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ABSTRACT
Rationale: KRAS is the most common and, simultaneously, the most ambiguous 

oncogene implicated in human cancer. Despite KRAS mutations were identified 
in Non Small Cell Lung Cancers (NSCLCs) more than 20 years ago, selective and 
specific inhibitors aimed at directly abrogating KRAS activity are not yet available. 
Nevertheless, many therapeutic approaches have been developed potentially useful to 
treat NSCLC patients mutated for KRAS and refractory to both standard chemotherapy 
and targeted therapies.

The focus of this review will be to provide an overview of the network related to 
the intricate molecular KRAS pathways, stressing on preclinical and clinical studies 
that investigate the predictive value of KRAS mutations in NSCLC patients. 

Materials and Methods: A bibliographic search of the Medline database was 
conducted for articles published in English, with the keywords KRAS, KRAS mutations 
in non-small cell lung cancer, KRAS and tumorigenesis, KRAS and TKIs, KRAS and 
chemotherapy, KRAS and monoclonal antibody, KRAS and immunotherapy, KRAS and 
drugs, KRAS and drug resistance.

INTRODUCTION

Lung cancer is the leading cause of cancer-
related death worldwide, despite a reduced incidence 
in western countries and a remarkable improvement 
in its therapeutic approach. Among lung tumors, Non 
Small Cell Lung Cancer (NSCLC) is the most common 
diagnosis and the adenocarcinoma is the predominant 
subtype [1]. Several driver mutations have been 
described, in the recent years, in lung adenocarcinomas 
including those affecting KRAS (15-25%) and EGFR 
(10-35%). Less commonly AKT1, PIK3CA, HER2, 
MAPK1, MEK1 and MET mutations have been reported. 
Moreover, rearrangements involving ALK, ROS1 or RET 
locus have been identified [2].

The majority of these alterations are targetable by 
the EGFR tyrosine kinase inhibitors (TKIs) (i.e. gefitinib, 

erlotinib, afatinib in EGFR-mutant; crizotinib, ceritinib, 
brigatinib, and alectinib in ALK rearranged tumors) [3–8]. 

However, there are no specific approved drugs for 
patients with KRAS mutant tumors and all the anti-KRAS 
evaluated compounds have failed to demonstrate any 
clinical activity. Indeed, because of the high frequency of 
KRAS mutations in NSCLC, several preclinical and clinical 
investigations have been conducted including inhibition of 
KRAS protein expression via RNA interference (RNAi), 
blocking post-translational modification with farnesyl-
transferase inhibitors (FTIs) or blocking KRAS localization at 
the cellular membrane [9–11]. Different strategies evaluated 
an epigenetic approach, using cyclin-dependent kinases, heat 
shock proteins or focal adhesion inhibitors [12–14]. Several 
researchers wagered on inhibitors of downstream effectors of 
the KRAS signaling pathways (PI3K/AKT/mTOR and RAF/
MEK/ERK) without significant success [15–17]. 
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This review focuses on the molecular pathways 
of KRAS in order to point out possible targets for an 
anti-KRAS approach reporting success and failures of 
compounds developed to date. 

MATERIALS AND METHODS

A bibliographic search of the NCBI PubMed 
database was conducted for articles published in English, 
using the following keywords: KRAS, KRAS mutations 
in non-small cell lung cancer, KRAS and tumorigenesis, 
KRAS and TKIs, KRAS and chemotherapy, KRAS and 
monoclonal antibody, KRAS and immunotherapy, KRAS 
and drugs, KRAS and drug resistance.

