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A B S T R A C T

This prospective study developed an MRI-based method for identification of individual motor neuron disease
(MND) patients and test its accuracy at the individual patient level in an independent sample compared with
mimic disorders. 123 patients with amyotrophic lateral sclerosis (ALS), 44 patients with predominantly upper
motor neuron disease (PUMN), 20 patients with ALS-mimic disorders, and 78 healthy controls were studied. The
diagnostic accuracy of precentral cortical thickness and diffusion tensor (DT) MRI metrics of corticospinal and
motor callosal tracts were assessed in a training cohort and externally proved in a validation cohort using a
random forest analysis. In the training set, precentral cortical thickness showed 0.86 and 0.89 accuracy in
differentiating ALS and PUMN patients from controls, while DT MRI distinguished the two groups from controls
with 0.78 and 0.92 accuracy. In ALS vs controls, the combination of cortical thickness and DT MRI metrics
(combined model) improved the classification pattern (0.91 accuracy). In the validation cohort, the best accu-
racy was reached by DT MRI (0.87 and 0.95 accuracy in ALS and PUMN vs mimic disorders). The combined
model distinguished ALS and PUMN patients from mimic syndromes with 0.87 and 0.94 accuracy. A multimodal
MRI approach that incorporates motor cortical and white matter alterations yields statistically significant im-
provement in accuracy over using each modality separately in the individual MND patient classification. DT MRI
represents the most powerful tool to distinguish MND from mimic disorders.

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset neurodegen-
erative disorder of the motor system characterized by upper (UMN) and
lower motor neuron (LMN) degeneration, leading to progressive mus-
cular paralysis and death (Kiernan et al., 2011). The El Escorial criteria
for the diagnosis of ALS, which were established 20 years ago, are es-
sentially clinical and rely on the detection of motor neuron signs in
multiple body segments (Brooks et al., 2000). Although these guidelines
have been repeatedly shown to be useful inclusion criteria for clinical
trials, concerns have been raised regarding their use in clinical practice
(Agosta et al., 2015; Belsh, 2000). The false-positive rate has been es-
timated to be as high as eight to 10%, while the false-negative rate
approaches 45% (Davenport et al., 1996; Traynor et al., 2000). Fur-
thermore, the average delay from the symptom onset to diagnosis is

12 months (Mitchell et al., 2010).
The use of magnetic resonance imaging (MRI) in patients suspected

of having ALS is yet restricted to exclude other causes of signs and
symptoms of motor neuron pathology (Filippi et al., 2010). However,
the recent growing recognition of ALS as a diffuse central nervous
system pathology has been a major driver of the application of ad-
vanced neuroimaging techniques to the study of the disease (Filippi
et al., 2015). Structural MRI detects in vivo both grey matter (GM) and
white matter (WM) alterations associated with ALS, providing potential
reliable diagnostic markers of the disease (Chiò et al., 2014; Menke
et al., 2017). A pathological hallmark of ALS is the atrophy of the
primary motor cortex, and numerous studies have detected bilateral
precentral gyrus thinning in ALS patients (Agosta et al., 2012; Schuster
et al., 2013; Verstraete et al., 2011). Degeneration of the corticospinal
tracts (CST) and body of the corpus callosum (CC) represents another
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disease-defining signature (Agosta et al., 2014; Agosta et al., 2010; van
der Graaff et al., 2011), particularly in patients with a predominant
UMN (PUMN) variant (Agosta et al., 2014; Iwata et al., 2011; Unrath
et al., 2010).

Increasing attempts have been made to test the diagnostic accuracy
of structural MRI measures in ALS. Precentral gyrus thickness showed a
good accuracy in distinguishing ALS from healthy controls (Agosta
et al., 2012; Verstraete et al., 2011; Walhout et al., 2015). Diffusion
Tensor (DT) MRI measures in small subject cohorts provided good
discrimination between ALS and controls (Agosta et al., 2014; Graham
et al., 2004; Nelles et al., 2008). However, these studies reported results
at a group level, raising the question of the applicability of such mea-
sures in clinical settings. An individual patient data meta-analysis of
CST fractional anisotropy (FA) revealed its diagnostic power to be
modest relative to healthy controls (Foerster et al., 2013). This dis-
appointing finding may result from the heterogeneity of both the
methodology and patient populations but it may also suggest that a
single MR technique lacks sufficient diagnostic power. A multimodal
neuroimaging approach may be a strategy to improve accuracy
(Douaud et al., 2011; Foerster et al., 2014; Schuster et al., 2016). A
model incorporating the cortical thickness of the precentral gyrus and
DT MRI measures of the CST and CC was able to discriminate ALS and
healthy controls with good sensitivity (85.7%) and accuracy (78.4%)
(Schuster et al., 2016). However, almost all previous MRI studies have
recruited healthy controls as reference group to identify ALS-specific
abnormalities, while a comparison with ALS-mimic disorders is man-
datory to test the specificity of these markers.

