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c Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy
e-mail address: ugo.deliguoro@unito.it

ABSTRACT. We introduce an intersection type system for the λµ-calculus that is invariant
under subject reduction and expansion. The system is obtained by describing Streicher
and Reus’s denotational model of continuations in the category of ω-algebraic lattices via
Abramsky’s domain-logic approach. This provides at the same time an interpretation of the
type system and a proof of the completeness of the system with respect to the continuation
models by means of a filter model construction.

We then define a restriction of our system, such that a λµ-term is typeable if and only if it
is strongly normalising. We also show that Parigot’s typing of λµ-terms with classically valid
propositional formulas can be translated into the restricted system, which then provides an
alternative proof of strong normalisability for the typed λµ-calculus.

INTRODUCTION

The λµ-calculus is a type-free calculus introduced by Parigot [45] to denote classical proofs
and to compute with them. It is an extension of the proofs-as-programs paradigm where
types can be understood as classical formulas and (closed) terms inhabiting a type as the
respective proofs in a variant of Gentzen’s natural deduction calculus for classical logic [32].
The study of the syntactic properties of the λµ-calculus has been challenging, which led
to the introduction of variants of term syntax, reduction rules, and typing as, for example,
in de Groote’s variant of the λµ-calculus [35]. These changes have an impact on the deep
nature of the calculus which emerges both in the typed and in the untyped setting [25, 50].

Types are of great help in understanding the computational properties of terms in an
abstract way. Although in [16] Barendregt treats the theory of the pure λ-calculus without
a reference to types, most of the fundamental results of the theory can be exposed in a
quite elegant way by using the Coppo-Dezani intersection type system [21]. This is used
by Krivine [38], where the treatment of the pure λ-calculus relies on intersection typing
systems called D and DΩ.
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The quest for more expressive notions of typing for λµ is part of an ongoing inves-
tigation into calculi for classical logic. In order to come to a characterisation of strong
normalisation for Curien and Herbelin’s (untyped) sequent calculus λµµ̃ [24], Dougherty,
Ghilezan and Lescanne presented SystemM∩∪ [28, 29], that defines a notion of intersection
and union typing for that calculus. However, in [8] van Bakel showed that this system is
not closed under conversion, an essential property of Coppo-Dezani systems; in fact, it is
shown that it is impossible to define a notion of typing for λµµ̃ that satisfies that property.

In [9] van Bakel brought intersection (and union) types to the context of the (untyped)
λµ-calculus, and showed that for λµ-conversion it is possible to prove type preservation
under conversion. However, union types are no longer dual to intersection types and play
only a marginal role, as was also the intention of [29]. In particular, the normal (∪I) and
(∪E) rules as used in [15], which are known to create a soundness problem in the context of
the λ-calculus, are not allowed. In the view of the above mentioned failure noted in [8], the
result of [9] came as a surprise, and led automatically to the question we answer here: does
a filter semantics for λµ exist?

The idea of building a λ-model out of a suitable type assignment system appeared first
in [17]. In that system types are an extension of simple types with the binary operator ∧
for intersection, and are pre-ordered by an axiomatisable (in fact decidable) relation ≤; if
types are interpreted by subsets of the domain D (an applicative structure satisfying certain
conditions), one can see ∧ as set theoretic intersection and ≤ as containment. The discovery
of [17] is that, taking a proper relation ≤, the set FD of filters of types (sets of types closed
under type intersection and ≤) is a λ-model, where (closed) terms can be interpreted by the
set of types that can be assigned to them. This is what is called a filter semantics.

It emerged in [22] that models constructed as set of filters of intersection types are
exactly the ω-algebraic lattices, a category of complete lattices, but with Scott-continuous
maps as morphisms. ω-algebraic lattices are posets whose structure is fully determined by
a countable subset of elements, called ‘compact points’ for topological reasons. Now the
crucial fact is that given an ω-algebraic lattice D, the set K(D) of its compact points can
be described by putting its elements into a one-to-one correspondence with a suitable set
of intersection types, in such a way that the order over K(D) is reflected by the inverse of
the ≤ pre-order over types. Then one can show that the filter structure FD obtained from
the type pre-order is isomorphic with the original D. In fact, Abramsky proved that this is
not true only of ω-algebraic lattices, but of quite larger categories of domains, like 2/3-SFP
domains that can be finitely described by a generalisation of intersection type theories,
called the logics of the respective domains in [1].

Here, instead of defining a suitable type system for λµ, and then trying to prove that it
actually induces a filter model, we follow the opposite route. We start from a model of the
λµ-calculus in ω-AlgL, the category of ω-algebraic lattices. We then distill the type syntax
and the corresponding type theory out of the construction of the model, and recover the
typing rules from the clauses that define term interpretation in the given model FD that is
by construction isomorphic to the given D.

However, things are more complex than this. First we need a domain theoretic model
of λµ; we use for that purpose Streicher and Reus’s models of continuations. Building on
Lafont’s ideas and the papers [39, 44], in [51] Streicher and Reus proposed a model of both
typed and untyped λ-calculi embodying a concept of continuation, including Felleisen’s
λC-calculus [31, 30] and a version of Parigot’s λµ. The model is based on the solution of the
domain equations D = C→ R and C = D× C, where R is an arbitrary domain of ‘results’.
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The domain C is set of what are called ‘continuations’ in [51], which are infinite tuples
of elements in D. D is the domain of continuous functions from C to R and is the set of
‘denotations’ of terms. We call the triple (R, D, C) a λµ-model, that exists in ω-AlgL by the
inverse limit technique, provided that R ∈ω-AlgL.

The next step is to find type languages LD and LC, and type theories axiomatising
the respective pre-orders ≤D and ≤C, such that D and C are isomorphic to FD and FC,
respectively. To this aim we may suppose that logical description of R is given via a language
of types LR and a pre-order ≤R. But then we need a detailed analysis of K(D) and K(C),
keeping into account that D and C are both co-limits of certain chains of domains, and that
their compact points are into one-to-one correspondence with the union of the compact
points of the domains approximating D and C. This leads us to a mutually inductive
definition of LD and LC and of ≤D and ≤C. In this way, we obtain an extension of the
type theory used in [17], which is a natural equated intersection type theory in terms of [2]
and hence is isomorphic to the inverse limit construction of a D∞ λ-model (as an aside, we
observe that this matches perfectly with Theorem 3.1 in [51]).

Once the filter domains FD and FC have been constructed, we can consider the interpre-
tation of terms and of commands (‘unnamed’ and ‘named terms’ respectively in Parigot’s
terminology). Following [51], we define the interpretation of expressions of Parigot’s λµ-
calculus inductively via a set of equations. Guided by these equations in the particular case
of FD and FC, and considering the correspondence we have established among types and
compact points, we are able to reconstruct the inference rules of a type assignment system
which forms the main contribution of our work.

The study of the properties of the system produces a series of results that confirm the
validity of the construction. First we prove that in the filter model the meaning of M in
the environment e, denoted by [[M ]] e, coincides with the filter of all types δ ∈ LD such that
Γ `M : δ | ∆ is derivable in the system, for Γ and ∆ such that e satisfies both Γ and ∆, and
similarly for [[C ]] e, where C is a command. Then if two terms or commands are convertible,
they must have the same types. In fact, we will prove this result twice: first abstractly,
making essential use of the filter model construction; then concretely, by studying in depth
the structure of the derivations in our system, and establishing that types are preserved
under subject reduction and expansion.

We then face the problem of characterising strong normalisation in the case of λµ. This
is a characteristic property of intersection types, stated the first time by Pottinger [48] for the
ordinary λ-calculus: strongly normalising terms can be captured by certain ‘restricted’ type
systems, ruling out the universal type ω. As will be apparent in the technical treatment,
we cannot simply restrict our system by removing ω; however, the characterisation can
be obtained by distinguishing certain ‘good’ occurrences of ω that cannot be eliminated,
and the ‘bad’ ones that must be forbidden. This is still guided by the semantics and by the
proof theoretic study of the system, and we can establish that there exists a subsystem of
our system that is determined just by a restriction on type syntax, plus the elimination of
the rule (ω) from our type system.

We conclude by looking at the relation between our type system and the original one
proposed by Parigot [45] on the basis of the Curry-Howard correspondence between types
and formulas and λµ-terms and proofs of classical logic. We show that there exists an
interpretation of Parigot’s first order types into intersection types such that the structure of
derivations is preserved; moreover, since the translations are all restricted intersection types,
we obtain a new proof that all proof-terms in λµ, i.e. those typeable in Parigot’s system
(even extended with negation), are strongly normalising.
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This paper is the full version of [11], extended with a revised version of [12].

Outline of this paper. The paper is organised as follows. After recalling the λµ-calculus in
Sect. 1, we study the domain theoretic models in Sect. 2. In Sect. 3 we introduce intersection
types and type theories and we illustrate the filter model construction. The main part of the
paper is Sect. 4, where we introduce the type assignment system; we study type invariance
under reduction and expansion in Sect. 5. Sect. 6 is devoted to the characterisation of
strongly normalising terms by means of a subsystem of ours obtained by suitably restricting
the type syntax. Then, in Sect. 7, we compare our system with Parigot’s, and show that
Parigot’s types are translatable into our restricted types while preserving type derivability
(in the two systems). We finish by discussing some related work in Sect. 8 and draw our
conclusions.

1. THE UNTYPED λµ-CALCULUS

The λµ-calculus, as introduced in [45], is an extension of the untyped λ-calculus obtained
by adding names and a name-abstraction operator, µ. It was intended as a proof calculus
for a fragment of classical logic. Logical formulas of the implicational fragment of the
propositional calculus can be assigned as types to λµ-terms much in the formulae-as-types
paradigm of the Curry-Howard correspondence between typed λ-calculus and intuitionistic
logic. With λµ Parigot created a multi-conclusion typing system. In the notation of [50], the
derivable statements have the shape Γ `M : A | ∆ , where A is the main conclusion of the
statement, expressed as the active conclusion, and ∆ contains the alternative conclusions,
consisting of pairs of names and types; the left-hand context Γ, as usual, is a mapping from
term variables to types, and represents the assumptions about free term variables of M.

As with implicative intuitionistic logic, the reduction rules for the terms that represent
proofs correspond to proof contractions; the difference is that the reduction rules for the
λ-calculus are the logical reductions, i.e. deal with the elimination of a type construct that has
been introduced directly above. In addition to these, Parigot expressed also the structural
rules, where elimination takes place for a type constructor that appears in one of the
alternative conclusions (the Greek variable is the name given to a subterm): he therefore
needed to express that the focus of the derivation (proof) changes, and this is achieved
by extending the syntax with two new constructs [α]M and µα.M that act as witness to
deactivation and activation, which together move the focus of the derivation.

λµ was conceived in the spirit of Felleisen’s λC-calculus, that Griffin showed to be
typeable with classical propositional logic in [34]. The λµ-calculus is type free and uses
names and µ to model a form of functional programming with control [35].

Here we briefly revise the basic notions of the λµ-calculus, though slightly changing
the notation and terminology, and defer the presentation of the typed λµ-calculus to Sect. 7.

Definition 1.1 (Term Syntax [45]). The sets TRM of terms (ranged over by M, N, L) and
CMD of commands (ranged over by C) are defined inductively by the following grammar,
where x ∈ VAR, the set of term variables (ranged over by x, y, z) and α ∈NAME, the set of
names (ranged over by α, β, γ), both denumerable:

M, N ::= x | λx.M | MN | µα.C (terms)
C ::= [α]M (commands)
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We let T range over TRM ∪ CMD.
As usual, λx.M binds x in M, and µα.C binds α in C. A variable or a name occurrence is

free in a term if it occurs and is not bound: we denote the free variables and the free names
occurring in T by fv(T) and fn(T), respectively.

We identify terms and commands obtained by renaming of free variables or names, and
we adopt Barendregt’s convention that free and bound variables and names are distinct,
assuming silent α-conversion during reduction to avoid capture. We will extend this
convention to also consider occurrences of x and α bound over M in type judgements like
Γ, x:A `M : B | α:C, ∆ (see Sect. 4).

In [45] terms and commands are called ‘terms’ and ‘named terms’, respectively; names
are called µ-variables, but might be better understood as ‘continuation variables’ (see [51]).
Since this would imply a commitment to a particular interpretation, we prefer a more
neutral terminology.

In the λµ-calculus, substitution takes the following three forms:

term substitution: T[N/x] (N is substituted for x in T)
renaming: T[α/β] (β in T is replaced by α)
structural substitution: T [α⇐ L] (every subterm [α]N of T is replaced by [α]NL)

In particular, structural substitution is defined by induction over terms and commands as
follows:

Definition 1.2 (Structural Substitution). The key case for the structural substitution is
defined as:

([α]M) [α⇐ L] =∆ [α](M [α⇐ L])L

The other cases are defined as:
x [α⇐ L] =∆ x

(λx.M) [α⇐ L] =∆ λx.M [α⇐ L]
(MN) [α⇐ L] =∆ (M [α⇐ L])(N [α⇐ L])

(µβ.C) [α⇐ L] =∆ µβ.C [α⇐ L]
([β]M) [α⇐ L] =∆ [β]M [α⇐ L] (if α 6= β)

Notice that the first case places the argument of the substitution to the right of a term
with name α, and the others propagate the substitution towards subterms that are named α.

The reduction relation for the λµ-calculus is defined as follows.

Definition 1.3 (Reduction→βµ [45]). The reduction relation→βµ is the compatible closure
of the following rules:

(β) : (λx.M)N → M[N/x]
(µ) : (µα.C)N → µα.C [α⇐N]1

(ren) : [α]µβ.C → C[α/β].

1This is the common notation for this rule, although one could argue that a better formulation would
be: (µα.C)N → µγ.C [α⇐N·γ] where γ is fresh, and let the structural substitution rename the term:
([α]M) [α⇐ L·γ] = [γ](M [α⇐ L·γ])L; in fact, when making the substitution explicit (see [14]), this becomes
necessary. This is reflected in Ex. 5.7, where before the reduction (µα.[α]x)x → µα.[α]xx, α has type δ×κ, and
after it has type κ.
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Note that Rule (β) is the normal β-reduction rule of the λ-calculus. Rule (µ) is char-
acteristic for λµ; the intuition behind this rule has been explained by de Groote in [35],
by arguing on the grounds of the intended typing of the µ-terms: ‘in a λµ-term µα.M of
type A→B, only the subterms named by α are really of type A→B (. . . ); hence, when such a
µ-abstraction is applied to an argument, this argument must be passed over to the sub-terms named
by α.’. The ‘renaming’ rule (ren) is called ‘structural reduction’ in [45] and rule (ρ) in [49]; it
is an auxiliary notion of reduction, aimed at simplifying proof terms.

Definition 1.4 (The theory λµ). The theory λµ is the equational theory determined by the
compatible closure of: M→βµ N ⇒ M =βµ N.

Py [49] has shown that →βµ is confluent. Therefore the convertibility relation =βµ

determined by →βµ is consistent in the usual sense that distinct normal forms are not
equated.

2. λµ-MODELS AND TERM INTERPRETATION

As is the case for the λ-calculus, in order to provide a semantics to the untyped λµ-calculus
we need to look for a domain D and a mapping [[ · ]]D such that [[M ]]D e ∈ D for each term
M, where e maps variables to terms and names to continuations. Since the interpretation
of terms depends on the interpretation of names and commands, we need an auxiliary
domain C and a mapping [[ · ]]C such that eα ∈ C for any name α, and [[C ]]C e ∈ C. The term
interpretation is a model of the theory λµ if [[M ]]D = [[N ]]D whenever M =βµ N.

The semantics we consider here is due to Streicher and Reus [51], but for a minor
variant explained below. The idea is to work in the category NR of ‘negated’ domains of
the shape A→ R, where R is a parameter for the domain of results. In such a category,
continuations are directly modelled and treated as the fundamental concept, providing a
semantics both to Felleisen’s λC-calculus and to a variant of λµ that has, next to the two
sorts of term we consider here (terms and commands) also continuation terms.