RESULTS

KRAS and its signaling pathways

KRAS belongs to a group of small GTP-binding 
proteins called the RAS superfamily or RAS-like GTP-ases. 
This group includes Harvey-Ras (H-RAS), neuroblastoma-
Ras (N-RAS) and two splice variants of KRAS: KRAS4A 
and KRAS4B [18]. Following to the binding of growth 
factors with the respective receptors (i.e. EGFR), KRAS 
protein bounds to GTP and become able to activate 
intracellular pathways between a GTP-bound active and 
inactive state. GTPase activating proteins (GAPs) facilitate 
GTP hydrolysis, amplifying the intrinsic GTPase activity of 
KRAS. The interaction with guanine-exchanging/releasing 
factors (GEFs) promotes the exchange of the GDP with 
GTP [19]. In the GTP-bound state, KRAS interacts with 
multiple downstream effectors, including PI3K/AKT/
mTOR, RAF/MEK/ERK and Ral-GEF pathways, and 
regulates cell proliferation, survival, motility, differentiation, 
endocytosis, angiogenesis, and apoptosis (Figure 1) [20]. 
Many other signaling pathways are involved in the feedback 
regulation and crosstalk, which contribute to the complexity 
of the KRAS signaling network. These pathways include 
the downstream effector protein kinase Cι (PKCι) involved 
in tumor-initiating cell phenotype through the PKCι/ELF3/
NOTCH3 axis [21]; the EphA2 a receptor tyrosine kinase 
(RTK) that negatively regulates the KRAS/MEK/ERK 
pathway after the binding of its ligand ephrin A1 [22]; or the 
CUB domain–containing protein 1 (CDCP1) and AXL that 
are two RTKs regulated by many KRAS effectors, like RAF/
MEK/ERK and PI3K/AKT/mTOR [23, 24].

KRAS mutations and NSCLC

KRAS is mutated in 15-25% of NSCLC, mostly 
adenocarcinoma and occasionally squamous cell carcinoma 
[25], and is more frequent in white than in Asian populations 
(25–50% vs 5–15%, respectively) [26]. There is a linkage 
between smoking habits and KRAS mutations, with an 
incidence of 25–35% in smokers and only 5% in never-

smokers [27–29]. Approximately, 97% of KRAS mutations 
interest codons 12 and 13 in exon 1, less frequently, mutations 
occur at codon 61 (Table 1) [30–32]. While these mutations 
are located near to the GTP binding site, the intrinsic GTP-ase 
activity is impaired and KRAS accumulates in GTP-bound 
constitutively active form, which sustains the activation of 
the KRAS downstream signalling [33]. 

KRAS and EGFR mutations are usually mutually 
exclusive and, therefore, KRAS mutations can be 
considered as innate resistance factor for anti-EGFR 
TKI. However, recent published data, obtained with high 
sensible technologies, suggest that some tumors can share 
EGFR and KRAS mutation in a heterogeneous tumor 
cell population, as well as the co-occurrence of genomic 
alteration in LKB1 and TP53 [34–39]. 

Therapeutic approaches for KRAS-mutant 
NSCLC patients

Inhibition of the KRAS gene expression 

One effect of KRAS activation is the induction of 
telomerase (TERT) transcription [40]. Recently, Liu and 
colleagues confirmed an increased mRNA expression, 
telomerase activity and telomere length in lung 
adenocarcinoma cells with KRAS mutations. However, 
BIBR1532, a telomerase inhibitor, hampered KRAS-
induced cells’ proliferation suggesting that telomerase 
could represent a promising target in KRAS-mutated 
NSCLCs [41]. In fact, in a randomized phase II trial, 
the maintenance treatment with the telomerase inhibitor 
imetelstat did not improve progression-free survival (PFS) 
in advanced NSCLC patients [42].

Zhang and colleagues evaluated the anti-tumor 
effect of an anti-KRAS ribozyme adenoviral vector 
(KRbz-ADV) in NSCLC cell lines with or without KRAS 
mutation, finding that KRbz-ADV inhibits significantly 
the growth of KRAS mutant than wild type cells [43]. 

Using an RNA interference (RNAi), Sunaga and 
colleagues in 2011 investigated if the knock down  mutant 
KRAS transcript may revert the malignant phenotype 
of NSCLC. KRAS expression was inhibited and cell 
proliferation was reduced alongside with a down regulation 
of MAPK pathway, however, tumorigenicity was not 
abolished. These findings remarked the complexity of 
mutant KRAS oncogenic signaling and cell capability to 
overcome the KRAS “targeted inhibition” [9]. Despite 
recent researches encouraged the clinical application of 
the targeted silencing for NSCLC patients harboring a 
KRAS mutation [44, 45], further investigations are still 
needed in the gene therapy field.