The aims of this study were: to develop a method for individual
identification of motor neuron disease (MND) patients using multi-
modal structural MRI data of ALS-specific anatomical regions (i.e.,
precentral cortical thickness and DT MRI metrics of motor WM tracts),
and to test the validity of such an approach in an independent patient
cohort relative to subjects with ALS-mimic disorders.

2. Methods

2.1. Subjects

All patients were consecutively recruited at three tertiary referral
MND Clinics in Northern Italy and underwent a comprehensive eva-
luation including neurological history, neurophysiological assessment,
genetic analysis, and MRI. The main sample consisted of 167 right-
handed patients with MND (123 patients with ALS and 44 patients with
PUMN), including 17 ALS cases carrying a genetic mutation (11 with
hexanucleotide repeat expansions in chromosome 9 open reading frame
72, two with a TARDBP mutation, three with a SOD1 mutation, and one
with a FUS mutation) (Table 1). Diagnosis of classic ALS was made
according to the revised Escorial criteria (Brooks et al., 2000). Patients

with a clinical PUMN phenotype did not have any LMN sign on clinical
assessment or any evidence of active denervation on repeated electro-
myographical examinations (Chio et al., 2011). In the PUMN sample,
33 cases had a disease duration ≥3 years and were therefore diagnosed
with primary lateral sclerosis (PLS) (Pringle et al., 1992). An additional
sample of 20 patients with ALS-mimic disorders (Traynor et al., 2000)
was enrolled (Table 1). This group included 13 patients with spino-
bulbar muscular atrophy (Kennedy's Disease), two patients with mul-
tifocal motor neuropathy with conduction blocks, two patients with
chronic sensorimotor polyneuropathy, two patients with lumbar radi-
culopathy, and one case with distal spinal muscular atrophy. Prior to
diagnosing a mimic disorder, these patients had been referred to our
centers because of a clinical suspicion of ALS. Experienced neurologists
blinded to the MRI results performed the clinical assessment. Site of
disease onset and disease duration were recorded. Disease severity was
assessed using the ALS Functional Rating Scale-revised (ALSFRS-r). The
rate of disease progression was calculated as follows: (48–ALSFRS-r
score)/time from symptom onset. 72 ALS, 35 PUMN and 14 ALS-mimic
patients underwent cognitive and behavioral evaluations following
published recommendations (Montuschi et al., 2015; Phukan et al.,
2012), as previously described (Agosta et al., 2016).

In addition, data were acquired in 78 right-handed, age-matched
healthy controls who were recruited among spouses of patients and by
word of mouth (Table 1). Healthy controls were included if the neu-
rological assessment was normal and the Mini-Mental State Examina-
tion was ≥28. Patients and controls were excluded if they had: sig-
nificant medical illnesses or substance abuse that could interfere with
cognitive functioning; any (other) major systemic, psychiatric, or neu-
rological illnesses; and (other) causes of focal or diffuse brain damage,
including lacunae, and extensive cerebrovascular disorders at routine
MRI. Approval was obtained from the local ethical standards committee
on human experimentation and written informed consent from all
subjects (or their legal guardians) before enrolment.

2.2. MRI study

2.2.1. MRI protocol
Using a 3.0 Tesla Philips Intera scanner, the following brain MRI

sequences were acquired: T2-weighted spin echo; fluid-attenuated in-
version recovery; 3D T1-weighted fast field echo (FFE); and pulsed-
gradient spin echo, echo planar with sensitivity encoding and diffusion
gradients applied in 32 noncollinear directions (Agosta et al., 2014).