Here we adapt that semantics to Parigot’s original λµ. We rephrase the model definition
in the setting of the normal categories of domains, obtaining something similar to Hindley-
Longo ‘syntactical models.’ Our models are essentially a particular case of the definitions in
[43, 36].

Definition 2.1 (λµ-Model). A tripleM = (R, D, C) is a λµ-model in a category of domains
D if R ∈D is a fixed domain of results and D and C (called domains of denotations and of
continuations, respectively) are solutions in D of the equations:{

D = C→ R
C = D× C

In the terminology of [51], elements of D are denotations, while those of C are continuations.
We refer to the above equations as the continuation domain equations. We let k range over C,
and d over D.

Remark 2.2. If (R, D, C) is a λµ-model then C is (isomorphic to) the infinite product D×
D× D× · · · . On the other hand, as observed in [51] §3.1, we also have:

D ' C→ R ' (D× C)→ R ' D→ (C→ R) ' D→ D.

since categories of domains are cartesian closed. Therefore, a λµ-model as defined in Def. 2.1
is an extensional λ-model.
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Definition 2.3 (Term Interpretation). LetM = (R, D, C) be a λµ-model.
(1) We define ENV = (VAR→ D)× (NAME→ C) and call elements of ENV environments;

We write e(x) = e1(x) and e(α) = e2(α) for e = 〈e1, e2〉 ∈ ENV, and ENVM for the set of
environments interpreting variables and names intoM.

(2) We define an environment update as:

e[x 7→ d]y =

{
d (x = y)
ey (otherwise)

e[α 7→ k]β =

{
k (α = β)

e β (otherwise)

(3) The interpretation mappings [[ · ]]DM : TRM→ ENV→ D and [[ · ]]CM : CMD→ ENV→ C,
written [[ · ]]D and [[ · ]]C whenM is understood, are mutually defined by the equations:

[[x ]]D e k = e x k
[[λx.M ]]D e k = [[M ]]D e[x 7→ d] k′ (k = 〈d, k′〉)
[[MN ]]D e k = [[M ]]D e 〈[[N ]]D e, k〉
[[µα.C ]]D e k = d k′ (〈d, k′〉 = [[C ]]C e[α 7→ k])
[[ [α]M ]]C e k = 〈[[M ]]D e, eα〉

This definition has a strong similarity with Bierman’s interpretation of λµ [19]; however, he
considers a typed version. In the second equation of the definition of [[ · ]]D, the assumption
k = 〈d, k′〉 is not restrictive: in particular, if k = ⊥C = 〈⊥D, ⊥C〉, then d = ⊥D and
k′ = k = ⊥C.

The last two equations differ from those in [19] and [51] since there the interpretation
of a command is a result:

[[ [α]M ]]R∗ e = [[M ]]D∗ e (eα)

and consequently

[[µα.C ]]D∗ e k = [[C ]]R∗ e[α 7→ k],

writing [[ · ]]A∗ for the resulting interpretation maps. This is not an essential difference
however: let e′ = e[α 7→ k], then

[[µα.[β]M ]]D∗ ek = [[ [β]M ]]R∗ e′ = [[M ]]D e′(e′ β).

On the other hand, by Definition 2.3:

[[ [β]M ]]C e′ = 〈[[M ]]D e′, (e′ β)〉,
so

[[µα.[β]M ]]D e k = [[M ]]D e′ (e′ β).

Therefore we can show [[µα.[β]M ]]D∗ = [[µα.[β]M ]]D by induction.
The motivation for interpreting commands into continuations instead of results is that

the latter are elements of the parametric domain R; hence in the system of Sect. 4 results do
not have significant types. On the other hand, by choosing our interpretation of commands
we get explicit typing of commands with continuation types. Conceptually this could be
justified by observing that commands are peculiar ‘evaluation contexts’ of the λµ-calculus,
and continuations have been the understood as evaluation contexts since Felleisen’s work.
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Technically, here we have just a variant of the treatment of, for example, [26], which system
is based on the more standard interpretation.

Below, we fix a λµ-modelM, and we shall write [[ · ]]M or simply [[ · ]] by omitting the
superscripts C and D whenever clear from the context.

Lemma 2.4.
(1) If x 6∈ fv(M), then [[M ]] e = [[M ]] e[x 7→ d], for all d ∈ D.
(2) If α 6∈ fn(M), then [[M ]] e = [[M ]] e[α 7→ k], for all k ∈ C.

Proof. Easy.

We now establish the relation between the various kinds of substitution and the inter-
pretation.

Lemma 2.5. [[M[N/x] ]] e k = [[M ]] e[x 7→[[N ]] e] k
[[T[α/β] ]] e k = [[T ]] e[β 7→ eα] k where T ∈ TRM ∪ CMD

[[M [α⇐N] ]] e k = [[M ]] e[α 7→〈[[N ]] e, eα〉] k

Proof. By induction on the definition of (structural) substitution. The only non-trivial
case is when M ≡ µβ.[α]L with β 6= α, so that (µβ.[α]L) [α⇐N] ≡ µβ.[α]L [α⇐N]N. By
unravelling definitions we have:

[[µβ.[α]L [α⇐N]N ]] e k = d′ k′

where
〈d′, k′〉 = [[ [α]L [α⇐N]N ]] e[β 7→ k]

= 〈[[L [α⇐N]N ]] e[β 7→ k], e[β 7→ k]α〉,
observing that e[β 7→ k]α = eα, since β 6= α. Then:

[[µβ.[α]L [α⇐N]N ]] e k = [[L [α⇐N]N ]] e[β 7→ k] (eα)
= [[L [α⇐N] ]] e[β 7→ k] 〈[[N ]] e[β 7→ k], eα〉
= [[L ]] e[β 7→ k, α 7→〈[[N ]] e, eα〉] 〈[[N ]] e, eα〉

where the last equation follows by induction and the fact that we can assume that β 6∈ fv(N),
so that [[N ]] e[β 7→ k] = [[N ]] e. Let e′ = e[α 7→〈[[N ]] e, eα〉], then:

[[L ]] e[β 7→ k, α 7→〈[[N ]] e, eα〉] 〈[[N ]] e, eα〉 = [[L ]] e′[β 7→ k] 〈[[N ]] e, eα〉
and

〈[[L ]] e′[β 7→ k], 〈[[N ]] e, eα〉〉 = 〈[[L ]] e′[β 7→ k], e′ α〉
= 〈[[L ]] e′[β 7→ k], e′[β 7→ k]α〉
= [[ [α]L ]] e′[β 7→ k]

which implies

[[µβ.[α]L ]] e′ k = [[L ]] e′[β 7→ k] 〈[[N ]] e, eα〉
= [[µβ.[α]L [α⇐N]N ]] e k

Since our interpretation in Def. 2.3 does not coincide exactly with the one of Streicher and
Reus, we have to check that it actually models λµ convertibility. We begin by stating the
key fact about the semantics, i.e. that it satisfies the following ‘swapping continuations’
equation:2

2The equation is from [51], where it is actually: [[µα.[β]M ]] e k = [[M ]] e[α 7→ k] (e β), but this is certainly
just a typo.
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Lemma 2.6. [[µα.[β]M ]] e k = [[M ]] e[α 7→ k] (e[α 7→ k]β).

Proof. Since [[µα.[β]M ]] e k = dk′, where 〈d, k′〉 = [[ [β]M ]] e[α 7→ k] = 〈[[M ]] e[α 7→ k],
e[α 7→ k]β〉.

We are now in place to establish the soundness of the interpretation.

Theorem 2.7 (Soundness of [[ · ]] with respect to λµ). If M =βµ N then [[M ]] = [[N ]].

Proof. By induction on the definition of =βµ; it suffices to check the axioms (β), (µ), and
(ren):
((λx.M)N = M[N/x]) : [[ (λx.M)N ]] e k =∆ [[M ]] e 〈[[N ]] e, k〉

= [[M ]] e[x 7→[[N ]] e] k
= [[M[N/x] ]] e k (Lem. 2.5 )

((µα.[β]M)N = µα.([β]M) [α⇐N]) : Notice that, by Barendregt’s convention, we can as-
sume that α 6∈ fn(N); let e′ = e[α 7→〈[[N ]] e, k〉], then:

[[ (µα.[β]M)N ]] e k =∆ [[µα.[β]M ]] e 〈[[N ]] e, k〉
= [[M ]] e′ (e′β) (Lem. 2.6)
= [[M [α⇐N] ]] e[α 7→ k] (e′ β) (Lem. 2.5)

Now if β = α we have:

[[M [α⇐N] ]] e[α 7→ k] (e′ β) = [[M [α⇐N] ]] e[α 7→ k] 〈[[N ]] e, k〉 (β = α)
= [[M [α⇐N] ]] e[α 7→ k] 〈[[N ]] e[α 7→ k], k〉 (α 6∈ fn(N))
= [[M [α⇐N]N ]] e[α 7→ k] (e[α 7→ k]α)
= [[µα.[α]M [α⇐N]N ]] e k (Lem. 2.6)
=∆ [[µα.([α]M) [α⇐N] ]] e k

Otherwise, if β 6= α we have:

[[M [α⇐N] ]] e[α 7→ k] (e′ β) = [[M [α⇐N] ]] e[α 7→ k] (e[α 7→ k]β)
= [[µα.[β]M [α⇐N] ]] e k (Lem. 2.6)
=∆ [[µα.([β]M) [α⇐N] ]] e k

(µψ.[α]µβ.[γ]M = µψ.([γ]M)[α/β]) : For any e′ we have

[[ [α]µβ.[γ]M ]] e′ = 〈[[µβ.[γ]M ]] e′, (e′ α)〉
= 〈Φe′ , (e′ α)〉

where
Φe′ = λk ∈ C. [[µβ.[γ]M ]] e′ k

= λk ∈ C. [[M ]] e′[β 7→ k] (e′[β 7→ k] γ).

On the other hand, by definition of interpretation and by Lem. 2.5 we have:

[[ ([γ]M)[α/β] ]] e′ = [[ [γ]M ]] e′[β 7→ e α]
= 〈[[M ]] e′[β 7→ e α], (e′[β 7→ e α] γ)〉.

Therefore, taking e′ = e[ψ 7→ k], by Lem. 2.6 we conclude:

[[µψ.[α]µβ.[γ]M ]] e k = Φe′(e′ α)
= [[µψ.([γ]M)[α/β] ]] e k.
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3. THE FILTER DOMAIN

In this section we will build a λµ-model in the category of ω-algebraic lattices. The model
is obtained in Sect. 3.1 by means of standard domain theoretic techniques, following the
construction in [51]; we exploit the fact that compact points of any ω-algebraic lattice can
be described by means of a suitable intersection type theory (recalled in Sect. 3.2), to get a
description of the model as a filter-model in Sect. 3.3. This provides us with a semantically
justified definition of intersection types (actually of three kinds, to describe the domains
R, D and C, respectively, that form the model) and of their pre-orders that we shall use in
Sect. 4 for the type assignment system.

The treatment of Sect. 3.1 is introductory and can be skipped by readers who are
familiar with domain theory, but for Prop. 3.1 and 3.2, which are referred to in the paper.
A fuller treatment of these topics can be found for example in [3], Ch. 1-3 and 7. The
developments in Sect. 3.2 and Sect. 3.3 are inspired by [17, 22] and [1]; in particular, we
have used [27] in Sect. 3.3; we borrow the terminology of ‘intersection type theory’ from
[18], where intersection type systems and filter models are treated in full detail in Part III.

3.1. A domain theoretic solution of continuation domain equations. Complete lattices
are partial orders (X,v), closed under meet

d
Z (greatest lower bound) and join

⊔
Z

(smallest upper bound) of arbitrary subsets Z ⊆ X. Observing that
d

Z =
⊔{x ∈ X |

∀z ∈ Z [x v z ]} and
⊔

Z =
d
{x ∈ X | ∀z ∈ Z [zv x ]}, we have that if X is closed under

arbitrary meets (joins) it is likewise under arbitrary joins (meets). Furthermore, in X there
exist ⊥ =

⊔
∅ and > =

d
∅, which are the bottom and top elements of X with respect to

v, respectively.
A subset Z ⊆ X is directed if for any finite subset V ⊆ Z there exists z ∈ Z which is

an upper bound of V. In particular, directed subsets are always non-empty. An element
e ∈ X is compact if, whenever e v ⊔ Z for some directed Z ⊆ X, there exists z ∈ Z such
that e v z; we write K(X) for the set of compact elements of X. For x ∈ X we define
K(x) = {e ∈ K(X) | e v x}; since directed sets are non-empty, ⊥ ∈ K(X) and hence
⊥ ∈K(x), for all x ∈ X. A complete lattice X is algebraic if K(x) is directed for any x ∈ X
and x =

⊔K(x); X is ω-algebraic if it is algebraic and the subset K(X) is countable.
A function f : X→Y of ω-algebraic lattices is Scott-continuous if and only if it preserves

directed sups, namely f (
⊔

Z) =
⊔

z∈Z f (z) whenever Z ⊆ X is directed. By algebraicity,
any continuous function with domain X is fully determined by its restriction to K(X), that
is, given a monotonic function g : K(X)→ Y there exists a unique continuous function
ĝ : X→ Y that coincides with g over K(X), namely ĝ(x) =

⊔
g(K(x)); ĝ is called the

continuous extension of g. The category ω-AlgL has ω-algebraic lattices as objects and Scott-
continuous maps as morphisms. As such ω-AlgL is a full subcategory of the category of
domains, but not of the category of (complete) lattices, since morphisms do not preserve
arbitrary joins. In this paper we use the word domain as synonym of ω-algebraic lattice.

If X, Y are domains, then the component-wise ordered cartesian product X×Y and the
point-wise ordered set [X→Y] of Scott-continuous functions from X to Y are both domains.
In particular, if f , g∈ [X→Y] then the function ( f t g)(x) = f (x)t g(x) is the join of f and
g, that are always compatible since they have an upper bound. If Z is an ω-algebraic lattice
then [X×Y→ Z] ' [X→ [Y→ Z]] is a natural isomorphism, and therefore the category
ω-AlgL is cartesian closed.
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K(X×Y) = K(X)×K(Y); K[X→ Y] is the set of finite joins of step functions (a⇒ b)
where a ∈K(X), b ∈K(Y), defined by

(a⇒ b)(x) =

{
b (if av x)
⊥ (otherwise)

An infinite sequence (Xn)n∈N of domains is projective if for all n the continuous functions
en : Xn→ Xn+1 and pn : Xn+1→ Xn exist, called embedding-projection pairs, that satisfy
pn ◦ en = idXn and en ◦ pn ≤ idXn+1 , where ≤ is the pointwise ordering and idV is the identity
function on V. The inverse limit of the projective chain (Xn)n∈N is the set X∞ = lim← Xn
which is defined as the set of all vectors ⇀x ∈ΠnXn such that xi = pi(xi+1) for all i, ordered
component wise. Moreover, for all n there exists an embedding-projection pair en,∞ :
Xn→ X∞ and pn,∞ : X∞→ Xn such that pn,∞(

⇀x) = xn for all ⇀x ∈ X∞: for details see for
example [3], Ch. 7.

Proposition 3.1. The inverse limit X∞ = lim← Xn of a sequence (Xn)n∈N of domains is itself a
domain such that

K(X∞) =
⋃

n{en,∞(x) | x ∈K(Xn)}.