HDAC inhibitors 

The histone deacetylase inhibitors (HDACi) block 
gene transcription, inhibit proliferation and induce apoptosis 
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in tumor cells with promising results for the treatment of 
some neoplastic proliferative diseases [46]. Kurtze and 
colleagues evaluated if the treatment of KRAS-mutant 
NSCLC A549 cell line with vorinostat, an HDACi, could 
overcome the resistance to the EGFR TKIs [47]. The 
combination of vorinostat with gefitinib or erlotinib was 
found to induce apoptosis, revering the TKI-resistance status 
of A549 cells [47]. Similar results were observed when three 
NSCLC cell lines, including the KRAS-mutant and EGFR 
wild type A549, were tested with panobinostat, an HDACi, 
and erlotinib. As expected, while proliferation of A549 cell 
line was not inhibited by erlotinib alone, it was impaired 
by panobinostat treatment, as well as by the synergistic 
combination of both drugs [48]. In an exploratory biomarker 
analysis of phase I/II trial investigating the efficacy of 
gefitinib plus vorinostat in NSCLC, the presence of sensitive 
EGFR mutations was predictive of higher response rate (RR), 
longer PFS and overall survival (OS) compared to KRAS 
mutations [14]. However, these results could be simply 
related to the high activity of gefitinib in EGFR-mutant 
patients, and do not clarify the role of HDAC inhibition. 

Inhibition of the KRAS trafficking

Post-translational modifications of the KRAS 
protein is another target for KRAS inhibition. After 
transduction, KRAS undergoes multi-stage post-
translational modifications to become active. First, the 
protein undergoes prenylation by the addition of a farnesyl 
tail to its carboxyl-terminal by the farnesyl-transferase (FT-
ase) [49]. Several studies have been conducted to determine 
whether the farnesyltransferase inhibitors (FTIs) have 
clinical activity in NSCLC patients [10, 50, 51]. Tipifarnib 
and lonafarnib showed activity in vitro and in chemically-
induced KRAS-mutant lung tumors in mice [52, 53]. In 
clinical trials FTIs did not show activity in NSCLC, and 
they have never been tested in a defined KRAS mutant 
population [10, 50]. A possible explanation for the FTIs 
failure may be the presence of an alternative modification, 
the geranylgeranylation, that is another process to localize 
protein to the membrane (Figure 2) [54].

Inhibition of KRAS localization

Other attempts to block the KRAS signalling is 
to interfere with its localization in cellular membranes 

using RAS farnesyl cysteine mimetic drugs, like salirasib 
(farnesylthiosalicylic acid). Mimetic drugs dislodge 
KRAS from its membrane-anchoring sites and prevent 
activation of the signaling cascades [54]. Despite 
promising preclinical data [55], early-phase clinical trials 
were not successful. Riely and colleagues enrolled 33 
patients with stage IIIb/IV lung adenocarcinoma, of which 
30 had a KRAS mutation, however, none of the patients 
raised a radiographic partial response (PR). Despite 
moderate toxicity (diarrhea, nausea, and fatigue), this 
phase II trial testing salirasib failed to show any clinical 
benefit for NSCLC patients harboring KRAS mutations. 
Interestingly, this was the first trial to examine a targeted 
therapy specifically in KRAS-mutant NSCLC (Figure 2) 
[11].

The failure of this trial emphasized the challenges in 
targeting challenges KRAS prenylation and its membrane 
localization. First, it is known that an alternative process 
that could prenylate KRAS proteins exists (geranyl-
geranylation). In addition, several signaling molecules are 
farnesylated (Rho-B, Rho-E, Lamin A, Lamin B, PTP-
CAAX1/2), supporting a pleiotropic biological effect, 
even if KRAS were significantly inhibited by FTIs [49].

Targeting the downstream effectors of oncogenic 
KRAS 

PI3K/AKT/mTOR inhibitors

The PI3K/AKT/mTOR pathway is frequently 
activated in cancer and maintains tumor growth [56]. In 
lung cancer, mTOR phosphorylation was found in 51% 
of NSCLC patients [57]. PI3K/AKT/mTOR pathway is 
a downstream effector of KRAS and its inhibition could 
have a role in KRAS mutant NSCLC [58]. Castellano 
and colleagues reported that PI3K inhibitors cause the 
regression of KRAS p.G12D-induced benign lung tumors 
in genetically engineered mouse models [59]. Instead, in 
mice with malignant lung cancer harboring the KRAS 
p.G12D, PI3K p.H1047R mutations, and TP53-null, 
Green et colleagues showed a modest growth inhibition 
using PI3K inhibitors and little or no survival benefit 
[60]. Moreover, these results are in line with several 
clinical observations suggesting a limited activity of 
PI3K/AKT/mTOR inhibitors in NSCLC. The BASALT-1 
trial, evaluating the combination of buparlisib, a PIK3CA 

Table 1: Frequency of KRAS mutations in NSCLC
KRAS genotype Mutation Frequency (%) Reference
p.G12C c.34G>T 42