2.2.2. Cortical thickness measurement
Cortical reconstruction and estimation of cortical thickness were

performed on the 3D T1-weighted FFE images using the FreeSurfer
image analysis suite, version 5.3 (http://surfer.nmr.mgh.harvard.edu/).
After registration to Talairach space and intensity normalization, the

Table 1
Demographic and clinical findings of healthy control subjects, and ALS, PUMN and mimic disorder patients.

Healthy controls ALS patients PUMN patients ALS-mimic patients p ALS vs
HC

p PUMN vs
HC

p ALS vs
PUMN

p ALS vs ALS-
mimic

p PUMN vs
ALS-mimic

Number 78 123 44 20 – – – –
Age (years) 63.23 ± 8.90 63.49 ± 10.07 62.99 ± 8.22 55.85 ± 10.31 0.85 0.88 0.77 0.002 0.004
Sex (W/M) 45/33 64/59 23/21 2/18 0.43 0.56 0.98 <0.001 0.001
Site of onset (bulbar /

limb / bulbar + limb)
– 40/81/2 6/38/0 0/20/0 – – 0.02 0.002 0.16

Disease duration (months) – 19.28 ± 16.94 80.16 ± 56.81 118.24 ± 64.54 – – <0.001 <0.001 <0.001
ALSFRS-r – 38.14 ± 6.88 36.67 ± 6.49 42.17 ± 1.34 – – 0.23 0.046 0.01
Rate of disease progression – 0.75 ± 0.70 0.29 ± 0.48 0.05 ± 0.02 – – <0.001 <0.001 0.10
No CI or BI/CI or BI/MND-

FTD
– 37/30/5 17/18/0 7/7/0 – – – – –

Values are means ± standard deviations or number. p values refer to Fisher exact test or ANOVA models, followed by post hoc pairwise comparisons. Abbreviations: ALS = amyotrophic
lateral sclerosis; ALSFRS-r = ALS functional rating scale-revised; BI = behavioral impairment; CI = cognitive impairment; HC = healthy controls; M =men; MND =motor neuron
disease; W = women.
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process involved an automatic skull stripping, which removes extra-
cerebral structures, cerebellum and brainstem, by using a hybrid
method combining watershed algorithms and deformable surface
models. Images were carefully checked for skull stripping errors. After
this step, images were segmented into GM, WM, and cerebrospinal fluid
(CSF), cerebral hemispheres were separated, and subcortical structures
were divided from cortical components. The WM/GM boundary was
tessellated and the surface was deformed following intensity gradients
to optimally place WM/GM and GM/CSF borders, thus obtaining the
WM and the pial surfaces. The results of this segmentation procedure
were inspected visually, and if necessary, edited manually by adding
control points. Afterwards, surface inflation and registration to a
spherical atlas were performed and the cerebral cortex was parcellated
into 34 regions per hemisphere, based on gyral and sulcal structures, as
described by Desikan et al. (Desikan et al., 2006). Finally, cortical
thickness was estimated as the average shortest distance between the
WM boundary and the pial surface. Mean cortical thickness of the
precentral gyrus bilaterally was obtained.

2.2.3. DT MRI tractography
DT MRI analysis was performed using the FMRIB software library

(FSL) tools (http://www.fmrib.ox.ac.uk/fsl/fdt/index.html) and the
JIM6 software (Version 6.0, Xinapse Systems, Northants, UK, http://
www.xinapse.com). The diffusion-weighted data were skull-stripped
using the Brain Extraction Tool implemented in FSL. Using FMRIB's
Linear Image Registration Tool (FLIRT), the two diffusion-weighted
scans were coregistered by applying the rigid transformation needed to
correct for position between the two b0 images (T2-weighted, but not
diffusion-weighted). The rotation component was also applied to dif-
fusion-weighted directions. Eddy currents correction was performed
using the JIM6 software. Then, the two acquisitions were concatenated.
The DT was estimated on a voxel-by-voxel basis using DTIfit provided
by the FMRIB Diffusion Toolbox. Maps of mean diffusivity (MD), FA,
axial diffusivity (axD) and radial diffusivity (radD) were obtained.