Proof. That X∞ is a domain follows by the fact that each Xn is, for all n, and that for all
x ∈ Xn there exists ⇀x = en,∞(x) such that xn = pn,∞(

⇀x) = x.
Writing

⋃
n en,∞K(Xn) for the right-hand side of the above equation, consider a directed

subset Z ⊆ X∞. For any n, if x ∈K(Xn) then en,∞(x)v⊔ Z implies

x = pn,∞ ◦ en,∞(x) v pn,∞(
⊔

Z) =
⊔

pn,∞(Z)

by the fact that (en,∞, pn,∞) is an embedding-projection pair, and the continuity of pn,∞. By
assumption there exists z ∈ Z such that xv pn,∞(z), and therefore

en,∞(x) v (en,∞ ◦ pn,∞)(z) v z ∈ Z,

hence en,∞(x) ∈K(X∞), by the arbitrary choice of Z. This proves K(X∞) ⊇
⋃

n en,∞K(Xn).
To see the converse inclusion, take ⇀x ∈K(X∞). We claim that xn = pn,∞(

⇀x) ∈K(Xn),
for any n. Indeed, if U ⊆ Xn is directed and such that xn vtU, consider the set

V = {⇀y ∈ X∞ | ∀m 6= n [ym = xm & ∃u ∈U [ yn = u ] ]}
Then V is directed and ⇀xvtV. From the hypothesis ⇀x ∈K(X∞) we know that there exists
⇀y ∈ V such that ⇀x v ⇀y, and so there exists u = yn ∈U such that xn v u, establishing the
claim. From this and the first part of this proof it follows that

{en,∞(pn,∞(
⇀x))}n∈N = {en,∞(xn)}n∈N ⊆ ⋃

n en,∞K(Xn)

is a chain of elements in K(X∞), and by construction ⇀x =
⊔

n en,∞(xn); since ⇀x ∈K(X∞) we
can conclude that ⇀x = en0,∞(xn0) for some n0, so that K(X∞) ⊆

⋃
n en,∞K(Xn) as desired.

We now consider the construction in [51] for the particular case of ω-AlgL. Let R be
some fixed domain, dubbed the domain of results (for the sake of solving the continuation
domain equations in a non-trivial way it suffices to take R = {⊥,>} with ⊥ @>, the
two-point lattice). Now define the following sequences of domains:

C0 = {⊥}
Dn = [Cn→ R]
Cn+1 = Dn×Cn
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where {⊥} is the trivial lattice such that ⊥ = >. Observe that D0 = [C0→ R] ' R and
D0 ' D0 × {⊥} = C1 and so D1 = [C1→ R] ' [R→ R]. By unravelling the definition of
Cn and Dn we obtain:

Cn = [Cn−1→ R]×[Cn−2→ R]× · · · ×[C0→ R]×C0.

In [51] Thm. 3.1, it is proved that these sequences are projective, so that D = lim← Dn and
C = lim← Cn are the initial/final solution of the continuation domain equations such that
R ' D0. By Prop. 3.1 we know that, up to the embeddings of each Dn into D and of each
Cn into C, the compact points of D and C are the union of the compacts of the Dn and Cn,
respectively:

K(D) =
⋃
n
K(Dn), K(C) =

⋃
n
K(Cn). (3.1)

In particular, K(R) = K(D0) ⊆ K(D). Since C ' D×C, C can be seen as the infinite
product ΠnD = D×D · · · ; also, K(C) is a proper subset of the product ΠnK(D) =
K(D)×K(D)× · · · .
Proposition 3.2. The compact points in C = lim← Cn are those infinite tuples in ΠnK(D) whose
components are all equal to ⊥ but for a finite number of cases:

K(C) = {〈d1, d2, . . .〉 ∈ΠnK(D) | ∃ i ∀j ≥ i [dj = ⊥ ]}.

Proof. Let

K = {〈d1, d2, . . .〉 ∈ΠnK(D) | ∃ i ∀j ≥ i [dj = ⊥ ]}
Since C = ΠnD is pointwise ordered, we have K ⊆ K(C), so it suffices to show the
inverse inclusion. Let k = 〈d1, d2, . . .〉 ∈ K(C) and assume, towards a contradiction, that
there exist infinitely many components {di | i ∈N} of k that are different from ⊥. Set
k j = 〈d1, d2, . . . , dj,⊥, . . .〉 ∈ K (the tuple definitely equal to ⊥ after dj, while previous
components are the same as in k), then the set {k j | j ∈N} is directed (actually a chain) and
k =

⊔
j k j; but k 6v k j for any j, hence k 6∈ K(C), a contradiction.

Another way to see this proposition is to observe that the Cn are finite products of the
shape [Cn−1→ R]×[Cn−2→ R]× · · · ×[C0→ R]×C0, where C0 = {⊥}. Hence any tuple in
Cn, and therefore in K(Cn), has the form 〈d1, . . . , dn−2,⊥〉. Now the embedding of such
a tuple into C = lim← Cn is the infinite tuple 〈d1, . . . , dn−2,⊥, . . . ,⊥, . . .〉 that is definitely
⊥ after dn−2, and we know that the images of compact points in the Cn’s are exactly the
elements of K(C).

3.2. Intersection type theories and the filter construction. Intersection types form the ‘do-
main logic’ of ω-algebraic lattices in the sense of [1]. This means that for each domain
X in ω-AlgL there exists a countable language LX of intersection types together with
an appropriate pre-order ≤X such that (LX,≤X) is the Lindenbaum algebra of the com-
pact points K(X) of X, i.e. an axiomatic, and hence finitary presentation of the structure
Kop(X) = (K(X),vop) where vop is just the inverse of the partial order v of X.

To understand this, first observe that K(X) is closed under binary joins. Indeed, for any
e1, e2 ∈K(X) if e1 t e2 =

⊔{e1, e2} v
⊔

Z for some directed Z ⊆ X then e1, e2 v
⊔

Z, which
implies that there exist z1, z2 ∈ Z such that e1 v z1 and e2 v z2. By directness of Z there
exists some z3 ∈ Z such that z1, z2 v z3, hence e1 t e2 v z1 t z2 v z3. Thereby the structure
(K(X),v) is a sup-semilattice (a poset closed under finite joins), hence its dual Kop(X) is
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an inf-semilattice (a poset closed under finite meets), whose meet operator uop coincides
with the join t over K(X).

By algebraicity X, is generated by K(X) in the sense that (X,v) is isomorphic to the
poset (Idl(K(X)),⊆), where Idl(K(X)), the set of ideals over K(X), consists of directed and
downward closed subsets of K(X). It turns out that the compact elements of Idl(K(X))
are just the images ↓e = K(e) of the elements e ∈ K(X). Dually, (X,v) is isomorphic to
the poset (Filt(Kop(X)),⊆), where Filt(Kop(X)) is the set of filters over Kop(X), that are
non-empty subsets of K(X) which are upward closed with respect to vop and closed under
uop.

Therefore filters over Kop(X) give rise to the algebraic lattice (Filt(Kop(X)),⊆), whose
compact elements are ↑op e = {e′ ∈K(X) | evop e′}, called the principal filters. In summary,
we have the isomorphisms in the category ω-AlgL:

X ' Idl(K(X)) ' Filt(Kop(X)).

The fact that K(X) is a countable set allows for a finitary (syntactic) presentation of
X ' Filt(Kop(X)) itself by introducing a language of types denoting the elements of K(X)
and axioms and rules defining a pre-order over types whose intended meaning is vop.

An intersection type language L is a set of expressions closed under the binary operation
∧ and including the constant ω. A pre-order ≤ is defined over this set, making ∧ into the
meet and ω into the top element, as formally stated in the next definition.

Definition 3.3 (Intersection Type Language and Theory).
(1) A denumerable set of type expressions L is called an intersection type language if there

exists a constant ω ∈ L and L is closed under the binary operator σ∧τ, called type
intersection.

(2) An intersection type theory T over L (where L is an intersection type language) is an
axiomatic presentation of a pre-order ≤T over types in L validating the following
axioms and rules:

σ∧τ ≤T σ σ∧τ ≤T τ σ≤T ω

ρ≤T σ ρ≤T τ

ρ≤T σ∧τ

(3) We abbreviate σ≤T τ≤T σ by σ∼T τ and write [σ]T for the equivalence class of σ with
respect to ∼T . The subscript T will be omitted when no ambiguity is possible.

The type σ∧τ is called an intersection type in the literature. The reason for this is that as
a type of λ-terms it is interpreted as the intersection of the interpretations of σ and τ in
set theoretic models of the λ-calculus. This is rather unfortunate in the present setting,
where we shall speak of filters and of their intersections. To avoid confusion, we speak
of ‘type intersections’ when we refer to expressions of the shape σ∧τ, reserving the word
‘intersection’ to the set theoretic operation.

Given an intersection type theory T over a language L that axiomatises the pre-order
≤T , the quotient L/≤T is an inf-semilattice. We will now establish a sufficient condition for
≤T to be isomorphic to Kop(X) for some X ∈ω-AlgL.

Lemma 3.4. Let T be an intersection type theory over L and ≤T the relative pre-order. Let (X,v)
be a domain and Θ : L→ K(X) an order-reversing surjective mapping, i.e. such that for all
σ, τ ∈ L: σ≤T τ ⇒ Θ(τ)vΘ(σ). Then L/≤T ' Kop(X) as inf-semi-lattices.

Proof. Let Θ′ : L/≤T →Kop(X) be defined by Θ′([σ]) = Θ(σ). If [σ] = [τ], then σ∼T τ,
so by assumption Θ(σ) w Θ(τ) w Θ(σ), which implies Θ(σ) = Θ(τ). This implies that
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Θ′ is well defined and that Θ preserves and reflects ≤T with respect to vop, and that
Θ′ is a bijection, since Θ is surjective. Finally, Θ′([σ∧τ]) = Θ(σ∧τ) = Θ(σ)tΘ(τ) =
Θ(σ)uop Θ(τ). In particular, Θ′([ω]) = Θ(ω) = ⊥.

Under the hypotheses of the last lemma we have X ' Filt(Kop(X)) ' Filt(L/≤T );
nonetheless, we consider the more convenient isomorphism of X with the set of filters over
the pre-order (L,≤T ), which we call formal filters.

Definition 3.5 (Formal Filters).
(1) A formal filter with respect to an intersection type theory T over L is a subset f ⊆ L

such that:

ω ∈ f
σ ∈ f σ≤T τ

τ ∈ f

σ ∈ f τ ∈ f

σ∧τ ∈ f

F (T ) is the set of formal filters induced by the theory and we let f , g range over F (T ).
(2) The filter ↑T σ = {τ ∈ L | σ ≤T τ} is called principal and we write Fp(T ) for the set of

principal filters.

We recall some properties of formal filters and of the poset (F (T ),⊆). Since these are
easily established or well known from the literature, we just state them or provide short
arguments. The following is a list of some useful facts that follow immediately by definition.

Fact 3.6.
(1) σ≤T τ if and only if ↑T τ ⊆ ↑T σ.
(2) ↑T σt ↑T τ = ↑T σ∧τ.
(3) If σ ∈ f , then ↑T σ ⊆ f .
(4) f =

⋃
σ∈ f ↑T σ.

(5) For any G ⊆ F (T ), ⋂ G ∈ F (T ).
From Fact 3.6 (5) follows that the poset (F (T ),⊆) is a complete lattice, with set-theoretic

intersection as (arbitrary) meet. Notice that, for G ⊆ F (T ), the join⊔ G =
⋂{ f ∈ F (T ) | ∀g ∈ G [g ⊆ f ]}

includes
⋃ G but does not coincide with it in general, since

⋃ G is not necessarily closed
under ∧. However, since

⋃ G is upper-closed with respect to ≤T , to get an explicit charac-
terisation of

⊔ G it is enough to close
⋃ G under finite type intersections:⊔ G = {σ | ∃n, σi (i ∈ n3) [∀i≤ n [σi ∈

⋃ G ] & σ∼T σ1∧ · · · ∧σn ]}
On the other hand, if G is directed with respect to ⊆, then tG =

⋃ G. In fact, if σi ∈
⋃ G (i ∈

n) we have that ↑T σi ⊆ gi, for certain gi ∈ G (i ∈ n), by Fact 3.6 (3). By directness there
exists g′ ∈ G such that g1 ∪ · · · ∪ gn ⊆ g′, and hence the same holds for ↑T σ1 ∪ · · · ∪ ↑T σn.
Then σi ∈ g′ (i ∈ n) and so σ1∧ · · · ∧σn ∈ g′ ⊆ ⋃ G, since g′ is a formal filter.

The next lemma is not referenced explicitly in the paper, but is used throughout the rest
of this section; it can be considered folklore in the theory of filter λ-models.

Lemma 3.7. (F (T ),⊆) is an ω-algebraic lattice with top ↑T ω and compacts K(F (T )) =
Fp(T ).

3We write n for the set {1, . . . , n} and ai ∈V (i ∈ n) for a1 ∈V, . . . , an ∈V.
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Proof. From the discussion above we know that (F (T ),⊆) is a complete lattice, so it
remains to show that it is ω-algebraic.

Let ↑T σ ⊆ ⊔ G for some directed G ⊆ F (T ). Then
⊔ G =

⋃ G so that σ ∈ ↑T σ ⊆ ⋃ G.
Therefore there exists g ∈ G such that σ ∈ g which implies ↑T σ ⊆ g by 3.6 (3). Hence
Fp(T ) ⊆ K(F (T )). By 3.6 (4) we have f =

⋃
σ∈ f ↑T σ for any f ∈ F (T ). Let ↑T σi ⊆ f for

certain σi ∈ f (i ∈ n); using 3.6 (2) repeatedly we have ↑T σ1 t · · · t ↑T σn = ↑T (σ1∧ · · · ∧σn).
On the other hand, σ1∧ · · · ∧σn ∈ f since f is a formal filter, and σ1∧ · · · ∧σn ≤T σi for all
i ∈ n, which by 3.6 (1) implies that ↑T σi ⊆ ↑T (σ1∧ · · · ∧σn), i.e. {↑T σ | σ ∈ f } is directed.

Now if f ∈ K(F (T )), then f ⊆ ↑T σ for some σ ∈ f ; by 3.6 (3) we conclude f = ↑T σ.
Therefore K(F (T )) ⊆ Fp(T ) and hence K(F (T )) = Fp(T ) by the above. By this and
3.6 (4) we conclude that (F (T ),⊆) is algebraic, and in fact is ω-algebraic because L is
countable and the map σ 7→ ↑T σ from L to Fp(T ) is obviously onto.

Proposition 3.8. Let T be an intersection type theory over L, X a domain and Θ : L→K(X) a
mapping that satisfies the hypotheses of Lem. 3.4. Then F (T ) ' Filt(Kop(X)) ' X.

Proof. If f ∈ F (T ) then by Lem. 3.6, { [σ] | σ ∈ f } is a filter over L/≤T ; vice versa, if f is a
filter over L/≤T then

⋃
f = {σ | [σ]∈ f } is a formal filter; therefore F (T ) ' Filt(L/≤T ). On

the other hand, by Lem. 3.4 and the hypothesis, we have L/≤T ' Kop(X) via the mapping
Θ′([σ]) = Θ(σ), so that the desired isomorphism F (T ) ' Filt(Kop(X)) is given by

λλ f .
⊔{Θ′([σ]) | σ ∈ f } = λλ f .

⊔{Θ(σ) | σ ∈ f }.

Because of Prop. 3.8 and essentially following [17], we ignore the distinction between formal
filters over a pre-order and filters over the ordered quotient and we shall work with the
simpler formal filters, henceforth just called filters.

3.3. A filter domain solution to the continuation domain equations. Given an arbitrary
domain R as in Def. 2.1, we fix the initial and final solution D, C of the continuation
equations in the category ω-AlgL. For A = R, D, C, we will now define the languages LA
and the theories TA, inducing the pre-orders ≤TA , which we write as ≤A.

Definition 3.9. Take R ∈ω-AlgL, ordered by vR, with bottom ⊥ and join t.
(1) The intersection type language LR is defined by the grammar:

ρ ::= υa | ω | ρ∧ρ (a ∈K(R))

We let υ range over the set {υa | a ∈K(R)}.
(2) TR is the smallest intersection type theory axiomatising the pre-order ≤R such that

(where ∼R = ≤R ∩≤
op
R ):

υ⊥ ∼R ω υat b ∼R υa∧υb

(3) The mapping ΘR : LR→K(R) is defined by:

ΘR(υa) = a
ΘR(ω) = ⊥

ΘR(ρ1∧ρ2) = ΘR(ρ1)tΘR(ρ2)

Observe that ∧ is the meet with respect to ≤R.