[25]
p.G12V c.35G>T 21
p.G12D c.35G>A 17
p.G12A c.35G>C 7
p.G13D c.38G>A 2
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inhibitor, with chemotherapy was closed for futility at 
first interim analysis. The study included 12 patients with 
KRAS mutation, which had a trend for a better PFS [61]. 

mTOR inhibitors seem to be able to stop the 
malignant progression in mice and in preclinical models 
of NSCLC with a KRAS mutation [62]. However, in the 
randomized clinical trial, 79 patients with KRAS mutant 
NSCLC treated with ridaforolimus, only achieved an 
overall response rate of 1% (Figure 3) [63].

RAF/MEK/ERK pathway inhibitors 

Sorafenib is a multi-tyrosine kinase inhibitor against 
vascular endothelial growth factor receptor (VEGFR), 
platelet-derived growth factor receptor (PDGFR) and 
Proto-Oncogene Tyrosine-Protein Kinase (KIT), competing 
with ATP in the hydrophobic pocket, leading to the 
inhibition of MAPK pathway [64]. Smit and colleagues 
reported in an early phase trial 4 partial responses and 6 
stabilisations of diseasein 10 NSCLC patients, harboring 
the KRAS mutation treated with sorafenib after failure of 
chemotherapy [65]. In a phase II study, among thirty-seven 

patients with advanced NSCLC treated with sorafenib, 
KRAS mutations were found in 11 patients that obtained 
60% of disease control rate (DCR) compared to 71% in 
the KRAS wild type tumors (p = 0.69) [66]. The phase 
II BATTLE trial enrolled patients with advanced NSCLC 
who had been previously treated with chemotherapy and 
subsequently experienced a disease relapse [15]. The trial 
enrolled 255 patients, randomized to one of 4 treatment 
arms (erlotinib, vandetanib, erlotinib plus bexarotene, or 
sorafenib) according to their baseline biomarker profile 
analysis, among which KRAS mutations. The stratified 
biomarker analysis showed that sorafenib had a higher 
DCR at 8 weeks in KRAS mutant patients, although the 
difference was not statistically significant (61% vs. 32%, 
p = 0.11) [15]. Interestingly, Ihle and colleagues pointed 
out that different types of KRAS mutations may predict 
for different outcomes: tumors with p.G12C and p.G12V 
mutations had the worse PFS compared with other codon 
12 KRAS mutations or KRAS wild-type (median PFS was 
1.84 months vs. 3.55 months vs. 1.95 months, respectively, 
p = 0.046). Moreover, the negative impact of KRAS p. 
G12C and p. G12V mutations on PFS was particularly 

Figure 1: Complexity of KRAS signalling pathways. KRAS belongs to the Ras superfamily, a group of small GTP-binding proteins, 
and serves as a signal transducer from its tyrosine kinase receptors, that are engaged by autocrine and paracrine stimuli. In the active GTP-
bound conformation, KRAS activates several effector molecules resulting in endocytosis, cell growth and proliferation, apoptosis, migration, 
and survival. Abbreviations: GF: growth factor; RTK: receptor tyrosine kinase; GRB: growth factor receptor-binding protein; GEF: guanine 
nucleotide exchange factor; GTP: guanosine triphosphate; GDP: guanosine diphosphate; KRAS: Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog; GAP: GTPase activating protein; RalGEF: RAL-guanine nucleotide exchange factor; PLD: phospholipase D; BRAF: v-Raf 
murine sarcoma viral oncogene homolog B; Mek: Mitogen-activated protein kinase kinase; Erk: extracellular signal-related kinase; MSK1: 
mitogen- and stress-activated protein kinase; C-MYC: v-Myc avian myelocytomatosis viral oncogene homolog; CDK2/4: cyclin-dependent 
kinase 2/4; E2F: E2 transcription factor; Rb: retinoblastoma protein; TBK1: TANK Binding Kinase 1; NFKB: nuclear factor kappa-light-
chain-enhancer of activated B cells; NFKBIA: NFKB inhibitor alpha; FAK: focal adhesion kinase; PI3K: phosphoinositide-3-kinase; AKT: 
v-Akt murine thymoma viral oncogene homolog 1; mTOR: mammalian target of rapamycin; LKB1: serine/threonine kinase 11; AMPK: 
AMP-activated protein kinase; HIF1: hypoxia-inducible factor 1; LOX: lysyl oxidase; FAK: focal adhesion kinase.
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evident in patients treated with sorafenib (p = 0.026) 
[67]. The MISSION trial failed in his primary endpoint, 
and highlighted that there were no differencies in PFS 
in mutant or not mutant patients for KRAS when treated 
with sorafenib [16]. Also in the first stage of the BATTLE 
II trial patients treated with sorafenib (29.5% were KRAS 
mutant), did not show a difference in DCR compared to 
wild type [68]. Moreover, several trials evaluated sorafenib 
in combination with erlotinib for NSCLC patients without 
any promising results (Figure 3) [69, 70]. 

