
01 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Stereoselective peterson olefinations from bench-stable reagents and N-phenyl imines

Published version:

DOI:10.1002/chem.201500475

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1657854 since 2018-01-17T15:17:28Z



 

 

 

Stereoselective Peterson Olefinations from Bench-Stable 
Reagents and N-Phenyl Imines 

Manas Das, Atul Manvar, Maïwenn Jacolot, Marco Blangetti, Roderick Jones, and Donal F. O’Shea* 

Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, 

Dublin 2 (Ireland) 

E-mail: donalfoshea@rcsi.ie 

 

Abstract: The synthesis of bench stable α,α-bis(trimethylsilyl)toluenes and tris(trimethylsilyl)methane is described and their use in 

stereoselective Peterson olefinations has been achieved with a wide substrate scope. Product stereoselectivity was poor with carbonyl 

electrophiles (E/Z~1:1 to 4:1) though this was significantly improved by employing the corresponding substituted N-benzylideneaniline (up 

to 99:1) as an alternative electrophile. Identification of the reaction by-product as N,N-bis(trimethylsilyl)aniline, which could be readily 

separated from product by aqueous acid extraction, suggests phenyl(trimethylsilyl)amide as the olefin forming leaving group and that an 

autocatalytic cycle was possible. This mechanistic insight prompted the development of KHMDS as a new non-fluoride activator for rt 

olefination reactions under routine conditions. 

In the synthetic olefination toolbox the Peterson olefination, in spite of its great value, remains one of the lesser utilized methods 

for the conversion of carbonyls to alkenes.1 The transformation is considered as a silicon analogue of the Wittig reaction with the 

reaction of α-silyl carbanions 2 (typically generated by deprotonation of 1 using strong lithium or magnesium bases) with carbonyls 

providing the alkene product 3 and trimethylsilyl oxide by-product (Scheme 1, route (a)).2  Intermediate β-hydroxysilanes can be 

isolated when the silyl carbanion used is not stabilized (e.g. R = alkyl), which upon treatment with either base or acid can deliver 

the corresponding (E)- or (Z)-alkene stereoselectively.3 For stabilized α-silyl carbanions (e.g. R = Ar) these intermediates are not 

isolated and stereo-control has yet to be achieved.4 A further disincentive to the use of the reaction is that the generation of the 

silyl anions 2 are substrate dependent and can often require non-trivial conditions. 

Yet, if solutions to these issues were in hand, an inherent advantage of the Peterson olefination is its superior atom-economy over 

the Wittig reaction as it produces low molecular silicon by-product in the carbon-carbon double bond forming step rather than 

crystalline triphenylphosphine oxide.5  An alternative approach to the generation of the α-silyl carbanions that does not require 

strong organometallic bases, is to use geminal bis-trimethyl silanes 4 as starting substrates and a fluoride source to promote 

generation of the -silyl carbanion precursor 5 (Scheme 1, route (b)). In spite of the fact that the bis silanes 4 are bench-stable 

(analogous to the Wittig phosphonium salt), this approach has received very limited practical use, perhaps due to the lack of 

general routes for their synthesis.4e-g,6 

 

Scheme 1. Peterson olefination. 

In this report we illustrate a new general two step approach for the synthesis of α,α-bis(trimethylsilyl)toluenes 7a-h from their 

corresponding toluenes using identical synthetic conditions for both steps. We have developed a routine rt method for their use in 

olefination reactions and shown, for the first time, how the stereocontrol can be achieved by the use of aniline derived N-aryl imine 

electrophiles. In addition this method is extended to the complementary tris-timethylsilane 9 which opens a new route to vinyl 

trimethylsilanes, which are in themselves important substrates for cross-coupling transformations in alkene synthesis.7 

Synthesis of (arylmethylene)bis(trimethylsilanes) 7a-h was achieved by the regioselective benzylic metalation of the parent 

toluene using BuLi, KOtBu, TMP(H) in THF (LiNK conditions)8 and TMSCl quench to form the substituted benzylsilanes 6a-h with 

a repeat of these conditions providing the desired olefination reagents (Scheme 2, top panel). Introduction of a sensitive bromine 

functional group, that would not be tolerant of the chemistry required for the geminal bis-silane synthesis, was achieved from 7a 

giving with p-bromo derivative 7i obtained in an excellent 83% yield (Scheme 2, left bottom panel). Tris(trimethylsilyl)methane 9 

was generated by deprotonation of bis(trimethylsilyl)methane 8 and TMSCl quench (Scheme 2, right bottom panel). 



 

 

 

With the olefination reagents in hand their use in fluoride promoted reaction with aldehydes was explored to identify mild activation 

conditions and record the effects of substituents on product E/Z selectivity (Table 1). It was found that reaction of 7d with 

benzaldehyde proceeded smoothly in either THF or DMF using TBAF, TBAT or CsF respectively, giving the stilbene product in 

each case but with virtually no stereoselectivity (Table 1, entries 1-3).   