Seeds for tractography of the CST and CC were defined in the
Montreal Neurological Institute (MNI) space on the FA template pro-
vided by FSL, as previously described (Agosta et al., 2014). Fiber
tracking was performed in native DT MRI space using a probabilistic
tractography algorithm implemented in FSL (probtrackx), which is
based on Bayesian estimation of diffusion parameters (Bedpostx). Fiber
tracking was initiated from all voxels within the seed masks in the
diffusion space to generate 5000 streamline samples with a step length
of 0.5 mm and a curvature threshold of 0.2. Using a “single-seed” ap-
proach, the reconstructions of the CC and bilateral CST were obtained.
In addition, using a “seed to target” approach, the CC was segmented
into three portions to identify the callosal fibers linking the primary
motor cortices (CC-precentral), lateral premotor cortices (CC-premotor)
and supplementary motor areas (CC-SMA). Tract maps were then nor-
malized taking into consideration the number of voxels in the seed
masks. To do so, the number of streamline samples present in the voxels
of the tract maps was divided by the way-total, which corresponds to
the total number of streamline samples that were not rejected by the
exclusion masks. The tract masks obtained were thresholded at a value
equal to 40% of the 95th percentile of the distribution of the intensity
values of the voxels included in the tract, as previously described. This
normalization procedure allowed us to correct for possible differences
between tracts due to the different sizes of the starting seeds. In this
way, we also excluded the background noise and avoided a too re-
strictive thresholding when the maximum intensity value was an out-
lier. Group probability maps of each thresholded tract were produced to
visually check their anatomical consistency across study subjects. For
each tract, the average MD, FA, axD, and radD were calculated in the
native space.

2.3. Statistical analysis

2.3.1. Demographic and clinical data
Normal distribution assumption was checked by means of Q-Q plot

and Shapiro-Wilks and Kolmogorov-Smirnov tests. Group comparisons
were performed using ANOVA models, followed by post hoc pairwise
comparisons. Standardized differences between groups were computed.
All analyses were performed using SAS Release 9.3 (SAS Institute, Cary,
NC, USA).

2.3.2. MRI data
Precentral gyrus mean cortical thickness and DT MRI measures were

compared between groups using ANOVA models, false-discovery rate
(FDR)-corrected for multiple comparisons and adjusting for subject's
age.

2.3.3. Random forest analysis
The diagnostic accuracy of precentral cortical thickness measures

and DT MRI metrics of the CST and motor callosal tracts were assessed
in a training cohort (70 randomly selected ALS patients, 22 PUMN
patients, and 78 healthy controls) and externally proved in a validation
cohort (remaining 53 ALS and 22 PUMN patients, and 20 mimic dis-
orders), using a random forest classifier (Breiman, 2001). This machine
learning statistical algorithm, based on an ensemble of classification
trees, allowed us to classify subjects according to their clinical status
using the set of MRI variables. 100,000 individual classification trees of
the forest were built using 0.632+ bootstrap subsampling without re-
placement. The best split at each node was selected from a random
subset of covariates adopting a conditional permutation scheme to
avoid possible bias in variable selection. The left-out observations (i.e.,
“out of bag” observations) were then used to obtain the classification
error of each tree considered. The bootstrap re-sampling and the per-
mutation strategy simulate, de facto, the natural variability of measures
and provide an internal validation of the results: using a different
bootstrap sample of the data and a different subset of predictors, ran-
domly chosen to build each tree of the forest, random forest overcomes
the concern of false positive discoveries. Analyses were performed using
R (A language and environment for statistical computing).

2.3.4. Power analysis
The analysis was powered on the worst case scenario in terms of our

study design (i.e., 20 ALS-mimic vs 22 PUMN patients). In this case, the
study had a power of 80%, assuming a type I error of 5%, to detect an
accuracy of 0.74. Therefore, for the other comparisons, the power to
detect an accuracy of 0.74 was higher or, with a power of 80%, we were
able to detect also smaller accuracies.