Monotherapy and combinations with MEK 
inhibitors

Selumetinib is a potent, selective, and ATP-
uncompetitive inhibitor of MEK1-2 kinases able to inhibit 
proliferation of KRAS mutant in NSCLC cell lines [71]. 
Due to its potency, selumetinib has been tested as either 
monotherapy or in combination with cytotoxic agents to 
target KRAS mutant NSCLC patients. In the CUSTOM 
trial selumetinib was studied in patients with KRAS, NRAS, 
HRAS, or BRAF mutations. Only one PR was observed in 9 
patients treated with selumetinib with a median PFS time of 
2.3 months, and a median OS of 6.5 months [72].

Trametinib is a reversible and highly selective 
allosteric inhibitor of MEK1 and MEK2 kinase activity 
and has been developed and studied in BRAF-mutant 
metastatic melanoma [73, 74]. In early phase of clinical 
development, trametinib has been given to 30 NSCLC 
patients obtaining only two PR, however, both patients 
were carrier of a KRAS mutation [75]. Following these 
results, trametinib was compared to docetaxel in a 
phase II trial in stage IV KRAS mutant NSCLC [76]. 
Unfortunately, trametinib did not show its superiority and 
the study was prematurely terminated. 

Overall, these results suggest that the presence of a 
compensatory signaling pathway makes MEK inhibition 
not sufficient to achieve a significant antitumor effect. 
On the other hand, the efficacy of a combined treatment 

between trametinib or selumetinib and cytotoxic agents 
in NSCLC cells represented a strong rationale to use this 
drug combination as a potent strategy to improve treatment 
response in NSCLC patients with KRAS mutations 
(Figure 3) [77]. 

In preclinical models, docetaxel in combination 
with selumetinib showed an important inhibition of 
tumor growth and regression [78]. A randomized 
phase II clinical trial evaluated the combination of 
docetaxel with selumetinib or placebo, in patients with 
KRAS-mutant NSCLC that progressed after first-line 
chemotherapy [79]. Interestingly, patients with KRAS 
p.G12C or p.G12V mutations treated with selumetinib 
plus docetaxel showed greater improvement in OS, PFS 
and ORR compared with the other KRAS mutations [80]. 
Unfortunately, selumetinib in addiction to docetaxel 
failed to improve overall survival, progression free 
survival and overall response rate compared to docetaxel 
alone in the phase III clinical trial SELECT-1 for KRAS 
mutant NSCLCs [81]. 

Trametinib, has been evaluated in a phase I trial in 
combination with docetaxel or pemetrexed in advanced 
NSCLC patients with or without KRAS mutations [17]. 
Both combinations showed activity in KRAS mutant and 
wild-type tumors. Primary endpoint was the objective 
response rate (ORR). A confirmed PR was observed in 10 
of the 47 patients with NSCLC who received trametinib 
plus docetaxel (21%). The ORR was 18% (four PRs in 
22 patients) in those with KRAS wild-type NSCLC and 
24% (six PRs in 25 patients) in those with KRAS-mutant 
NSCLC. Of the 42 patients with NSCLC treated with 
trametinib plus pemetrexed, six (14%) had a PR; the ORR 
was 17% (four of 23) in patients with KRAS-mutated 
NSCLC versus 11% (two of 19) in KRAS wild-type 
NSCLC [17] 

As far as it is known, KRAS mutant NSCLCs do not 
respond to EGFR-TKIs treatment [82]. The combination 
of selumetinib with erlotinib was evaluated in randomized 
phase II trial and compared with selumetinib alone in 

Figure 2: Steps towards KRAS membrane trafficking and localization. After KRAS synthesis in the cytoplasm, farnesyl 
transferases add a lipid tail at a CaaX tetrapeptide motif (C: amminoacid cysteine; aa: two aliphatic residues; X: a variable residue) on the 
C-terminus of inactive KRAS protein. Lonafarnib and tipifarnib may inhibit this step, interfering with KRAS membrane trafficking. On 
the other hand, KRAS signaling could be block by salirasib, that targets the localization of KRAS to the membrane. Abbreviations: KRAS: 
Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; CaaX: carboxyl-terminal. 