 

 

Scheme 2. Synthesis of (arylmethylene)bis(trimethylsilanes) 7a-i and tris(trimethylsilyl)methane 9. 

Reaction with other aldehydes showed no significant change in product E/Z ratio which is consistent with previous reports (entries 

4-9).4 Similar results were obtained with 7a using TBAF as activator (entry 10). Only derivative 7g containing an electron 

withdrawing group and the tris(trimethylsilyl)methane 9 showed moderate 80/20 E/Z at selectivity (entries 10-13).9 While the lack 

of stereo-control is a major drawback, monitoring of the reaction by 1H NMR in THF-d8 revealed that hexamethyldisiloxane was 

the reaction byproduct, which as a low boiling solvent (98 °C) can be readily removed (SI). 

 
Table 1:Screening of olefination reaction conditions with carbonyls. 

 

entry 7/9 solvent Ar T (°C) yield (%) E/Za 

1 7d THF Ph rtb 10a/56 56/44 

2 7d THF Ph 70b 10a/77 54/46 

3 7d DMF Ph 80e 10a/82 51/49 

4 7d THF 4-BrC6H4 70b 10b/74 52/48 

5 7d THF 4-MeOC6H4 70b 10c/77 52/48 

6 7d THF 4-MeC6H4 70b 10d/64 53/47 

7 7d THF 2-naphthyl 70b 10e/73 47/53 

8 7d THF (E)-PhCH=CH 70b 10f/89 50/50 

9 7d THF 4-CNC6H4 70b 10g/70 51/49 



 

 

 

10 7a THF 4-MeOC6H4 rtd 10h / 70 53/47 

11 7g THF 4-MeOC6H4 rtb 10i / 64 80/20 

12 9 THF Ph 70f 11a/85 80/20 

13 9 THF Ph rtg 11a/65 75/25 

aE/Z ratio determined by 1H NMR of crude extracted product. Fluoride source bTBAT, cCsF, dTBAF. e1equivCsF used. f20 mol% TBAT used. g20 mol% TBAF 

used. 

 

As neither substrate nor reaction conditions had any significant general influence on the stereochemical outcome of the reaction, 

a new approach was sought to do so. Computational studies on the Peterson olefination mechanism have described that, in the 

absence of a coordinating counterion, the addition step was rate limiting and as such it should be sensitive to steric and electronic 

influences.10 In an effort to exert such influences in a general manner, (E)-N-benzylideneanilines were chosen as alternative 

electrophiles to aldehydes which could be readily generated via their condensation with inexpensive aniline (Table 2).11 

Gratifyingly, the reaction of 7d in either THF with TBAT at reflux or DMF / CsF at rt gave the product 10a in modest yield but with 

dramatically improved E/Z selectivity of 94/6 (Table 2, entries 1,2). The product yield was found to improve to 77% when the 

reaction was carried out in DMF at 80 °C using 30 mol% CsF (entry 3). Applying similar conditions (except elevating the amount 

of CsF to 1 equiv), the tris(trimethylsilyl)methane 9 gave 11a in a 83% yield and E/Z ratio of 99:1 (entry 4). Following the reaction 

course of 7d with N-benzylideneaniline in DMF-d7 showed that 

 
Table 2: Optimization of olefination conditions with imine electrophiles. 

 

entry 7d/9 fluoride solvent T (oC) yield (%) E/Za 

1 7d TBAT THF 70 10a/15 94/6 

2 7d CsFb DMF rtc 10a/59 97/3 

3 7d CsFc DMF 80 10a/77 96/4 

4 9 CsFb DMF 80 11a/83 99/1 

aE/Z ratio determined by 1H NMR of crude extracted product.b1 equiv CsF used.c30 mol% CsF used. 

1,1,1-trimethyl-N-phenyl-N-(trimethylsilyl)silanamine 12 was produced as by-product during the course of the reaction (SI). 

Compound 12 was readily separable from alkene product by aqueous acid extraction during which it was seen to desilylate and 

generate aniline.  

 

Table 3: Stereochemistry control in Peterson olefination with imine electrophiles.  

 

entry 7 / 9 Ar prod yield (%) E/Za 

1 7a Ph 10j 79 92/8 

2 7a 4-MeOC6H4 10h 60 91/9 

3 7b 2-ClC6H4 10k 83 98/2 

4 7b ferrocenyl 10l 82 99/1 

5 7c 2-ClC6H4 10m 71 98/2 

6 7d 4-MeOC6H4 10c 62 92/8 



 

 

 