The following property, that states the relation between vR and ≤R, holds naturally:
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Lemma 3.10.
(1) υa ≤R υb ⇐⇒ bvR a.
(2) ρ≤R ρ′ ⇐⇒ ΘR(ρ

′)vR ΘR(ρ).

Proof. In the following we remove all the subscripts R for notational simplicity.
(1) If υa ≤ υb then either b = ⊥, so that ⊥ v a, or υa ∼ υa∧υb, since ∧ is the meet with

respect to ≤, which is an intersection type theory. By definition we have υatb ∼ υa∧υb,
so it follows that υa ∼ υatb, which implies a = at b, so bv a.

Vice versa, if bv a then a = at b and we have υa = υatb ∼ υa∧υb from which we
conclude υa ≤ υb.

(2) When we, consistently with the theory ≤, identify υ⊥ and ω, then ρ = υa1∧ · · · ∧υah ,
for some ai ∈ K(R) (i ∈ h); notice that υa1∧ · · · ∧υah ∼ υa1t···tah . Likewise, ρ′ =
υb1∧ · · · ∧υbk , then by part (1) we have:

ρ ∼ υa1t···tah ≤ υb1t···tbk ∼ ρ′ ⇐⇒ b1 t · · · t bk v a1 t · · · t ah

The result follows from ΘR(ρ
′) = b1 t · · · t bk and ΘR(ρ) = a1 t · · · t ah.

The following corollary is the converse of Prop. 3.8.

Corollary 3.11. There exists an intersection type theory TR such that FR ' R.

Proof. Let TR and ΘR be defined as in Def. 3.9. Now ΘR is surjective since ΘR(υa) = a for
all a ∈K(R) and, by Lem. 3.10 (2), it satisfies the hypotheses of Lem. 3.4. We conclude that
FR ' R by Prop. 3.8.

Remark 3.12. By Prop. 3.8, the isomorphism FR ' R is given by the map r 7→ ⊔{ΘR(ρ) |
ρ ∈ r}; as observed in the proof of Lem. 3.10 (2), for any ρ ∈ LR there exists a ∈K(R) such
that ρ ∼R υa, therefore the filter r is mapped isomorphically to

⊔{ΘR(υa) | υa ∈ r} =⊔{a | υa ∈ r} by Def. 3.9. In case r ∈ K(FR) then by Lem. 3.7 and the previous remarks
r = ↑R ρ = ↑R υa for some ρ and a, and its image in R is just a.

Definition 3.13 (Type theories TD and TC).
(1) LD and LC are the intersection type languages defined by the grammar:

LD : δ ::= ρ | κ→ρ | ω | δ∧δ (ρ ∈ LR)
LC : κ ::= δ×κ | ω | κ∧κ

We let δ range over LD, and κ over LC, and σ, τ over LD ∪ LC.
(2) We define ∧i∈I σi through:

∧i∈∅ σi =∆ ω
∧i∈I σi =∆ σp∧(∧i∈I\p σi) (p ∈ I)

(3) The theories TD and TC are the least intersection type theories closed under the following
axioms and rules, inducing the pre-orders ≤D and ≤C over LD and LC respectively:

ρ1 ≤R ρ2

ρ1 ≤D ρ2 ω≤D ω→ω υ≤D ω→υ ω→υ≤D υ ω≤C ω×ω

(κ→δ1)∧(κ→δ2)≤D κ→(δ1∧δ2) (δ1×κ1)∧(δ2×κ2)≤C (δ1∧δ2)×(κ1∧κ2)

κ2 ≤C κ1 ρ1 ≤R ρ2

κ1→ρ1 ≤D κ2→ρ2

δ1 ≤D δ2 κ1 ≤C κ2

δ1×κ1 ≤C δ2×κ2



INTERSECTION TYPES FOR λµ 17

As usual, we define σ∼A τ if and only if σ≤A τ ≤A σ, for A = C, D.

It is straightforward to show that both (σ∧τ)∧ρ ∼A σ∧(τ∧ρ) and σ∧τ ∼A τ∧σ, so the
type constructor ∧ is associative and commutative, and we will write σ∧τ∧ρ rather than
(σ∧τ)∧ρ. Thereby the definition of ∧i∈I σi does not depend on the order in which p is
chosen from I.

The pre-order ≤D is the usual one on arrow types in that the arrow is contra-variant in
the first argument and co-variant in the second one. The pre-order≤C on product types is co-
variant in both arguments, and is the component-wise pre-order. As immediate consequence
of Def. 3.13 we have that ω ∼D ω→ω, ω ∼C ω×ω, (κ→δ1)∧(κ→δ2) ∼D κ→(δ1∧δ2), and
(δ1×κ1)∧(δ2×κ2) ∼C (δ1∧δ2)×(κ1∧κ2).

The equation ω ∼D ω→ω together with υ ∼D ω→υ are typical of filter models that
are extensional λ-models. The equation ω ∼C ω×ω allows for a finite representation of
compact elements in C, that otherwise should be described by infinite expressions of the
form δ1× · · · ×δk×ω×ω× · · · (see points (1) and (2) of Lem. 3.14 below).

We have also:

ω ∼D ω→ω ≤D κ→ω ≤D ω,

which implies that κ→ρ∼D ω if and only if ρ∼D ω.

Lemma 3.14.
(1) ∀κ ∈ LC ∃δi ∈ LD (i ∈ n) [κ ∼C δ1× · · · ×δn×ω ].
(2) δ1× · · · ×δh×ω≤C δ′1× · · · ×δ′k×ω ⇐⇒ k≤ h & ∀ i≤ h [δi ≤D δ′i ].
(3) ∀δ ∈ LC ∃n > 0, κi ∈ LC, ρi ∈ LR (i ∈ n) [δ∼D ∧n(κi→ρi) ].
(4) If I, J are finite and non-empty sets of indices and ρi 6∼D ω for all i ∈ I then:

∧j∈J(κ
′
j→ρ′j)≤D ∧i∈I(κi→ρi) ⇐⇒
∀ i ∈ I ∃ Ji ⊆ J [ Ji 6= ∅ & κi ≤C ∧j∈Ji κj & ∧j∈Jj ρj ≤R ρi ]

Proof. By induction on the structure of types and derivations in the theories TC and TD.

Note that the equivalence υ∼D ω→υ is necessary to show Lem. 3.14 (3).
The proofs of parts (1) and (2) of the last lemma are straightforward; they should be

compared however with Prop. 3.2, to understand how compact points in C are represented
by types in LC. Parts (3) and (4) are characteristic of extended abstract type structures (EATS;
see for example [3] Sect. 3.3); in particular the latter implies:

∧j∈J(κ
′
j→ρ′j)≤D κ→ρ ⇒ ∧{ρ′j | κ ≤C κ′j} ≤R ρ.

See [17] Lem. 2.4 (ii) or [3] Prop. 3.3.18.
The next step is to define the mappings ΘD : LD→K(D) and ΘC : LC→K(C) such

that both satisfy the hypotheses of Lem. 3.4. In doing that we shall exploit Equation 3.1
in Sect. 3.1, by introducing a stratification of LD and LC, thereby extending [27]. First we
define the rank of a type in LD and LC inductively as follows:

rk(ρ) = rk(ω) = 0
rk(σ∧τ) = max {rk(σ), rk(τ)}
rk(δ×κ) = max {rk(δ), rk(κ)}+ 1

rk(κ→ρ) = rk(κ) + 1.

Then we define LAn = {σ ∈ LA | rk(σ)≤ n} for A = D, C. By this we have that if n≤m
then LAn ⊆ LAm and that LA =

⋃
n LAn .
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Definition 3.15. The mappings ΘCn : LCn→K(Cn) and ΘDn : LDn→K(Dn) are defined by
mutual induction through:

ΘC0(κ) = ⊥
ΘDn(υ) = (⊥⇒ΘR(υ)) = λλ . ΘR(υ)
ΘDn(κ→ρ) = (ΘCn(κ)⇒ΘR(ρ))
ΘCn+1(δ×κ) = 〈ΘDn(δ), ΘCn(κ)〉

And, for An = Cn, Dn:

ΘAn(ω) = ⊥
ΘAn(σ∧τ) = ΘAn(σ)tΘAn(τ)

The following lemma states that the mappings ΘCn and ΘDn are well defined, which is
necessary since LCn ⊆ LCm and LDn ⊆ LDm when n≤m.

Lemma 3.16. For all κ ∈ LC and δ ∈ LD, if rk(κ)≤m and rk(δ)≤ n then

ΘCm(κ) = ΘCrk(κ)
(κ) and ΘDn(δ) = ΘDrk(δ)(δ).

Proof. By easy induction over m− rk(κ) and n− rk(δ), respectively. Consider the case of
δ×κ→ρ; then rk(δ×κ→ρ) = p + 2 where p = max {rk(δ), rk(κ)} and

ΘDn(δ×κ→ρ) = (ΘCn(δ×κ)⇒ΘR(ρ))
= (〈ΘDn−1(δ), ΘCn−1(κ)〉⇒ΘR(ρ)).

If p + 2 ≤ n then rk(δ) ≤ p < p + 1 ≤ n − 1 and rk(κ) ≤ p < p + 1 ≤ n − 1, so that by
induction: ΘDn−1(δ) = ΘDrk(δ)(δ) and ΘCn−1(κ) = ΘCrk(κ)

(κ). Then:

(〈ΘDn−1(δ), ΘCn−1(κ)〉⇒ΘR(ρ)) = (〈ΘDrk(δ)(δ), ΘCrk(κ)
(κ)〉⇒ΘR(ρ))

= ΘDp+2(δ×κ→ρ).

For A = D, C, let ≤An be the pre-order ≤A restricted to LAn .

Lemma 3.17. For every n, the mappings ΘCn and ΘDn are surjective and order reversing with
respect to ≤Cn and ≤Dn respectively, i.e. they satisfy the hypotheses of Lem. 3.4.

Proof. By induction on the definition of ΘCn and ΘDn .
(n = 0) : The language LC0 is generated by the constant ω and the connectives × and ∧,

so all types in LC0 are equated by ∼ C0. Then the thesis holds for ΘC0 , since C0 = {⊥}.
On the other hand, since the only way for a type in LD to be of rank greater than 0
is to include an arrow, LD0 is generated by the constants ω and υa for a ∈ K(R) and
the connective ∧ so that LD0 = LR. Besides, the isomorphism D0 ' R is given by the
mapping λλ . r 7→ r, which is the continuous extension of the mapping (⊥⇒ a) 7→ a from
K(D0) to K(R). Then ΘD0(a) = (⊥⇒ a) 7→a = ΘR(υa), where the last mapping is an
isomorphism of ordered sets, hence order preserving and respecting. We conclude that
ΘD0 = ΘR up to the isomorphism K(D0) ' K(R), hence satisfies the hypotheses of
Lem. 3.4 by Lem. 3.10 (2).

(n > 0) : If κ ∈ LCn then:

ΘCn(κ) =

 〈ΘDn−1(δ), ΘCn−1(κ)〉 (if κ = δ′×κ′)
ΘCn(κ1)tΘCn(κ2) (if κ = κ1∧κ2)
⊥ (if κ = ω).
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For κ = δ′×κ′ we have rk(κ)≤ n implies rk(δ′), rk(κ′)≤ n−1 by definition of rk; hence
δ′ ∈ LDn−1 and κ′ ∈ LCn−1 . By induction, ΘDn−1 : LDn−1 →K(Dn−1) and ΘCn−1 : LCn−1 →
K(Cn−1) are onto and order reversing. SinceK(Cn) = K(Dn−1)×K(Cn−1), by induction
ΘCn is onto and order reversing. If κ = κ1∧κ2 then for any κ3 ∈ LCn :

ΘCn(κ1)tΘCn(κ2)vΘCn(κ3) ⇐⇒ ΘCn(κi)vΘCn(κ3) (i = 1, 2)
⇐⇒ κ3 ≤Cn κi (by a subordinate induction on κ)
⇐⇒ κ3 ≤Cn κ1∧κ2.

Finally, the case κ = ω is obvious as ⊥ = 〈⊥, ⊥〉 is the bottom in K(Cn), while
ω ∼Cn ω×ω is the top in (LCn ,≤Cn).

If δ ∈ LDn then:

ΘDn(δ) =


(⊥⇒ΘR(ρ)) (if δ = ρ ∈ LR)
(ΘCn(κ)⇒ΘR(ρ)) (if δ = κ→ρ)
ΘDn(δ1)tΘDn(δ2) (if δ = δ1∧δ2)
⊥ (if δ = ω)

By construction

K(Dn) = K([Cn→ R])
= {ti∈I(ki⇒ ri) | I is finite & ∀ i ∈ I [ki ∈K(Cn) & ri ∈K(R) ]}.

We know from the above that ΘCn is surjective (since both ΘDn−1 and ΘCn−1 are), while
ΘR is surjective by definition. Let ki = ΘCn(κi) and ri = ΘR(ρi), then ti∈I(ki⇒ ri) =
ΘDn(∧i∈I κi→ρi); since also ΘDn(ω) = ⊥ = (⊥⇒⊥) = ΘDn(ω→ω), we conclude that
ΘDn is surjective.

To see that ΘDn is order reversing, note that (k⇒ r) v f for f ∈ [Cn → R] if and
only if r v f (k), which is trivially the case if r = ⊥. Since ⊥ = ΘR(ω) and also
⊥ = (k⇒⊥) = ΘDn(κ→ω) for any k and κ, while κ→ω ∼ Dnω ≥Dn δ for any δ ∈ LDn ,
the thesis trivially holds if r = ⊥.

Suppose that r 6= ⊥. Since (ti∈I(ki⇒ ri)) (x) = tj∈J rj for J = { j ∈ I | k j v x}, we
have

(k⇒ r)vti∈I(ki⇒ ri) ⇐⇒ rvti∈I(ki⇒ ri)(k)
⇐⇒ ∃ J ⊆ I [rvtj∈J rj & tj∈J k j v k ]

By subjectivity of ΘCn and ΘR we know that there exist κ, ρ, such that ΘCn(κ) = k and
ΘCn(κi) = ki, and κi, ρi such that ΘR(ρ) = r,ΘR(ρi) = ri, for every i ∈ I. Therefore,

ΘDn(κ→ρ) = (ΘCn(κ)⇒ΘR(ρ))vti∈I(ΘCn(κi)⇒ΘR(ρi))
⇐⇒ ∃ J ⊆ I [ΘR(ρ)vtj∈J ΘR(ρj) & tj∈J ΘCn(κj)vΘCn(κ) ]
⇐⇒ ∃ J ⊆ I [ΘR(ρ)vΘR(∧j∈J ρj) & ΘCn(∧j∈J κj)vΘCn(κ) ]
⇐⇒ ∃ J ⊆ I [∧j∈J ρj ≤R ρ & κ ≤Cn ∧j∈J ρj ]
⇐⇒ ∧i∈I(κi→ρi)≤Dn κ→ρ (by 3.14 (4))

where we use that both ΘCn (as proved above) and ΘR (by Lem. 3.10 (2)) are order
reversing, and that 3.14 (4) applies because ΘR(ρ) 6= ⊥ if and only if ρ 6=R ω by 3.10 (2).
The general case

ΘDn(∧i∈I κi→ρi) = ti∈I ΘDn(κi→ρi) v ΘDn(∧j∈J κ′j→ρ′j)

now follows, since this is equivalent to
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ΘDn(κi→ρi) = (ΘCn(κi)⇒ΘR(ρi))
v ΘDn(∧j∈J κ′j→ρ′j)

= tj∈J(ΘCn(κ
′
j)⇒ΘR(ρ

′
j))

for all i ∈ I.