Oncotarget6635www.impactjournals.com/oncotarget

KRAS mutant tumors or with erlotinib alone in KRAS 
wild type tumors [83]. In 41 KRAS mutant tumors, 
the PFS was 4.0 months (95% CI 2.9–7.8 months) for 
selumetinib alone and 2.3 months (95% CI 2.0–4.6 
months) for the combination; the ORR was 10% and 0%, 
respectively. This study failed to show improvement in 
objective response rate or PFS with combination therapy 
of selumetinib and erlotinib over monotherapy in KRAS 
mutant and KRAS wild-type advanced NSCLC. Therefore, 
the authors suggested that further study of selumetinib 
with erlotinib is not warranted in NSCLC [83].

CDK inhibitors

Cyclin-dependent kinases (CDKs) are critical 
proteins for cell cycle’s. Proliferation stimuli, including 
those through KRAS, converge on the complex CDK4/6 
cyclin-D, a critical regulator of the transition between 
phase G1 and S [84].

CDK4 has been shown necessary for tumor 
progression in a KRAS-induced lung adenocarcinoma 
model [85]. Abemaciclib, a CDK4 inhibitor, have shown 
efficacy in various xenograft models for human cancer 
including NSCLC [86]. Forty-nine pretreated NSCLC 
patients were enrolled in a phase I trial to evaluate the 
safety and the clinical activity of abemaciclib. KRAS 

mutations were present in 26 patients, while 19 were 
wild-type (and 4 with unknown KRAS status). Results 
were encouraging, with a DCR of 54% and 37% in KRAS 
mutant and wild type tumors, respectively [87]. In another 
trial, Patnaik et al. enrolled 68 pre-treated NSCLC patients 
for treatment with abemaciclib, including 29 patients 
harboring KRAS mutation. Even if responses were 
uncommon, the majority of tumor regression occurred 
in KRAS-mutant patients, with a stable disease as result 
[12]. The phase III trial JUNIPER is currently evaluating 
abemaciclib versus erlotinib in pretreated patients with 
NSCLC harboring KRAS mutations (Figure 3) [88]. 

Hsp90 inhibitors

Heat Shock Proteins (HSPs) are adenosine 
triphosphate (ATP)–dependent chaperones with an 
important role for the cell response to stress and for 
maintaining cellular homeostasis. The ubiquitously 
expressed HSP90 has been studied intensively because of 
its involvement in the folding, stability and function of 
several oncogenic driver proteins. Interestingly, HSP90 
chaperone is necessary for the maturation of proteins 
involved in KRAS downstream pathways, such as 
mTOR and MEK [89]. Hence, this chaperone could be 
an attractive therapeutic target for KRAS mutant NSCLC, 

Figure 3: Targeting downstream effectors of oncogenic KRAS. In NSCLC, the KRAS protein is often mutated (mutant KRAS) 
leading to the inactivation of its GTPase activity. The result is the constitutive activation of KRAS and, therefore, of the several effector 
pathways that are activated downstream of KRAS, with the RAF/MEK/ERK and PI3K/AKT/mTOR as the two pathways that have been 
studied most in detail. Sorafenib is a multitarget TKI which also inhibits BRAF protein, while trametinib and selumetinib acts against 
MEK protein. On the other hand, buparlisib and ridaforolimus have been used as PI3K and mTOR inhibitors, respectively. Independently, 
to these two best characterized pathways, the research focused on the inhibition of other targets. For example, ganetespib, defactinib 
and abemaciclib act against HSP90, FAK and CDK4, respectively. The goal of these drugs is to stop the tumorigenesis promoted by 
mutant KRAS. Abbreviations: RTK: receptor tyrosine kinase; Hsp90: heat shock protein 90; GTP: guanosine triphosphate; GDP: guanosine 
diphosphate; KRAS: Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; BRAF: v-Raf murine sarcoma viral oncogene homolog B; 
MEK: mitogen-activated protein kinase kinase; ERK: extracellular signal-related kinase; MSK1: mitogen- and stress-activated protein 
kinase; c-MYC: v-Myc avian myelocytomatosis Viral Oncogene Homolog; CDK2/4: cyclin-dependent kinase 2/4; E2F: E2 transcription 
factor; Rb: retinoblastoma protein; FAK: focal adhesion kinase; PI3K: phosphoinositide-3-kinase; AKT: v-Akt murine thymoma viral 
oncogene homolog 1; mTOR: mammalian target of rapamycin.
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and several HSP90 inhibitors have been developed for the 
treatment of cancer. KRAS mutant NSCLC cell lines were 
sensitive to some HSP90 inhibitors, such as tanespimycin, 
alvespimycin or ganetespib [90, 91]. Ganetespib has 
been tested in a phase II study, in stage IIIB/IV NSCLC 
patients [92]. Unfortunately, this trial failed to demonstrate 
a significant activity of ganetespib with respect to KRAS 
mutant NSCLC [92]. Preclinical evidences suggest a 
synergistic effect of taxanes and ganetespib [93] and in 
the randomized phase II trial GALAXY-1, docetaxel was 
administered with or without ganetespib in pretreated 
NSCLC patients [13]. However, in the KRAS mutant 
population, the combination did not improve the PFS 
neither the OS [13], and these data were confirmed in the 
phase III trial GALAXY-2 (Figure 3) [94].

