).

We point out that again for large values of ϑ the firing densities in Fig. 3(b)
exhibit features similar to those of the Wiener-model in Fig. 3(d). The same
occurs in Fig. 4(b) and Fig. 4(d). Hence, the validity of approximations of the
firing densities in the presence of memory effects by the FPT densities of Markov
type is clearly related to the magnitude of the involved correlation time. Indeed,
it could be shown that the asymptotic behavior of all these models becomes
increasingly similar as ϑ grows larger.
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