3. Results

3.1. MRI variables

Compared with healthy subjects, ALS and PUMN patients showed a
marked cortical thinning of the precentral gyrus bilaterally and altered
DT MRI metrics of the CST bilaterally, CC-SMA and CC-precentral fibers
(Fig. 1 and 2, E-Tables 1 and 2). Compared to healthy controls, no DT
MRI and cortical thickness abnormalities were observed in the whole
ALS-mimic patient group (Fig. 2, E-Tables 1 and 2). When patients with
Kennedy's disease were considered separately from other cases with
mimic disorders relative to healthy controls, they showed no precentral
cortical thinning and DT MRI abnormalities (E-Table 1). Relative to
ALS-mimic cases, ALS patients showed a greater involvement of the CC-
SMA and CC-precentral fibers, and PUMN patients had a more severe
damage of the CST bilaterally, CC-SMA and CC-precentral fibers (Fig. 2,
E-Tables 1 and 2). When PUMN cases were compared with patients with
Kennedy's disease, DT MRI differences were slightly less significant (E-
Table 1). PUMN patients showed a greater involvement of the callosal
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tracts relative to ALS cases (Fig. 2, E-Tables 1 and 2). No cortical
thickness difference was found between ALS, PUMN and mimic dis-
order patients (Fig. 1, E-Tables 1 and 2).

3.2. Diagnostic accuracy values of MRI metrics

Table 2 reports accuracy, sensitivity and specificity of the MRI
metrics in the individual identification of subjects in both training and
validation sets. In the training set, precentral cortical thickness showed
0.86 accuracy and DT MRI measures 0.78 accuracy in differentiating
ALS patients from healthy controls. The classification pattern con-
siderably improved when the MRI metrics were combined, reaching
0.91 accuracy, 0.91 sensitivity and 0.92 specificity (Fig. 3). In the
comparison PUMN patients vs controls, the best diagnostic performance
was achieved by the DT MRI which showed 0.92 accuracy (0.86 sen-
sitivity, 0.95 specificity) compared with precentral cortical thickness
showing 0.89 accuracy (0.69 sensitivity, 1.00 specificity). The com-
bined model did not improve the ability to differentiate PUMN and
healthy subjects (Fig. 3). Both precentral cortical thickness and DT MRI
metrics showed a fair accuracy (0.73 and 0.77, respectively) with high
sensitivity (1.00) but low specificity (0.00 and 0.14, respectively) in
distinguishing ALS from PUMN patients. The analysis of the validation
test confirmed a low performance of MRI measures in separating ALS
and PUMN groups (Table 2). In the validation cohort, the best accuracy
vs mimic disorders was reached by DT MRI (0.87 and 0.95 in ALS and
PUMN, respectively), while cortical thickness provided 0.73 and 0.74
accuracy (Table 2). The combined model distinguished ALS and PUMN
from mimic syndromes with performance (0.87 and 0.94 accuracy,
respectively) similar to that of DT MRI alone (Table 2) (Fig. 3).

4. Discussion

This is a structural MRI study suggesting the potential of multimodal
imaging as a diagnostic marker for individual ALS and PUMN cases, and
its accuracy in discriminating MND patients from ALS-mimic diseases in
an independent patient cohort. We demonstrated that a multi-
parametric MRI approach significantly improves diagnostic accuracy
over using each modality independently in the identification of single
patients with ALS and PUMN relative to healthy controls, while DT MRI
represents the most powerful tool to distinguish MND from mimic

disorders.
Our MRI approach combining cortical thickness and microstructural

integrity of MND-specific anatomical regions achieved high sensitivity
and moderate to high specificity in distinguishing ALS and PUMN in-
dividual cases from healthy controls. Findings in ALS are in keeping
with a recent classification study using a cross-validation binary logistic
regression model (Schuster et al., 2016), although the specificity of our
approach was higher. This can be related to the different methods ap-
plied to obtain MRI features, particularly to the greater reliability of
cortical thickness measures relative to GM density values in assessing
the motor cortex involvement in MND (Chiò et al., 2014; Menke et al.,
2017). In a clinical setting, misdiagnosis of MND remains a common
challenge (Davenport et al., 1996; Traynor et al., 2000). Therefore, a
high degree of both sensitivity and specificity is paramount to prevent
patients with mimic conditions to be misclassified as MND.