Definition 3.18. The mappings ΘD : LD→K(D) and ΘC : LC→K(C) are defined by

ΘD(δ) = ΘDrk(δ)(δ)

ΘC(κ) = ΘCrk(κ)
(κ)

Remark 3.19. By Lem. 3.16 and of the definition of rk, ΘD(κ→ρ) = (ΘC(κ)⇒ΘR(ρ)) and
similarly ΘC(δ×κ) = 〈ΘD(δ), ΘC(κ)〉. In general all the equations in Def. 3.15 concerning
the mappings ΘAn do hold for the respective maps ΘA.

Lemma 3.20. The mappings ΘD and ΘC are surjective and order reversing, i.e. satisfy the hypothe-
ses of Lem. 3.4.

Proof. First observe that if n ≥ rk(δ) then ΘD(δ) = ΘDrk(δ)(δ) = ΘDn(δ) by Lem. 3.16, and
similarly for ΘC. Now if d ∈K(D) then by Equation (3.1) we have K(D) =

⋃
nK(Dn), so

that there exists n such that d ∈K(Dn). By Lem. 3.17 ΘDn is surjective, hence there exists
δ ∈ LDn such that ΘDn(δ) = d. Then rk(δ) ≤ n and ΘD(δ) = ΘDn(δ) = d, by the above
remark. Hence ΘD is surjective.

On the other hand, if δ1 ≤D δ2 then δ1 ≤Dn δ2 for any n ≥ max {rk(δ1), rk(δ2)}; by
Lem. 3.17 and the above remark we conclude that

ΘD(δ1) = ΘDn(δ1) w ΘDn(δ2) = ΘD(δ1),

which establishes that ΘD is order reversing. The proof concerning ΘC is similar.

Theorem 3.21. For A = R, D, C, the filter domain FA is isomorphic to A.

Proof. That FR ' R is stated in Cor. 3.11. By Lem. 3.20 ΘD and ΘC satisfy Lem. 3.4, hence
we conclude by Prop. 3.8.

Thm. 3.21 implies that (FR,FD,FC) is a λµ-model. However, it is a rather implicit
description of the model on which we base the construction of the intersection type assign-
ment system in the next section. To get a better picture relating term and type interpretation,
below we will show how functional application and the operation of adding an element of
FD in front of a continuation in FC are defined in this model; this provides us with a more
explicit description of the isomorphisms relating FD and FC.

In the following, we let d and k range over filters in FD and FC, respectively; notice
that above they were used for elements of C and D. Since no confusion is possible, and
since a clear link exists between these concepts, we permit ourselves a little overloading in
notation.

Definition 3.22. For d ∈ FD and k ∈ FC we define:

d · k =∆ ↑D{ρ ∈ LR | ∃κ→ρ ∈ d [κ ∈ k ]}
d :: k =∆ ↑C{∧i∈I δi×κi ∈ LC | ∀ i ∈ I [δi ∈ d & κi ∈ k ]}

The upward closure ↑D in the definition of d · k is redundant, since we can show that
the set {∧i∈I δi×κi ∈ LC | ∀ i ∈ I [δi ∈ d & κi ∈ k ]} is a filter. We have added ↑D to simplify
proofs; in fact any set of types ↑ A is clearly closed under ∼. A similar remark holds for ↑C
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in the definition of d :: k, where we have to include ω. Alternatively one could stipulate the
usual convention that ∧i∈I δi×κi is syntactically the same as ω when I = ∅.

Lemma 3.23. d · k ∈ FR and d :: k ∈ FC, for any d ∈ FD and k ∈ FC. Moreover, the mappings ·
and :: are continuous in both their arguments.

Proof. The proof that d · k is well defined and continuous is essentially the same as that
with EATS (see for example [3] Sect. 3.3). The set d :: k is a filter by definition. By definition
unfolding we have that

d :: k = (
⋃

δ∈d ↑D δ) ::(
⋃

κ∈k ↑C κ) =
⋃

δ∈d,κ∈k ↑D δ :: ↑C κ,

hence :: is continuous.

In the particular case of [FC →FR], the step functions (see Sect. 3.1) take the form
(↑C κ⇒↑R ρ). Indeed for k ∈ FC we have that ↑C κ ⊆ k if and only if κ ∈ k, so that we have:

(↑C κ⇒↑R ρ)(k) =

{
↑R ρ (if κ ∈ k)
↑R ω ( otherwise)

= ↑D(κ→ρ) · k
Thus arrow types represent step functions. Similarly, the product of domains X×Y

ordered component-wise is a domain such that K(X×Y) = K(X)×K(Y). In case of
FD × FC compact points are of the shape 〈↑D δ, ↑C κ〉, which corresponds to the filter
↑C δ×κ ∈ FC. This justifies the following definition:

Definition 3.24. We define the following maps:

F : FD→ [FC→FR] F d k = d · k
G : [FC→FR]→FD G f = ↑D {∧i∈I κi→ρi ∈ LD | ∀ i ∈ I [ρi ∈ f (↑ κi) ]}
H : FC→ (FD ×FC) H k = 〈{δ ∈ LD | δ×κ ∈ k}, {κ ∈ LC | δ×κ ∈ k}〉
K : (FD ×FC)→FC K〈d, k〉 = d :: k

Remark 3.25. As expected form the claim that step functions in [FC→FR] are represented
by arrow types in LD, for any κ→ρ ∈ LD we have G(↑C κ⇒↑R ρ) = ↑D(κ→ρ). Indeed,
κ→ρ≤D κ′→ρ′ if and only if κ′ ≤C κ and ρ≤R ρ′, i.e. ↑C κ ⊆ ↑C κ′ and ↑R ρ′ ⊆ ↑R ρ, if and
only if ρ′ ∈ ↑R ρ = (↑C κ⇒↑R ρ)(↑C κ′). Similarly, the type δ×κ ∈ LC represents pairs in
FD ×FC via K, i.e. K〈↑D δ, ↑C κ〉 = ↑D δ :: ↑C κ = ↑C(δ×κ).

When no ambiguity is possible, we will write ↑ ρ for ↑R ρ, and similarly for ↑D and ↑C.

Lemma 3.26. The functions F, G and H, K are well defined and monotonic with respect to subset
inclusion.

Proof. By Lem. 3.23, F and K are well defined and continuous, hence monotonic.
For all f ∈ [FC→FR], by definition the set G f is a filter over (LD,≤D); we check that G

is monotonic. Observe that ∧i∈I κi→ρi ∈G f if and only if ti∈I(↑ κi⇒↑ ρi)v f ; on the other
hand, if f v g then ti∈I(↑ κi⇒↑ ρi)v f implies ti∈I(↑ κi⇒↑ ρi)v g, so ∧i∈I κi→ρi ∈ G f
implies ∧i∈I κi→ρi ∈ G g.

The function H is evidently monotonic with respect to ⊆. We check that it is well
defined, i.e. that both

d′ = {δ ∈ LD | δ×κ ∈ k} and
k′ = {κ ∈ LC | δ×κ ∈ k}
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are filters whenever k is one. Let δ1, δ2 ∈ d′, then there exist κ1, κ2 such that δ1×κ1, δ2×κ2 ∈ k
(and hence κ1, κ2 ∈ k′). Since k is a filter, we have δ1×κ1∧δ2×κ2 ∈ k; also, δ1×κ1∧δ2×κ2 ∼C
(δ1∧δ2)×(κ1∧κ2) implies (δ1∧δ2)×(κ1∧κ2) ∈ k, as k, being a filter, is closed under meets
and ∼C. We conclude that δ1∧δ2 ∈ d′; similarly, we can reason that κ1∧κ2 ∈ k′.

The same reasoning shows that both d′ and k′ are upward closed sets with respect to
≤D and ≤C, respectively.

We can show that the following isomorphisms exist:

Theorem 3.27. FD ' [FC→FR] via F with inverse G, and FC ' FD ×FC via H with inverse
K.

Proof. Since any monotonic function of posets that is invertible is an isomorphism, y
Lem. 3.26 it suffices to show that G = F−1 and K = H−1.
(1) (F ◦ G) f k = F(↑ {∧i∈I κi→ρi ∈ LD | ∀ i ∈ I [ρi ∈ f (↑ κi)}) k ]

= ↑ {∧i∈I κi→ρi ∈ LD | ∀ i ∈ I [ρi ∈ f (↑ κi)} · k ]
= ↑{ρ | ∃κ ∈ k [ρ ∈ f (↑ κ)} = ⋃

κ∈k f (↑ κ) ]
= t↑ κ⊆k f (↑ κ) (since {↑ κ | κ ∈ k} is directed)
= f (k) (by continuity of f )

hence (F ◦ G) f = f .
(2) (G ◦ F) d = G(λλ k ∈ FC . d · k)

= ↑{∧i∈I κi→ρi | ∀ i ∈ I [ρi ∈ d · ↑ κi ]}
= ↑{∧i∈I κi→ρi | ∀ i ∈ I ∃κ′i [κi ≤C κ′i & κ′i→ρi ∈ d ]} = d

where λλ represents semantic abstraction. In the last equation, the inclusion ⊇ is obvious,
while the inclusion ⊆ follows by the fact that if κi ≤C κ′i then κ′i→ρi ≤D κi→ρi, hence
κ′i→ρi ∈ d implies κi→ρi ∈ d for all i ∈ I, which in turn implies that ∧i∈I κi→ρi ∈ d.

(3) (H ◦ K)〈d, k〉 = H(d :: k)
= 〈{δ ∈ LD | δ×κ ∈ d :: k}, {κ ∈ LC | δ×κ ∈ d :: k}〉 = 〈d, k〉

by observing that δ×κ ∈ d :: k if and only if δ ∈ d and κ ∈ k, and that if κ′ ∈ ↑ω ⊆ d :: k
then κ′ ∼C ω×ω and obviously ω ∈ d and ω ∈ k.

(4) (K ◦ H) k = {δ ∈ LD | δ×κ ∈ k} ::{κ ∈ LC | δ×κ ∈ k}
= ↑{∧i∈I δi×κi | ∀ i ∈ I ∃δ′i , κ′i [di×κ′i , δ′i×κi ∈ k ]}
= k (since k ∈ FC)

Remark 3.28. As observed in Remark 2.2, a λµ-model is an extensional λ-model. Thm. 3.1 in
[51] states that the initial/final solution of the continuation domain equations is isomorphic
to the domain R∞ ' [R∞→ R∞], i.e. Scott’s D∞ λ-model obtained as inverse limit of a chain
where D0 = R.

To see this from the point of view of the intersection type theory, consider the extension
Lλ = · · · | δ→δ of LD. Let Tλ be the theory obtained by adding to TD the equation
δ×κ→ρ = δ→κ→ρ. Then in the intersection type theory Tλ, the following rules are
derivable:

(δ→δ1)∧(δ→δ2)≤λ δ→(δ1∧δ2)
δ′1 ≤λ δ1 δ2 ≤λ δ′2

δ1→δ2 ≤λ δ′1→δ′2

By this, Tλ is a natural equated intersection type theory in terms of [2], and hence
Fλ ' [Fλ→Fλ] where Fλ is the set of filters generated by the pre-order ≤λ (see [2],
Cor. 28 (4)).
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4. AN INTERSECTION TYPE SYSTEM

Let M = (R, D, C) be a λµ-model, where D, C are initial solutions of the continuation
domain equations (we say then thatM is initial). In this section, using the fact thatM
is isomorphic to the filter model F = (FR,FD,FC), as established by Thm. 3.21 and 3.27,
we will define a type assignment system such that the statement M : δ (or C : κ) is
derivable, under appropriate assumptions about the variables and names in it, if and only
if [[M ]]Fe ∈ ↑D δ (or [[C ]]Fe ∈ ↑C κ) for all environments e respecting those assumptions.

Thereby an interpretation of types can be defined such that [[σ ]]F = ↑A σ for A = D, C.
Since filters are upward closed sets of types, we have that [[T ]]Fe ∈ ↑A σ if and only if
σ ∈ [[T ]]Fe, and we obtain that the denotation of a term/command is just the set of types
that can be inferred for it in the assignment system.

4.1. Type assignment. We now give some preliminary definitions for our type system.

Definition 4.1 (Bases, Name Contexts, and Judgements).
(1) A basis is a finite mapping from term variables to types in TD, written as a finite set

Γ = {x1:δ1, . . . , xn:δn} where the term variables xi are pairwise distinct.
(2) A name context (or context) is a finite mapping from names to types in TC, written as

a finite set ∆ = {α1:κ1, . . . , αm:κm} where the continuation variables αi are pairwise
distinct.

(3) We write Γ, x:δ for the basis Γ ∪ {x:δ}, and assume that either x does not occur in Γ or
x:δ ∈ Γ, and similarly for α:κ, ∆.

(4) We write Γ\x for Γ\{x:Γ(x)} and ∆\α for ∆\{α:∆(α)}.
(5) Let Γ be a basis and ∆ a name context. We define

dom(Γ) =∆ {x | ∃δ [x:δ ∈ Γ ]}
dom(∆) =∆ {α | ∃κ [α:κ ∈ ∆ ]}

and write x 6∈ Γ (α 6∈ ∆) if x 6∈ dom(Γ) (α 6∈ dom(∆)).
(6) A judgement is an expression of the form Γ `M : δ | ∆ or Γ ` C : κ | ∆ where Γ is a basis

and ∆ is a name context. M and C are the subjects and δ and κ the predicates.

We will occasionally allow ourselves some freedom when writing basis and contexts, and
also consider Γ, x:ω a basis and α:ω, ∆ a context.

Judgements are in appearance very similar to Parigot’s (see Sect. 7), apart from the
obvious difference in the language of types; in fact, there exists a relation between Parigot’s
system and the one presented here, which will be treated in detail in Sect. 7. Since bases and
contexts are sets, the order in which variable and name assumptions are listed is immaterial.

We will occasionally treat basis and contexts as total functions by using the following
notation:

Γ(x) =

{
δ (if x:δ ∈ Γ)
ω (otherwise)

∆(α) =

{
κ (if α:κ ∈ ∆)
ω (otherwise)

Notice that then Γ\x corresponds to the function update Γ[x := ω] and ∆\α to ∆[α := ω].

Definition 4.2 (Intersection type system for λµ). We define intersection type assignment
for λµ through the following sets of inference rules:
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(Type rules) : (Ax) : Γ, x:δ ` x : δ | ∆

(Abs) :
Γ ` M : κ→ρ | ∆

(Γ(x) = δ)
Γ\x ` λx.M : δ×κ→ρ | ∆

(App) :
Γ ` M : δ×κ→ρ | ∆ Γ ` N : δ | ∆

Γ ` MN : κ→ρ | ∆

(Cmd) :
Γ ` M : δ | ∆

(∆(α) = κ)
Γ ` [α]M : δ×κ | ∆

(µ) :
Γ ` C : (κ′→ρ)×κ′ | ∆

(∆(α) = κ)
Γ ` µα.C : κ→ρ | ∆\α

(Logical rules) :

(∧) :
Γ ` T : σ | ∆ Γ ` T : τ | ∆

Γ ` T : σ∧τ | ∆
(ω) : Γ ` T : ω | ∆ (≤) :

Γ ` T : σ | ∆ σ≤ τ

Γ ` T : τ | ∆
We will write Γ ` T : σ | ∆ if there exists a derivation built using the above rules that has

this judgement in the bottom line, and D :: Γ ` T : σ | ∆ if we want to name that derivation.

As mentioned above, we extend Barendregt’s convention to judgements Γ ` T : σ | ∆ by
seeing the variables that occur in Γ and names in ∆ as binding occurrences over T as well;
in particular, we will assume that no variable in Γ and no name in ∆ is bound in T.

To understand these rules we can think of types as properties of term denotations in the
initial modelM = (R, D, C). In particular, if σ∈LA then σ denotes a subset [[σ ]]M ⊆ A, for
A = R, D, C. The judgement Γ` T : σ |∆ is then interpreted as the claim that [[T ]]M e∈ [[σ ]]M
whenever e x ∈ [[Γ(x) ]] and eα ∈ [[∆(α) ]] for all x and α (the formal definitions will be given
in Sect. 4.2).