Immunotherapy for KRAS-mutated NSCLC 
patients

Recently, the attention has turned into the 
discovery of drugs able to interfere with specific immune 
checkpoints, among which programmed death-1 receptor 
(PD-1) and its ligand (PD-L1) have been the most studied 
in NSCLC. PD-1 and PD-L1 are expressed by activated 
immune cell types, including T-cells, B-cells, dendritic 
cells, and their interaction negatively regulates immune 
activity in peripheral tissues in response to infection or 
tumor progression [95]. Several studies have shown 
that PD-1/PD-L1 pathway is manipulated by cancer 
microenvironment, in particular PD-L1 is commonly 
up-regulated in NSCLC and PD-1 is expressed on the 
majority of tumor-infiltrating immune cells [96, 97]. 

FDA has recently approved nivolumab an anti-
PD-1 antibody, for metastatic NSCLC progressed after 
prior platinum-based chemotherapy [98]. Subsequently, 
pembrolizumab, another anti-PD-1 antibody, was 
approved as a second-line for NSCLC patients whose 
tumors exhibit >50% of PD-L1 expression [99] and as 
first-line treatment in patients PD-L1 positive, with no 
EGFR or ALK genomic tumor aberrations [100, 101].

However, PD-L1 is clearly not an easy-to-handle 
biomarker. In fact, different assays are used to determine 
its expression levels, with different cut-off of PD-L1 
positivity making difficult the definition of a strong cut-
off value for PD-L1 positivity in NSCLC. 

Interestingly, several data report that a high 
mutational burden is a positive predictive biomarker of 
response to immunotherapy [102]. For this reason, an 
increasing number of studies are exploring the incidence 
of PD-L1 expression with other genetic alterations [103, 
104]. The relationship between the KRAS status and PD-1/
PD-L1 expression is currently not enough defined in the 
subset of NSCLC tumors, with also different results [105–
108]. However, the subgroup analysis of the CheckMate 
057 trial reported an increased effect in terms of OS in 
favor of nivolumab for KRAS mutant patients, compared 

to those with not detected or not reported status [98]. In 
a retrospective study, the expression of PD-1 and PD-L1 
has proved to be heterogeneous within KRAS mutant 
NSCLC, suggesting PD-L1 expression is not genetically 
driven by KRAS mutation [109]. D’Incecco et colleagues 
hypothesized that PD-1/PD-L1 expression could differ 
according to the molecular phenotype of the tumor [106]. 
Results of their study confirmed that patients harboring 
KRAS mutations had higher levels of PD-1 expression 
when compared to the KRAS wild-type population. By 
contrast, PD-L1-positive tumors showed driver mutations, 
as EGFR mutations and ALK rearrangements [106]. 
Conversely, a recent study found a statistical significance 
between PD-1 expression and KRAS status (p = 0.043) 
and a higher mutation rate in patients with lower PD-1 
expression (8 out of 10 KRAS mutant patients); whereas 
PD-L1 expression was higher in patients harboring EGFR 
mutations or with wild-type KRAS status [110]. Moreover, 
according to the study by Zhang et al, mutational status 
of KRAS correlated with PD-L1 expression was not 
significantly associated with relapse-free survival and 
OS [107]. Scheel and colleagues demonstrated a strong 
association between mutations in KRAS with PD-L1 
expression in adenocarcinoma specimens (OR = 2.5; p = 
0.018) [111]. 