To prove further the specificity of our approach, we tested the
model in an independent validation sample of MND patients relative to
subjects with ALS-mimic conditions. Previous MRI-based classification
studies of MND did not include patients with mimic disorders (Ben
Bashat et al., 2011; Foerster et al., 2013; Schuster et al., 2016). We
found significant thinning of the primary motor cortex and altered DT
MRI metrics of motor WM tracts in patients with ALS and PUMN but not
in the whole group of ALS-mimic cases relative to healthy controls.
Furthermore, when we compared MND with mimic patients, the former
group showed greater WM damage involving the CST and motor cal-
losal fibers. To the best of our knowledge, only a few studies compared
brain MRI features of ALS patients to those of mimic subjects. The lack
of significant precentral cortical atrophy in ALS-mimics is in agreement
with a single previous study (Walhout et al., 2015). Higher apparent
diffusion coefficients were observed in the precentral gyrus and CST in
patients with ALS relative to subjects with cervical spondylotic mye-
lopathy (Koike et al., 2015). It is noteworthy that the majority of our
mimic cases were patients with Kennedy's disease. Previous studies
reported some extent of brain damage in this LMN variant, such as
frontal GM atrophy (Kassubek et al., 2007) and glucose hypometabo-
lism (Lai et al., 2013), CST degeneration (Pieper et al., 2013; Unrath
et al., 2010), and cerebellar involvement (Kassubek et al., 2007; Pieper
et al., 2013), although findings were not replicated by all studies. The
small group of patients with Kennedy's disease included in the present
study did not show MRI abnormalities relative to healthy controls.

Fig. 1. Cortical thickness of the precentral gyrus. Mean cortical thickness of the precentral gyrus bilaterally are plotted per study group (healthy controls and patients with ALS, PUMN
and ALS-mimic disorders). The dashed horizontal line indicates the mean cortical thickness minus 2 standard deviations of the healthy control group. Cortical thickness measures are in
mm. *p < 0.05, **p < 0.001 (ANOVA model followed by pair-wise comparisons, false-discovery rate-corrected for multiple comparisons and adjusted for subject's age). Abbreviations:
ALS = amyotrophic lateral sclerosis; HC = healthy controls; PUMN = predominantly upper motor neuron.

P.M. Ferraro et al. NeuroImage: Clinical 16 (2017) 240–247

243



Methodological differences (e.g., region-of-interest-based cortical
thickness measurement vs voxel-based morphometry; tractography vs
voxel-wise analysis) may explain inconsistent findings among studies.
Nevertheless, we cannot exclude that the subtle cerebral pathology in
Kennedy's disease cases could at least partially explain the spread of
MRI values in the mimic group in Fig. 2.

Our classification model demonstrated that DT MRI measures alone

are able to discriminate classical ALS and PUMN patients from mimic
syndromes with the highest accuracy. These findings are likely to be
associated with the elevated sensitivity of DT MRI to UMN involvement
and the inclusion of mimic patients with a clinically prominent LMN
impairment. Future studies should test the validity of MRI-based
models in distinguishing MND patients from cases with prominent UMN
impairment.

Fig. 2. DT MRI measures of the CST and motor cal-
losal tracts. Mean FA and MD values of the CST bi-
laterally and motor callosal tracts are plotted per study
group (healthy controls and patients with ALS, PUMN
and ALS-mimic disorders). The dashed horizontal line
indicates the mean value minus 2 standard deviations
of the healthy control group. MD values are in
×10−3 mm2 s−1. *p < 0.05, **p < 0.001 (ANOVA
model followed by pair-wise comparisons, false-dis-
covery rate-corrected for multiple comparisons and
adjusted for subject's age). Abbreviations:
ALS = amyotrophic lateral sclerosis; CC-pre-
central = callosal fibers linking the primary motor
cortices; CC-SMA = callosal fibers linking the supple-
mentary motor areas; CST = corticospinal tract;
FA = fractional anisotropy; HC = healthy controls;
MD = mean diffusivity; PUMN = predominantly
upper motor neuron.
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Notably, the most pronounced damage in MND patients relative to
ALS-mimic subjects was detected in the motor callosal fibers. Damage
of the body of the CC is a well-known feature in patients with UMN
impairment. A greater CC involvement has been consistently reported
in PLS patients relative to classic ALS cases (Agosta et al., 2014; Iwata
et al., 2011; Unrath et al., 2010). Previous DT MRI studies have de-
monstrated that motor callosal fibers are impaired in ALS but not in
predominant LMN variants (Ben Bashat et al., 2011; Spinelli et al.,
2016). In the present study, we have widened these findings, demon-
strating that CC damage also represents a powerful tool in the differ-
ential diagnosis with ALS-mimic syndromes including (non-ALS) pure
LMN and peripheral nervous system disorders. The assessment of ad-
ditional WM tracts according to the staging hypothesis of ALS
(Brettschneider et al., 2013), such as the corticorubral and cortico-
pontine tracts, the corticostriatal pathway and the perforant path
(Kassubek et al., 2014), may further improve the classification model.