The logical rules, which are familiar from intersection type systems for the standard
λ-calculus, just state that types are sets: ω is the largest set which coincides with the
domain of interpretation itself, the pre-order is subset inclusion, and σ∧τ is the set theoretic
intersection of σ and τ. Note that the subject in the conclusion of a logical rule is the same
as in the premises. Moreover, remark that we use here the term ‘logical’ in the sense of
Abramsky’s domain logic, not in the sense of (propositional) logic of any kind. In particular,
intersection is not conjunction, both in systems for the λ-calculus and in the present one.

The type rules are syntax directed; they have been obtained from the equations in Def. 2.3
by representing the left-hand side of the equation in the conclusion and the right-hand side
in the premises of the corresponding rule:
(Abs) : This rule corresponds to the equation [[λx.M ]]D e 〈d, k〉 = [[M ]]D e[x 7→ d] k, where

[[ · ]]D is short for [[ · ]]MD . It states that λx.M is a function of continuations 〈d, k〉, whose
values are those of M where x is interpreted by d, and applied to continuation k. On
the other hand, the arrow types from LD represent properties of functions: a property
of λx.M is then a type δ×κ→ρ (the conclusion of the rule) so that whenever δ×κ is a
property of 〈d, k〉, i.e. d ∈ [[δ ]]M and k ∈ [[κ ]]M, ρ is a property of the result. But since the
result is [[M ]]D e[x 7→ d] k, it suffices to prove that M has the property κ→ρ whenever x
is interpreted by d, which is represented by the assumption x:δ in the premise of (Abs).

(App) : Dually, this rule comes from the equation [[MN ]]D e k = [[M ]]D e 〈[[N ]]D e, k〉. For
the application MN to have the property κ→ρ (as in the conclusion) it suffices that if
applied to a continuation k ∈ [[κ ]]M it yields a value with property ρ. By the equation,
such a value is computed by putting [[N ]]D e before k in the continuation passed to
[[M ]]D e. Therefore, for the conclusion to hold it suffices to prove that N has type δ and
M type δ×κ→ρ.



INTERSECTION TYPES FOR λµ 25

(Cmd) : This rule is based on the equation [[ [α]M ]]C e = 〈[[M ]]D e, eα〉, which states that the
meaning of a command [α]M is a continuation 〈d, k〉 where d is the meaning of M and
k = e α. For 〈d, k〉 to have the property δ×κ (as in the conclusion) we have to check that
M has the property δ whenever α denotes the continuation k with property κ. Since
the assumptions about the environment are in the contexts ∆ in case of names, this is
represented by the side condition ∆(α) = κ of the rule.

(µ) : This rule is the more involved case, which corresponds to the equation [[µα.C ]]D e k =
d k′, where 〈d, k′〉 = [[C ]]C e[α 7→ k]. This states that [[µα.C ]]D e is the function that, when
applied to a continuation k yields the value of the application of the first component d to
the second component k′ of a different continuation 〈d, k′〉, which however depends on
k, because it is computed by C whenever α is sent to k. Now the result d k′ will have the
property ρ if for some κ′ both k′ ∈ [[κ′ ]]M and d ∈ [[κ′→ρ ]]M. Therefore, to type µα.C by
κ→ρ (as in the conclusion) we have to ensure that the continuation represented by C
has the property (κ′→ρ)×κ′, whenever α:κ occurs in the context (as in the premise).

Remark 4.3. Note how rules (App) and (Abs) are actually instances of the familiar rules
for application and λ-abstraction in the simply typed λ-calculus. In fact, δ×κ→ρ ∈ LD is
equivalent to δ→(κ→ρ) ∈Lλ so that, if we admitted types of Lλ, the following rules would
be admissible:

(→E) :
Γ ` M : δ→(κ→ρ) | ∆ Γ ` N : δ | ∆

Γ ` MN : κ→ρ | ∆
(→I) :

Γ, x:δ ` M : κ→ρ | ∆
Γ ` λx.M : δ→(κ→ρ) | ∆

We will use the following variant of rule (∧):

(∧) :
Γ ` T : σi | ∆ (∀ i ∈ I)

Γ ` T :∧i∈I σi | ∆

Remark 4.4. Rule (Cmd) is equivalent to the following two:

(Cmd1) :
Γ ` M : δ | ∆

Γ ` [α]M : δ×κ | α:κ, ∆
(Cmd2) :

Γ ` M : δ | ∆
(∆(α) = ω)

Γ ` [α]M : δ×ω | ∆
By definition, the context α:κ, ∆ in the conclusion of (Cmd1) is only legal when either
α 6∈ dom(∆) or α:κ ∈ ∆.

The need of (Cmd2) will become apparent when proving the admissibility of the
strengthening rule (Lem. 4.7) and the completeness of the type assignment. For the moment
we observe that with (Cmd1) the conclusion of the shape Γ ` [α]M : δ×ω |∆ would be deriv-
able from Γ `M : δ | ∆ only if α:ω ∈ ∆; note that ∆(α) = ω does not require that α ∈ dom(∆).
On the other hand, (Cmd2) allows the implicit typing of α by ω even if α 6∈ dom(∆). Not
having rule (Cmd2) (that is a particular case of (Cmd)) would introduce an asymmetry with
respect to the typing with ω of the term variable x in a basis Γ, since we can conclude
Γ ` x : ω | ∆ either by rule (Ax) (in which case x:ω ∈ Γ is required), or by rule (ω), where
x 6∈ Γ is allowed.

With the above proviso, in the proofs we shall often consider the rules (Cmd1) and
(Cmd2) instances of (Cmd) without explicit mention.

The admissibility of the following rules will be useful:

Lemma 4.5 (Admissibility of Weakening and Thinning). The following rules are admissible:
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(Wk) :
Γ ` T : σ | ∆

(Γ ⊆ Γ′ & ∆ ⊆ ∆′)
Γ′ ` T : σ | ∆′

(Th) :
Γ ` T : σ | ∆

(Γ′ ⊇ {x:δ ∈ Γ | x ∈ fv(T)}, ∆′ ⊇ {α:κ ∈ ∆ | α ∈ fn(T)})
Γ′ ` T : σ | ∆′

Proof. Easy.

Notice that, by our interpretation of Barendregt’s convention, the variables in Γ′ and
names in ∆′ are not bound in T.

In presence of the subtyping (≤) we can have a further form of weakening, namely by
weakening the types in the assumptions. We first extend the operator ∧ and the pre-orders
≤D and ≤C to bases and contexts.

Definition 4.6.
(1) For bases Γ1, Γ2 we define the basis Γ1∧ Γ2 by:

Γ1∧ Γ2 =∆ {x:Γ1(x)∧ Γ2(x) | x ∈ dom(Γ1) ∩ dom(Γ2)}
∪ {x:δ ∈ Γ1 | x 6∈ dom(Γ2)}
∪ {x:δ ∈ Γ2 | x 6∈ dom(Γ1)}

For contexts ∆1, ∆2, we define the context ∆1∧∆2 similarly.
(2) We extend the relations ≤D and ≤C to bases and contexts respectively by:

Γ1 ≤D Γ2 =∆ ∀x ∈ VAR [Γ1(x)≤D Γ2(x) ]
∆1 ≤C ∆2 =∆ ∀α ∈NAME [∆1(α)≤C ∆2(α) ]

Note that, if Γ1, Γ2 are well-formed bases then so is Γ1∧ Γ2, and if ∆1, ∆2 are well-formed
contexts, then so is ∆1∧∆2. Also, dom(Γ1∧ Γ2) = dom(Γ1) ∪ dom(Γ2) and dom(∆1∧∆2) =
dom(∆1) ∪ dom(∆2). Therefore Γ1∧ Γ2 is often called ‘union of bases’ in the literature.

The relations Γ1 ≤D Γ2 and ∆1 ≤C ∆2 are the pointwise extensions of the relations ≤D
and ≤C over types; note that the quantifications are not restricted to the domains of the
bases nor of the contexts.

Another immediate consequence of the definition is that Γ1∧ Γ2≤D Γi and ∆1∧∆2≤C ∆i,
for i = 1, 2. However if Γ1 ≤D Γ2 then dom(Γ1) and dom(Γ2) are unrelated in general, since
we have for example {x:ω, y:δ1∧δ2} ≤D {z:ω, y:δ1}. Therefore Γ1 ≤D Γ2 does not imply
that Γ1 and Γ1∧ Γ2 are the equal, as one perhaps would expect; this is however without
consequence since in this case Γ1≤D Γ1∧ Γ2, so that using the admissibility of strengthening
to be shown below, one can prove that all the typings obtainable by means of either basis,
can be obtained by the other one. A similar remark holds for contexts.

Now we are in place to prove the admissibility of strengthening:

Lemma 4.7 (Admissibility of Strengthening). The following rule is admissible:

(St) :
Γ ` T : σ | ∆

(Γ′ ≤D Γ & ∆′ ≤C ∆)
Γ′ ` T : σ | ∆′

Proof. By straightforward induction over the structure of derivations.

The proof is by straightforward induction over the structure of derivations; we only
deal with some interesting cases.
(Ax) : Then T ≡ x and σ = Γ(x). We can construct:
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(Ax)
Γ′ ` x : Γ′(x) | ∆′

(Γ′(x)≤D Γ(x))
Γ′ ` x : Γ(x) | ∆′

where Γ′(x)≤D Γ(x) follows by the assumption that Γ′ ≤D Γ.
(Abs) : Then T ≡ λx.M, σ = δ×κ→ρ and the inference ends with:

CC ��
Γ, x:δ ` M : κ→ρ | ∆

(Abs)
Γ ` λx.M : δ×κ→ρ | ∆

where x 6∈ dom(Γ). By our extension to Barendregt’s convention over judgements, we can
assume that also x 6∈ dom(Γ′). Thereby Γ′, x:δ is a well-formed basis, and clearly Γ′ ≤D Γ
implies Γ′, x:δ≤D Γ, x:δ. By induction we have Γ′, x:δ `M : κ→ρ | ∆′ , from which we
conclude Γ′ ` λx.M : δ×κ→ρ | ∆′ by rule (Abs).

(Cmd) : Then T ≡ [α]M and σ = δ×κ, where κ = ∆(α), and the derivation ends by

CC ��
Γ ` M : δ | ∆

(Cmd)
Γ ` [α]M : δ×κ | ∆

Since ∆′(α) = κ′≤C κ implies δ×κ′≤C δ×κ, by induction Γ′ `M : δ |∆′ , we can construct:

CC ��
Γ′ ` M : δ | ∆′

(Cmd)
Γ′ ` [α]M : δ×κ′ | ∆′

CC ��
δ×κ′ ≤C δ×κ

(≤)
Γ′ ` [α]M : δ×κ | ∆′

Note that in case α:ω ∈ ∆ but α 6∈ dom(∆′) we still would have that ∆′ ≤C ∆, but the
instance (Cmd1) of rule (Cmd) would not be applicable.

It is straightforward to show that Γ ⊆ Γ′ implies Γ′ ≤ Γ (and ∆ ⊆ ∆′ implies ∆′ ≤ ∆), so rule
(St) contains rule (Wk).

The following lemma describes the set of types that can be assigned to a term or a
command.

Lemma 4.8. If D :: Γ ` T : σ | ∆ , then either σ∼A ω or there exist sub-derivations Di :: Γ ` T :
σi | ∆ of D (i ∈ n), such that ∧n

i=1 σi ≤A σ and the last rule of each Di is a type rule.

Proof. By straightforward induction over the structure of derivations.

This particular property will be of use in many of the proofs below, where we reason
by induction over the structure of derivations and allows us to always assume that a type
rule was applied last, and not treat the logical rules.

Another way to state the above result is the following:
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Lemma 4.9 (Generation Lemma). Let δ 6∼D ω and κ 6∼C ω:

Γ ` x : δ | ∆ ⇐⇒ ∃x:δ ∈ Γ [δ′ ≤D δ ]
Γ ` λx.M : δ | ∆ ⇐⇒ ∃ I ∀ i ∈ I ∃δi, κi, ρi [ Γ, x:δi `M : κi→ρi | ∆ & ∧I δi×κi→ρi ≤D δ ]

Γ `MN : δ | ∆ ⇐⇒
∃ I ∀ i ∈ I ∃δi, κi, ρi [ Γ `M : δi×κi→ρi | ∆ & Γ ` N : δi | ∆ & ∧I κi→ρi ≤D δ ]

Γ ` µα.C : δ | ∆ ⇐⇒ ∃ I ∀ i ∈ I ∃κi, ρi, κ′i [ Γ ` C : (κi→ρi)×κi | α:κ′i ,∆ & ∧I κ′i→ρi ≤D δ ]
Γ ` [α]M : κ | ∆ ⇐⇒ ∃κ′, I ∀ i ∈ I ∃δi [ Γ `M : δi | ∆ & ∆(α) = κ′ & ∧I δi×κ′ ≤C κ ]

Proof. The proof is standard. For illustrate we just develop in detail one of the cases.
⇐: assume that Γ `M : δi | ∆ , ∆(α) = κ′ ≤C κi and ∧i∈I δi×κi ≤C κ. Then by (Cmd) we get

Γ ` [α]M : δi×κ′|∆ for all i; therefore by (possibly multiple inferences of) (∧) we obtain
Γ ` [α]M :∧iδi×κ′|∆ and the thesis follows by (≤).

⇒: Let Γ ` [α]M : κ | ∆ ; to show: ∃κ′, I ∀ i ∈ I ∃δi [ Γ `M : δi | ∆ & α:κ′ ∈ ∆ & ∧I δi×κ′ ≤C κ ].
The derivation can finish with the rules: (Cmd), (∧) or (≤).
(Cmd) : So the derivation is shaped like:

CC ��
Γ ` M : δ | ∆

(∆(α) = κ′′)
Γ ` [α]M : δ×κ′′ | ∆

with κ = δ×κ′′; take κ′ = κ′′, I = {1}, δ1 = δ.
(∧) : So the derivation is shaped like:

CC ��
Γ ` T : κ1 | ∆

CC ��
Γ ` T : κ2 | ∆

Γ ` T : κ1∧κ2 | ∆
By induction, there exist κ′1, κ′2, I1, I2, such that

∀ i ∈ I1 ∃δ1
i [ Γ `M : δ1

i | ∆ & ∆(α) = κ′1 & ∧I1 δi×κ′1 ≤C κ1 ] &
∀ i ∈ I2 ∃δ2

i [ Γ `M : δ2
i | ∆ & ∆(α) = κ′2 & ∧I2 δ2

i ×κ′2 ≤C κ2 ]

Then necessarily κ′1 = κ′2. Take κ′ = κ′1 = κ′2, I = I1 ∪ I2, then for all δi with i ∈ I we
have Γ `M : δi | ∆ , and ∧I δi×κ′ = (∧I1 δ1

i ×κ′1)∧(∧I2 δ2
i ×κ′2)≤C κ1∧κ2.

(≤) : So there

CC ��
Γ ` T : κ1 | ∆

CC ��
κ1 ≤ κ2

Γ ` T : κ2 | ∆
By induction, there exist κ′, I, such that

∀ i ∈ I ∃δi [ Γ `M : δi | ∆ & ∆(α) = κ′ & ∧I δi×κ′ ≤C κ1 ]

Notice that then also ∧I δi×κ′ ≤C κ2.

4.2. Type interpretation and soundness. In this section we will formally define the type
interpretation and thereby the interpretation of typing judgements. As anticipated above in
the informal discussion of the system, the meaning of a type will be a subset of the domain
of interpretation.
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In definitions and statements below we relate types to a λµ-model M = (R, D, C),
silently assuming that the language LR includes a constant υa for every a ∈K(R).