7 7d (E)-PhCH=CH 10f 71 91/9 

8 7e 2-naphthyl 10n 53 99/1 

9 7e 4-FC6H4 10o 73 95/5 

10 7f 3-MeOC6H4 10p 89 99/1 

11 7f ferrocenyl 10q 41 99/1 

12 7g Ph 10r 77 99/1 

13 7g 4-FC6H4 10s 69 99/1 

14 7h 4-BrC6H4 10t 68 99/1 

15 7h 4-MeOC6H4 10u 83 99/1 

16 7i 4-FC6H4 10v 87 99/1 

17 7i 2-MeOC6H4 10w 11 99/1 

18 9 2-ClC6H4 11c 71 97/3 

19 9 3-MeOC6H4 11d 73 99/1 

20 9 4-BrC6H4 11e 51 99/1 

21 9 4-FC6H4 11f 56 99/1 

22 9 4-MeOC6H4 11b 61 99/1 

23 9 4-Me2NC6H4 11g 60 99/1 

24 9 4-MeOC(O)C6H4 11h 44 99/1 

25 9 2-naphthyl 11i 70 99/1 

26 9 ferrocenyl 11j 47 97/3 

aE/Z ratio determined by1H NMR of crude extracted product. 

 

The generality of E-product selectivity was investigated using ten different olefination reagents 7a–i and 9, with thirteen 

different N-phenyl imines chosen to reflect differing electronic and steric factors (Table 3). Remarkably, the excellent E 

selectivity was observed in all reactions with the stilbene products 10 obtained in E/Z ratios ranging from 91:9 to 99:1 

(Table 3, entries 1–17) and substituted trimethyl(styryl)silanes 11 ranging from 97:3 to 99:1 (entries 18–26). While further 

investigation is required to fully explain the N-phenyl imine stereocontrol two influential differences between the imine and 

carbonyl reaction pathways would be the increased sterics involved in the addition of 13 and the effect of the 

phenyl(trimethylsilyl)amide leaving group 17. Loss of 17 could be envisaged 1) following the formation of the carbanion 15 

by an 1,3-aza-Brook-type rearrangement of 14 or 2) following the concerted formation of the substituted 1-aza-2-

silacyclobutane 16 (Scheme 3).[12] Completion of the reaction cycle with the formation of 12 as a byproduct indicates the 

possibility of an autocatalytic cycle in which 17 reacts with starting material 7 to generate 12 and 13 (Scheme 3).[13] This 

was confirmed by the reaction of 7d with N-benzylideneaniline by using one equivalent of 17 (generated by the reaction of 

1,1,1- trimethyl-N-phenylsilanamine with NaH) to promote the reaction. The expected stilbene product 10a was obtained 

with an identical E/Z selectivity as observed with the CsF-promoted reaction (Scheme 3, inset). This we believe is the first 

demonstration of an autocatalytic Peterson reaction. 



 

 

 

 

Scheme 3. Mechanistic cycle. 

While the synthesis of N-benzylideneanilines could be considered trivial it does add an additional synthetic step to the 

overall process. As such, a one-pot method was developed which first conducted the aldehyde/aniline condensation in 

DMF following which the bis(silane) reagent was added and olefination performed in situ. Using 7b, d, and f as 

representative bis(silanes), this approach worked well with the stilbenes 10a, 10x,y isolated in comparable yield and E-

selectivity as the approach outlined above (Scheme 4). 

 

 

Scheme 4. One-pot (E)-selective synthesis of stilbenes 

 

In summary, a new general two-step synthesis of α,α-bis(trimethylsilyl) toluenes and tris(trimethylsilyl)methane has been 

developed providing access to bench-stable Peterson olefination reagents. Poor E/Z selectivity was obtained in their 

reaction with aldehydes but when the corresponding substituted N-benzylideneanilines were employed as electrophiles 

high E selectivity was observed for a wide range of substrates. Identification of the reaction byproduct as aqueous 

extractable N,N-bis(trimethylsilyl)aniline maintains the advantage of Peterson olefinations in generating a readily 

removable byproduct. Evidence for an autocatalytic cycle has been established with the olefin forming leaving group being 

capable of propagating the reaction. As the use of imine electrophiles for aza-Peterson olefinations has not been previously 

studied, the scope of this approach is currently being further explored in conjunction 

with additional mechanistic investigations. 

 

Experimental Section 

General procedure for the olefination of (benzyl)bis(trimethylsilane) with N-phenyl imines 

A solution of (benzyl)bis(trimethylsilane) (0.48 mmol) and substituted N-benzylideneaniline (0.40 mmol) in anhydrous DMF 

(2.0 mL) with 4 A molecular sieves was treated with CsF (0.12 mmol) under N2 and the resulting solution was heated at 80 



 

 

 

°C until the reaction reached completion. The reaction mixture was quenched with water. The residue was extracted with 

diethyl ether (20 mL x 3). Organic layers were combined and washed with water and brine, dried over anhydrous sodium 

sulfate, and concentrated. Purification by silica gel chromatography eluting with petroleum ether/ethyl acetate gave the 

corresponding alkene. The E/Z ratios for the alkene products were determined by 1H NMR spectroscopic analysis. 
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