The study is not without limitations. The first shortcoming deals
with the relatively small number of ALS-mimic cases, although power
analysis showed that 20 ALS-mimic patients resulted in 80% power to
detect MRI differences. Second, the heterogeneity of our ALS-mimic
sample, which included a majority of patients with Kennedy's disease
and a minority of subjects with peripheral nervous system pathology,
prevented the possibility to perform separate MRI analyses. Third, the
moderately low number of genetic patients did not allow us to test the
accuracy of the models separately in sporadic and genetic MND. These
limitations can be overcome in the framework of multisite collabora-
tions. NiSALS (www.nisals.org) is a thriving multinational, academic-
led research consortium, which has established a large MND data re-
pository of quality-controlled MRI scans from countries all over the
world providing an ideal resource to test classification models (Filippi
et al., 2015). Fourth, our classification model included advanced mul-
timodal structural analyses, which can be time consuming. More effort
should be made in order to allow MRI-based machine learning models
to be better included in clinical neuroimaging/clinical practice. It is
also noteworthy that both cortical thickness measurement and DT MRI
tractography present some technical limitations. In particular, although

Freesurfer has the potential to generate accurate surface representa-
tions, some manual intervention can be necessary when segmentation
errors occur. Probabilistic tractography is extremely powerful in WM
damage detection; however, this approach might lack sensitivity in the
identification of some important tracts including the lateral portions of
the motor pathways, due to difficulties in estimating multiple diffusion
orientations, and recent studies have therefore proposed important
extensions of this model. Finally, the role of functional MRI (fMRI)
metrics in the differential diagnosis of MND still need to be explored. A
number of fMRI studies investigating differences between MND patients
and controls at rest have revealed functional connectivity abnormalities
within the sensorimotor network (Chiò et al., 2014; Menke et al., 2017).
Thus, the inclusion of resting state fMRI analyses is likely to con-
siderably increase the overall accuracy in future classification models of
multimodal datasets (Welsh et al., 2013). Despite these limitations, the
present study provides a validated diagnostic MRI model to differ-
entiate MND variants from healthy controls and mimic disorders with
clinically prominent LMN impairment, providing a roadmap for trans-
lation of MRI markers into daily clinical practice.
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Table 2
Diagnostic accuracy values of MRI variables estimated using the random forest analysis.

Specificity Sensitivity Accuracy

Training sets:
ALS patients vs healthy controls
Cortical thickness values 0.97 0.81 0.86
DT MRI values 0.58 0.91 0.78
Combined MRI model 0.92 0.91 0.91
PUMN patients vs healthy controls
Cortical thickness values 1.00 0.69 0.89
DT MRI values 0.95 0.86 0.92
Combined MRI model 1.00 0.75 0.90
ALS vs PUMN patients
Cortical thickness values 0.00 1.00 0.73
DT MRI values 0.14 1.00 0.77
Combined MRI model 0.00 1.00 0.72

Validation sets:
ALS vs PUMN patients
Cortical thickness values 0.00 1.00 0.75
DT MRI values 0.45 0.93 0.80
Combined MRI model 0.00 1.00 0.74
ALS vs ALS-mimic patients
Cortical thickness values 0.56 0.82 0.73
DT MRI values 0.72 0.92 0.87
Combined MRI model 0.75 0.92 0.87
PUMN vs ALS-mimic patients
Cortical thickness values 0.67 0.82 0.74
DT MRI values 0.94 0.95 0.95
Combined MRI model 0.94 0.94 0.94

Abbreviations: ALS = amyotrophic lateral sclerosis; DT MRI = diffusion tensor MRI;
PUMN = predominantly upper motor neuron.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.08.002.
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