Definition 4.10 (Type interpretation). LetM = (R, D, C) be a λµ-model. For A = R, D, C
we define the interpretation [[ · ]]M,A : LA→P(A) (written [[ · ]]A whenM is understood) as
follows:

[[υa ]]R = ↑R a = {r ∈ R | av r}
[[δ×κ ]]C = [[δ ]]D × [[κ ]]C

[[κ→ρ ]]D = {d ∈ D | ∀k ∈ [[κ ]]C [d k ∈ [[ρ ]]R ]}
[[υa ]]D = [[ω→υa ]]D = {d ∈ D | ∀k ∈ C [d k ∈ [[υa ]]R ]}

and

[[ω ]]A = A
[[σ1∧σ2 ]]A = [[σ1 ]]

A ∩ [[σ2 ]]A

Remark 4.11. The last definition is a special case with respect to the natural adaptation of
the intersection type interpretation as subsets of a λ-model, in that we fix the interpretation
of the type constants υa. This is consistent with the approach of constructing types from
the solution of the continuation domain equations, and is the intended interpretation
throughout this paper. In particular, it implies that the language LR depends on the chosen
domain of results R, and that the interpretation of a type is always a principal filter of either
R, D, or C, according to its kind, as is proven in the next lemma.

This choice poses no limitations. If we postulate that there exist denumerably many
constants υ0, υ1, . . . in LR, then we can generalise the definition of type interpretation in a
straightforward way to [[σ ]]Aη (relative to the type environment η, a mapping of type constants
such that η(υi) ⊆ R for all i) by defining [[υi ]]

R
η = η(υi) as the base case of the inductive

definition. Then the above definition is recovered by considering an arbitrary exhaustive
enumeration of the compacts a0, a1, . . . = K(R) (possibly with repetitions; this enumeration
exists since R is ω-algebraic) and defining the interpretation of type constants through
η0(υi) = ↑R ai.

There exists a close relation between the interpretation of types and the maps ΘA (see
Def. 3.18), that is made explicit in the following lemma.

Lemma 4.12. For A = R, D, C and any σ ∈ LA, we have that [[σ ]]A = ↑A ΘA(σ).

Proof. By induction over the structure of types and by cases on A.
(σ ≡ ω) : Then ΘA(ω) = ⊥ and ↑A⊥ = A = [[ω ]]A.
(σ ≡ σ1∧σ2) : By induction, [[σi ]]

A = ↑A ΘA(σi) and ΘA(σ1∧σ2) = ΘA(σ1)tΘA(σ2) by
Rem. 3.19. We have ↑A(ΘA(σ1)tΘA(σ2)) = ↑A ΘA(σ1) ∩ ↑A ΘA(σ2), and therefore
[[σ1∧σ2 ]]A = [[σ1 ]]

A ∩ [[σ2 ]]A = ↑A ΘA(σ1∧σ2).
(σ ≡ υa) :

(A = R) : This follows immediately from ΘR(υa) = a and [[υa ]]R = ↑R a.
(A = D) : Then ΘD(υa) = (⊥⇒ a); but for any d ∈ D = [C→ R], by definition of

step functions, (⊥⇒ a) v d if and only if a v d k for all k ∈ C, that is if and only
if d k ∈ [[υa ]]R for the above; it follows that ΘD(υa)v d if and only if d ∈ [[υa ]]D as
desired.
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(σ ≡ δ×κ) : Then ΘC(δ×κ) = 〈ΘD(δ), ΘC(κ)〉 by Rem. 3.19, and for any 〈d, k〉 ∈ C =
D×C we have:

〈ΘD(δ), ΘC(κ)〉 v 〈d, k〉 ⇐⇒ ΘD(δ)v d & ΘC(κ)v k (by definition of order over D×C)
⇐⇒ d ∈ [[δ ]]D & k ∈ [[κ ]]C (by ind.)
⇐⇒ 〈d, k〉 ∈ [[δ ]]D × [[κ ]]C (by Def. 4.10)
= [[δ×κ ]]C

(σ ≡ κ→ρ) : Then ΘD(κ→ρ) = (ΘC(κ)⇒ΘR(ρ)) by Rem. 3.19; for any d ∈ D = [C→ R]
we have:

(ΘC(κ)⇒ΘR(ρ))v d ⇐⇒ ∀k ∈ C [ΘC(κ)v k⇒ ΘR(ρ)v d k ] (by definition of (·⇒ ·))
⇐⇒ ∀k ∈ C [k ∈ [[κ ]]C ⇒ d k ∈ [[ρ ]]R ] (by induction)
⇐⇒ d ∈ [[κ→ρ ]]D (by Def. 4.10)

Corollary 4.13. For A = R, D, C, if σ, τ ∈ LA then σ≤A τ ⇐⇒ [[σ ]]A ⊆ [[τ ]]A.

Proof. σ≤A τ ⇐⇒ ΘA(σ) w ΘA(τ) (by Lem. 3.10 (2) and 3.20)
⇐⇒ ↑ΘA(σ) ⊆ ↑ΘA(τ) (by Lem. 4.12)
⇐⇒ [[σ ]]A ⊆ [[τ ]]A

We will now define satisfiability for typing judgements with respect to a λµ-model.

Definition 4.14 (Satisfiability). Let M = (R, D, C) be a λµ-model. We define semantic
satisfiability through:

e |=M Γ; ∆ ⇐⇒ ∀x [e x ∈ [[Γ(x) ]]DM ] & ∀α [eα ∈ [[∆(α) ]]CM ]

Γ |=M M : δ | ∆ ⇐⇒ ∀e [e |=M Γ; ∆⇒ [[M ]]DM e ∈ [[δ ]]DM ]

Γ |=M C : κ | ∆ ⇐⇒ ∀e [e |=M Γ; ∆⇒ [[C ]]CM e ∈ [[κ ]]CM ]

We will write |= for |=M whenM is understood.

Remark 4.15. Continuing the discussion in Rem. 4.11, we note that we do not consider
here the concept of validity, namely satisfiability with respect to any λµ-modelM, since we
model both the language LR and the pre-order ≤R after R, which is the particular domain
of results ofM.

As a matter of fact, we could define validity as follows: first we fix the type theory TR
for the language LR with denumerably many type constants υi; then the satisfiability notion
should be relativised to both term and type environments e and η, asking that the latter is a
model of the theory TR, in the sense that whenever ρ≤R ρ′, it holds that η(ρ) ⊆ η(ρ′).

However, we will not consider such a general formulation, as it would involve an
unnecessary complication of the theory developed here.

The next result states the soundness of the typing system. Note that, although the
construction of the system has been made by having an initial model in mind, the soundness
theorem holds for any model.

Theorem 4.16 (Soundness of type assignment). LetM be a λµ-model. If Γ ` T : σ | ∆ , then
Γ |= T : σ | ∆.

Proof. By induction on the structure of derivations. (We will drop the super and subscripts
on the interpretation function.)
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(Ax) : Then T ≡ x and σ = δ; let e |= Γ, x:δ; ∆, then e x ∈ [[δ ]]. Hence, by Def. 2.3, we get
[[x ]] e ∈ [[δ ]].

(Abs) : Then T ≡ λx.N and there exist δ, κ and ρ such that σ = δ×κ→ρ and Γ, x:δ `
N : κ→ρ | ∆ . By definition, [[λx.N ]] e k = [[N ]] e[x 7→ d] k′, where k = 〈d, k′〉; also,
e |= Γ; ∆ and d ∈ [[δ ]] if and only if e[x 7→ d] |= Γ, x:δ; ∆. By induction, for any e |= Γ; ∆
and d ∈ [[δ ]], Γ, x:δ |= N : κ→ρ | ∆, so [[N ]] e[x 7→ d] ∈ [[κ→ρ ]], so [[N ]] e[x 7→ d] k ∈ [[ρ ]]
for any k ∈ [[κ ]]. So [[λx.N ]] e 〈d, k〉 ∈ [[ρ ]], so [[λx.N ]] e ∈ [[δ×κ→ρ ]], and we conclude
Γ |= λx.N : δ×κ→ρ | ∆.

(App) : Then T ≡ PQ and there exist δ, κ and ρ such that σ = κ→ρ, Γ ` P : δ×κ→ρ | ∆ and
Γ ` Q : δ | ∆ . By definition, [[PQ ]] e k = [[P ]] e 〈[[Q ]] e, k〉. Let e |= Γ; ∆. By induction,
Γ |= P : δ×κ→ρ | ∆ and Γ |= Q : δ | ∆, so [[P ]] e∈ [[δ×κ→ρ ]] and [[Q ]] e∈ [[δ ]]; in particular,
for any 〈d, k′〉 ∈ [[δ ]]×[[κ ]] = [[δ×κ ]], we have [[P ]] e 〈d, k′〉 ∈ [[ρ ]]R, so [[PQ ]] e ∈ [[κ→ρ ]],
and thereby Γ |= PQ : κ→ρ | ∆.

(Cmd) : Then T ≡ [α]N and there exist δ and κ = ∆(α) such that σ = δ×κ and Γ `
N : δ | ∆ . By induction we have that Γ |= N : δ | ∆, so that for any e |= Γ; ∆ we have
that [[N ]] e ∈ [[δ ]]. But e |= Γ; ∆ implies that e α ∈ [[∆(α) ]] = [[κ ]], hence [[ [α]N ]] e =
〈[[N ]] e, e α〉 ∈ [[δ ]]×[[κ ]] = [[δ×κ ]] as desired. Then Γ |= [α]N : δ×κ | ∆ by the arbitrary
choice of e.

(µ) : Then T ≡ µα.C, and there exist κ, κ′ and ρ such that σ = κ→ρ and Γ ` C : (κ′→ρ)×κ′ |
α:κ, ∆ . By definition, [[µα.C ]] e k = d k′, where 〈d, k′〉 = [[C ]] e[α 7→ k]. Let e |= Γ; ∆,
and k ∈ [[κ ]], then e[α 7→ k] |= Γ; α:κ, ∆. By induction, Γ |= C : (κ′→ρ)×κ′ | α:κ, ∆, so
[[C ]] e[α 7→ k]∈ [[ (κ′→ρ)×κ′ ]]. Let [[C ]] e[α 7→ k] = p, then π1 p∈ [[κ′→ρ ]] and π2 p∈ [[κ′ ]],
and π1 p (π2 P) ∈ [[ρ ]], so [[µα.C ]] e k ∈ [[ρ ]], for any k ∈ [[κ ]], so [[µα.C ]] e ∈ [[κ→ρ ]], and
therefore Γ |= µα.C : κ→ρ | α:κ, ∆.

(∧) : By induction and the interpretation of an intersection type.
(ω) : Immediate by the definition of interpretation of ω.
(≤) : By induction and Cor. 4.13.

We will now show that we can interpret a term or command by the set of types that can
be given to it (Thm. 4.19). Towards that result, we first make the denotation of terms and
commands and the interpretations of types in the filter model F explicit.

Lemma 4.17. The following equations hold:

[[λx.M ]]Fe = ↑D {∧i∈I(δi×κi→ρi) ∈ LD | ∀ i ∈ I [κi→ρi ∈ [[M ]]Fe[x 7→(↑D δi)] ]}
[[MN ]]Fe = ↑D{∧i∈I κi→ρi ∈ LD | ∀ i ∈ I ∃δi ∈ [[N ]]Fe, κi ∈ LC [δi×κi→ρi ∈ [[M ]]Fe ]}
[[µα.C ]]Fe = ↑D{∧i∈I κi→ρi ∈ LD | ∀ i ∈ I ∃κ′i ∈ LC [ (κ′i→ρi)×κ′i ∈ [[C ]]Fe[α 7→(↑C κi)] ]}
[[ [α]M ]]Fe = ↑C{∧i∈I δi×κi ∈ LC | ∀ i ∈ I [δi ∈ [[M ]]Fe & κi ∈ e(α) ]}

Proof. By unravelling definitions. For example:

[[λx.M ]]F
D

e = λλd :: k ∈ FC . [[M ]]F e[x 7→ d] k
=

⋃{ti∈I(↑C δi×κi⇒↑R ρi) | ↑R ρi ⊆ [[M ]]F e[x 7→ ↑D δi] (↑C κi)}
= ↑D{∧i∈I(δi×κi→ρi) ∈ LD | ∀ i ∈ I [κi→ρi ∈ [[M ]]Fe[x 7→(↑D δi)] ]}

using the fact that λλd :: k ∈ FC . [[M ]]F e[x 7→ d] k is continuous, hence it is the sup of finite
joins of the step functions (↑C δi×κi⇒↑R ρi). Observe that d :: k = ↑C{∧i∈I δi×κi | ∀ i ∈
I [δi ∈ d & κi ∈ k ]}, that the set {ti∈I(↑C δi×κi⇒↑R ρi) | . . .} is directed and hence its
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join is its union, and finally that ↑R ρi ⊆ [[M ]]F e[x 7→ ↑D δi] (↑C κi) if and only if κi→ρi ∈
[[M ]]Fe[x 7→(↑D δi)].

Lemma 4.18. For A = R, D, C: if σ ∈ LA then, up to the isomorphisms FR ' R, FD×FC ' FC
and [FC→FR] ' FD, we have:
(1) ΘFA(σ) = ↑A σ,
(2) [[σ ]]F = {a ∈ FA | σ ∈ a}.

Proof. Recall that the isomorphism FR ' R is established by Prop. 3.8 and described in
detail in Rem. 3.12, and that K : FD×FC→FC and G : [FC→FR]→FD the are isomor-
phisms of Def. 3.24 and Thm. 3.27. Now to prove part (1) we proceed by induction over the
structure of types.
(σ ≡ ω) : Then ΘFA(ω) = ⊥FA = ↑A ω.
(σ ≡ σ∧τ) : ΘFA(σ∧τ) = ΘFA(σ)tΘFA(τ) (by Def. 3.15 and Rem. 3.19)

= ↑A σt ↑A τ (by induction)
= ↑A(σ∧τ)

(σ ≡ υa) : By Rem. 3.12, under the isomorphism FR ' R the compact point a ∈K(R) is the
image of ↑R υa; hence, up to isomorphism, we have that ΘFR(υa) = a = ↑R υa.

(σ ≡ δ×κ) : ΘFC(δ×κ) = 〈ΘFD(δ), ΘFC(κ)〉 (by Def. 3.15 and Rem. 3.19)
= 〈↑D δ, ↑C κ〉 (by induction)
= (↑D δ) :: (↑C κ) (up to the iso K)
= ↑C(δ×κ) (by Rem. 3.25)

(σ ≡ κ→ρ) : ΘFD(κ→ρ) = (ΘFC(κ)⇒ΘFR(ρ)) (by Def. 3.15 and Rem. 3.19)
= (↑C κ⇒↑R ρ) (by induction)
= ↑D(κ→ρ) (up to the iso G and by Rem. 3.25)

To prove part (2), observe that for any σ∈LA and a∈FA, ↑A σ = {τ∈LA | σ≤A τ} ⊆ a
if and only σ ∈ a. Now by Lem. 4.12 we know that [[σ ]]F = ↑FA ΘFA(σ), which, by part (1)
of this lemma, implies [[σ ]]F = ↑FA

(↑A σ) = {a ∈ FA | ↑A σ ⊆ a}. By the remark above we
have that {a ∈ FA | ↑A σ ⊆ a} = {a ∈ FA | σ ∈ a}.

The next theorem, together with the Completeness Theorem (Thm. 4.23) that it implies,
is the main result of this section, which states that the set of types that are assigned to terms
and commands by the type assignment system coincides with their interpretation in the
filter model. Its proof essentially depends on Lem. 4.9 and Lem. 4.17.

Theorem 4.19. Let A = D, C. Given an environment e ∈ ENVF , then

[[T ]]Fe = {σ ∈ LA | ∃Γ, ∆ [e |=F Γ; ∆ & Γ ` T : σ | ∆ ]}.