Recently, according to findings from the phase 
III OAK trial, atezolizumab, an anti-PD-L1 antibody, 
improved survival compared with docetaxel in NSCLC 
patients following the failure of platinum-based 
chemotherapy, regardless of PD-L1 expression or 
histology. Even if the number of patients with KRAS 
mutations was small, the benefit was consistent also 
across this subgroup [112].

Concerning the association between KRAS mutations 
and the response to anti-PD-1 antibodies, results of 
published studies are still limited and controversial. 

To conclude, the results for immune checkpoint 
inhibitor in NSCLC are encouraging, however, a multitude 
of questions related to predictive biomarkers to anti-PD-1/
anti-PD-L1 therapies remains unanswered.

A new hypothesis suggests that the extreme 
mutational heterogeneity of a tumor, such as in KRAS 
mutant NSCLC [113], may play a critical key role in the 
tumor susceptibility to checkpoints blockers by springing 
an intense immune response against neoantigens and, 
consequently, improving the response to immune 
checkpoint-targeting therapies [114]. Even if this concept 
would be difficult to introduce into daily clinical practice, 
it is a charming possibility that should be evaluated in 
future clinical trials. 

KRAS and TKIs resistance

In a recent study on cell-free circulating tumor 
DNA (cftDNA), Del Re and colleagues evaluated the 
appearance of KRAS mutations in EGFR positive NSCLC 
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patients progressed after a TKI regimen. Patient that 
developed a KRAS mutation showed a worse survival 
compared to KRAS wild-type patients, suggesting a role 
of KRAS mutations also in acquired resistance to anti-
EGFR TKI [37]. Guibert and colleagues obtained similar 
results, highlighting the correlation between the presence 
of KRAS mutations at codon 12 with a poor response to 
therapy [115]. Chabon and colleagues observed resistance 
mechanisms in 46% of 43 NSCLC patients treated with 
the third-generation epidermal growth factor receptor 
(EGFR) inhibitor rociletinib. Again, three patients showed 
acquiring activating mutations in KRAS following 
treatment with rociletinib [116]. In two recent published 
case reports was reported the concomitant presence of 
EGFR, KRAS mutations and the c-ROS oncogene 1 
(ROS1) rearrangement in one NSCLC patient and the 
concomitant presence of ALK rearrangement and KRAS 
mutations in other two. Interestingly, these patients 
experienced a rapid disease progression and primary 
resistance to crizotinib [36, 117]. Moreover, in 9 out of 
16 NSCLC patients, KRAS mutations p.G12D or p.G12V 
appeared in cftDNA at the time of resistance to ALK-
TKIs (crizotinib or ceritinib) and 3 of them presented 
simultaneously ALK mutations [118]. 

CONCLUSIONS

Several preclinical and clinical investigations have 
been launched with the hope to better understand the 
biologic world that surround the KRAS gene, its potential 
prognostic and predictive role and, importantly, to look 
for effective treatments for NSCLC patients harboring 
KRAS mutations. However, KRAS targeting seems to 
be a real challenge to overcome, a direct KRAS-targeting 
is probably not efficacious because it is able to activate 
multiple mechanisms of escape under the selective 
pressure of treatments. One of the best pharmacological 
rational approach could be based on a combination of 
treatments, in order to silence more that one driver at the 
same time. However, the toxicity-side in this case plays an 
important role and needs to be strongly considered.

Tumor heterogeneity increases the complexity of 
the system [119]. Acquired mutations, including KRAS, 
can affect tumor growth due to the evolution of sub-clones 
that evolve through the selection of advantageous driver, 
neutral “passenger” or deleterious mutations [120]. This 
dynamic diversity is the most important mechanism of 
acquired resistance to treatments. 

Therefore, the landscape is becoming complex 
considering that KRAS mutations can concomitantly occur 
with two or more driver alterations in the same tumor. 

Although we are fully aware of the laborious path 
that leads the scientific community to face this challenge, 
we are confident that some of the attempts discussed in 
this contest could be an effective treatment for KRAS 
mutant NSCLC patients, and we strongly believe that in 

this landscape a multidisciplinary approach can help in the 
management of this complex disease [121].
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