Proof. Because of the logical rules, the set {σ ∈ LA | ∃Γ, ∆ [e |=F Γ; ∆ & Γ ` T : σ | ∆ ]} is
a filter in FA, for A = D, C. To prove that this filter coincides with [[T ]]Fe we proceed by
induction over the structure of terms.
(T ≡ x) : Then [[x ]]Fe = e x. By definition, e |=F Γ; ∅⇐⇒ e x∈ [[Γ(x) ]]F . By Lem. 4.18 (2) we

know that [[Γ(x) ]]F = {d ∈ FD | Γ(x) ∈ d}, so that e |=F Γ; ∅ is equivalent to Γ(x) ∈ e x.
On the other hand, by Lem. 4.9, we have that Γ ` x : δ | if and only if Γ(x)≤D δ, hence
Γ ` x : δ | if and only if δ ∈ e x.

(T ≡ λx.M) : For δ ∈ [[λx.M ]]Fe, by Lem. 4.17 there exist I such and δi, κi, and ρi (i ∈ I)
such that κi→ρi ∈ [[M ]]Fe[x 7→(↑D δi)]. By induction there exist Γi, ∆i (i ∈ I) such that
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e[x 7→(↑D δi)] |=F Γi; ∆i and Γi ` M : κi→ρi | ∆i . Let δ′i = Γi(x): then by rule (Abs) we
have Γi\x ` λx.M : δ′i×κi→ρi | ∆i .

On the other hand, from e[x 7→(↑D δi)] |=F Γi; ∆i we know that Γi(x) = δ′i ; since
δ′i ∈ ↑D δi, also δi ≤D δ′i . Then δi×κi ≤C δ′i×κi follows by the co-variance of ×, and
δ′i×κi→ρi ≤D δi×κi→ρi by the contra-variance of the arrow in its first argument. Hence,
by applying rule (≤), for all i ∈ I, we obtain Γi\x ` λx.M : δi×κi→ρi | ∆i .

Take Γ = ∧i∈I Γi\x and ∆ = ∧i∈I ∆i: then Γ ` λx.M : δi×κi→ρi | ∆ for all i ∈ I by
applying rule (Wk), and therefore Γ`λx.M : ∧i∈I δi×κi→ρi |∆ by applying rule (∧) and
Γ ` λx.M : δ | ∆ by rule (≤). Observe that, for all i ∈ I, x 6∈ dom(Γi\x) and consequently
x 6∈ dom(Γ), so that, for all i ∈ I, e[x 7→(↑D δi)] |=F Γi; ∆i implies e |=F Γi\x; ∆i and so
e |=F Γ; ∆ as required.

Vice-versa, if Γ ` λx.M : δ | ∆ and e |=F Γ; ∆ then, by Lem. 4.9, there exist δi, κi, and ρi
(i ∈ I) such that Γ, x:δi `M : κi→ρi | ∆ and ∧i∈I δi×κi→ρi ≤D δ. Observe that e |=F Γ; ∆
implies e[x 7→(↑D δi)] |=F Γ, x:δi; ∆ for all i∈ I. By induction, κi→ρi ∈ [[M ]]Fe[x 7→(↑D δi)],
so by Lem. 4.17 ∧i∈I(δi×κi→ρi) ∈ [[λx.M ]]Fe. Now [[λx.M ]]Fe is a filter and since
∧i∈I δi×κi→ρi ≤D δ, we conclude that δ ∈ [[λx.M ]]Fe.

(T ≡ MN) : If δ ∈ [[MN ]]Fe then, by Lem. 4.17, there exist I and κi, ρi and δi ∈ [[N ]]Fe
(i ∈ I) such that δi×κi→ρi ∈ [[M ]]Fe and ∧i∈I κi→ρi ≤D δ. By induction, for all i ∈ I
there exist Γi,j, ∆i,j for j = 1, 2, such that e |=F Γi,j, ∆i,j and Γi,1 ` M : δi×κi→ρi | ∆i,1
and Γi,2 ` N : δi | ∆i,2 . Take Γ = ∧i,j Γi,j and ∆ = ∧i,j ∆i,j, then Γ≤D Γi,j and ∆≤C ∆i,j
so that e |=F Γ; ∆. By applying rule (St), for all i ∈ I we have Γ ` M : δi×κi→ρi | ∆
and Γ ` N : δi | ∆ . By applying rule (App) we have Γ ` MN : κi→ρi | ∆ ; we obtain
Γ `MN :∧i∈I κi→ρi | ∆ by applying rule (∧), and Γ `MN : δ | ∆ by applying rule (≤).

Vice-versa, assume Γ `MN : δ | ∆ and e |=F Γ; ∆. By Lem. 4.9, there exist I and δi, κi,
and ρi (i ∈ I) such that Γ `M : δi×ki→ρi | ∆ and Γ ` N : δi | ∆ and ∧i∈I κi→ρi ≤D δ. For
all i ∈ I, by induction we have δi×ki→ρi ∈ [[M ]]Fe and δi ∈ [[N ]]Fe, and so, by Lem. 4.17,
ki→ρi ∈ [[MN ]]Fe. Since [[MN ]]Fe is a filter, we have∧i∈I κi→ρi ∈ [[MN ]]Fe and therefore
δ ∈ [[MN ]]Fe.

(T ≡ µα.C) : If δ ∈ [[µα.C ]]Fe then, by Lem. 4.17, there exist I and κi, ρi, and κ′i (i ∈ I) such
that (κ′i→ρi)×κ′i ∈ [[C ]]Fe[α 7→(↑C κi)]. For all i ∈ I, by induction there exist Γi and ∆i
such that e[α 7→(↑C κi)] |=F Γi; ∆i and Γi ` C : (κ′i→ρi)×κ′i | ∆i . Let Γ = ∧i∈IΓi and, for
all i ∈ I, κi = ∆i(α) and ∆′i = ∆i\α, then Γ ` C : (κ′i→ρi)×κ′i | α:κi, ∆′i so that Γ ` µα.C :
κi→ρi |∆′i . Take ∆ = ∧i∈I ∆′i; then ∆≤C ∆′i for all i∈ I, so by applying rule (St) we obtain
Γ ` µα.C : κi→ρi | ∆ , from which we derive Γ ` µα.C : δ | ∆ by applying rules (∧) and
(≤). On the other hand, for all i ∈ I, since α 6∈ dom(∆′i) we have e[α 7→(↑C κi)] |=F Γ; ∆i
which implies e |=F Γ; ∆′i, so that ∆(α) = ω. We conclude that e |=F Γ; ∆, as desired.

Vice-versa, assume Γ ` µα.C : δ | ∆ and e |=F Γ; ∆. Then by Lem. 4.9, there exists I and
κi, ρi, and κ′i (i ∈ I) such that Γ ` C : (κi→ρi)×κi | α:κ′i , ∆ , and ∧i∈I κ′i→ρi ≤D δ. But if
e |=F Γ; ∆ then e[α 7→(↑C κi)] |=F Γ; α:κ′i , ∆; then by induction, for all i ∈ I, (κi→ρi)×κi ∈
[[C ]]Fe[α 7→(↑C κi)]. Since ∧i∈I κ′i→ρi ≤D δ, by Lem. 4.17, we conclude that δ ∈ [[µα.C ]]Fe.

(T ≡ [α]M) : If κ ∈ [[ [α]M ]]Fe then by Lem. 4.17, there exist I and δi, κi, and δi ∈ [[M ]]Fe
(i ∈ I) such that κi ∈ e(α) and ∧i∈I δi×κi ≤C κ. For all i ∈ I, by induction there exist Γi, ∆i
such that e |=F Γi; ∆i and ∆i(α)≤C κi and Γi `M : δi | ∆i . Let Γ = ∧i∈IΓi. Then, for all
i ∈ I, Γ ` [α]M : δi×κi | ∆i ; take ∆ = ∧i∈I ∆i, then for all i ∈ I, by applying rule (St), we
obtain Γ ` [α]M : δi×κi | ∆ . We obtain Γ ` [α]M :∧i∈I δi×κi | ∆ by applying rule (∧) and
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then Γ ` [α]M : κ | ∆ by applying rule (≤). Since e |=F Γ; ∆i and ∆≤C ∆i for all i ∈ I, we
conclude that e |=F Γ; ∆.

Vice-versa, if Γ ` [α]M : κ | ∆ and e |=F Γ; ∆ then, by Lem. 4.9, there exists I and δi and
κi (i ∈ I) such that Γ `M : δi | ∆ and ∆(α)≤C κi, and ∧i∈I δi×κi ≤C κ. By induction δi ∈
[[M ]]Fe; from e |=F Γ; ∆ we have that κi ∈ e(α) for all i ∈ I. Then ∧i∈I δi×κi ∈ [[ [α]M ]]Fe
and therefore that κ ∈ [[ [α]M ]]Fe since the last set is a filter.

Definition 4.20. Given a basis Γ and a context ∆, we define the environment eΓ;∆ ∈ ENVF
by:

eΓ;∆(x) =∆ ↑D Γ(x)
eΓ;∆(α) =∆ ↑D ∆(α)

Because of the definition of Γ(x) and ∆(α) for x ∈ VAR and α ∈ NAME, eΓ;∆ ∈ ENVF
implies:

eΓ;∆(x) =

{
↑D δ (if x:δ ∈ Γ)
↑D ω (otherwise)

eΓ;∆(α) =

{
↑C κ (if α:κ ∈ ∆)
↑C ω (otherwise)

For this environment, we can show:

Lemma 4.21. If eΓ;∆ |=F Γ′; ∆′, then Γ≤D Γ′ and ∆≤C ∆′.

Proof. By definition, if eΓ;∆ |=F Γ′, ∆′ then:

eΓ;∆(x) = ↑D Γ(x) ∈ [[Γ′(x) ]]F

eΓ;∆(α) = ↑C ∆(α) ∈ [[∆′(α) ]]F

for all x ∈ VAR and α ∈NAME. From Lem. 4.18 (2) we know that ↑D Γ(x) ∈ [[Γ′(x) ]]F if and
only if Γ′(x) ∈ ↑D Γ(x), that is Γ(x)≤D Γ′(x). Similarly ↑C ∆(α) ∈ [[∆′(α) ]]F if and only if
∆(α)≤C ∆′(α). Hence Γ≤D Γ′ and ∆≤C ∆′.

This last result implies that every type which is an element of the interpretation of a
term is derivable for that term:

Lemma 4.22. If δ ∈ [[M ]]FeΓ;∆, then Γ `M : δ | ∆ .

Proof. δ ∈ [[M ]]FeΓ;∆ ⇒ ∃Γ′, ∆′ [eΓ;∆ |= Γ′; ∆′ & Γ′ `M : δ | ∆′ ] (Thm. 4.19)
⇒ ∃Γ′, ∆′ [Γ≤D Γ′ & ∆≤C ∆′ & Γ′ `M : δ | ∆′ ] (Lem. 4.21)
⇒ Γ `M : δ | ∆ (rule (St), Lem. 4.7)

This lemma would not hold without case (Cmd2) of rule (Cmd). As explained in Rem. 4.4
we should require that ∆≤C ∆′ implies dom(∆) ⊇ dom(∆′), which is not always the case.

We can now prove the completeness theorem for our type assignment system.

Theorem 4.23 (Completeness). Let M = (R, D, C) be a λµ-model. If Γ |=M M : δ | ∆, then
Γ `M : δ | ∆ .

Proof. Let Γ |=M M : δ | ∆: sinceM is isomorphic to the filter model F = (FR,FD,FC), we
have that Γ |=F M : δ | ∆. By construction, eΓ;∆ |=F Γ; ∆, and therefore:
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Γ |=F M : δ | ∆ ⇒ [[M ]]FeΓ;∆ ∈ [[δ ]]F (Def. 4.14)
⇒ δ ∈ [[M ]]FeΓ;∆ (Lem. 4.18 (2))
⇒ Γ `M : δ | ∆ (Lem. 4.22)

5. CLOSURE UNDER CONVERSION

In this section, we will show that our notion of type assignment is closed under conversion,
i.e. is closed both under subject reduction and expansion. We will first show that this follows
from the semantical results we have established in the previous section; then we show the
same result via a syntactical proof. The latter is more informative about the structure of
derivations in our system; also we establish the term substitution and, more importantly,
the structural substitution lemmas (Lem. 5.2 (2) and Lem. 5.3 respectively).

We begin with the abstract proof, which crucially depends on Lem. 4.22 and hence on
Thm. 4.19.

Theorem 5.1 (Closure under conversion). Let M =βµ N. If Γ `M : δ | ∆ , then Γ ` N : δ | ∆ .

Proof. By Thm. 2.7, if M =βµ N then [[M ]]M e = [[N ]]M e for any modelM and environment
e ∈ ENVM, which holds in particular for F and eΓ;∆. So

Γ `M : δ | ∆ ⇒ Γ |=F M : δ | ∆ (Thm. 4.16)
⇒ [[M ]]FeΓ;∆ ∈ [[δ ]]F (since eΓ;∆ |=F Γ; ∆)
⇒ δ ∈ [[M ]]FeΓ;∆ (Lem. 4.18 (2))
⇒ δ ∈ [[N ]]FeΓ;∆ (Thm. 2.7)
⇒ Γ ` N : δ | ∆ (Lem. 4.22)

To illustrate the type assignment system itself, we will now show a more ‘operational’
proof for the same property, by studying how reductions and expansions of the term in
the conclusion (the ‘subject’ of the typing judgement) are reflected by transformations of
its typing derivations. First we show that type assignment is closed for preforming or
reversing both name and term substitution.

Lemma 5.2 (Term substitution lemma).
(1) Γ ` T[α/β] : σ | ∆ with β 6∈ ∆ if and only Γ ` T : σ | β :κ, ∆ and ∆(α) ≤C κ.
(2) Γ ` T[L/x] : σ | ∆ with x 6∈ Γ if and only if there exists δ′ such that Γ, x:δ′ ` T : σ | ∆ and

Γ ` L : δ′ | ∆ .

Proof.
(1) By straightforward induction on the structure of derivations. Note that the type of the

name α which is substituted for β in T[α/β] is not necessarily the same as that of β in T,
but it is weaker in general.

(2) By induction on the definition of term substitution; notice that, if T is a term, then σ = δ,
and if T is a command, then σ = κ.
(T ≡ x) : (⇒) : If Γ ` x[L/x] : δ | ∆ , then Γ ` L : δ | ∆ and we have Γ, x:δ ` x : δ | ∆ by

(Ax).
(⇐) : If Γ, x:δ′ ` x : δ | ∆ , then δ′ ≤D δ by Lem. 4.9. From Γ ` L : δ′ | ∆ and rule (≤),

we have Γ ` L : δ | ∆ , so also Γ ` x[L/x] : δ | ∆ .
(T ≡ y 6= x) : (⇒) : By rule (Wk), Γ, x:ω ` y : δ | ∆ , and Γ ` L : ω | ∆ by rule (ω).
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(⇐) : By rule (Th), since x 6∈ fv(y).
(T ≡ PQ) : ∃δ′ [ Γ, x:δ′ ` PQ : δ | ∆ & Γ ` L : δ′ | ∆ ] ⇐⇒

(Lem. 4.9; for⇒, take δ′ = δ′1 = δ′2, for⇐, take δ′ = δ′1∧δ′2)
∃δ′1, δ′2, I ∀ i ∈ I ∃δi, κi, ρi, [ Γ, x:δ′1 ` P : δi×κi→ρi | ∆ & Γ, x:δ′2 `Q : δi | ∆ &

∧i∈I κi→ρi ≤D δ & Γ ` L : δ′1 & Γ ` L : δ′2 | ∆ ] ⇐⇒ (by induction)
∃ I ∀ i ∈ I ∃δi, κi, ρi [ Γ ` P[L/x] : δi×κi→ρi | ∆ &

Γ `Q[L/x] : δi | ∆ & ∧i∈I κi→ρi ≤D δ ] ⇐⇒ (Lem. 4.9)
Γ ` P[L/x] : δ | ∆ & Γ `Q[L/x] : δ | ∆ =∆ Γ ` (PQ)[L/x] : σ | ∆

(T ≡ λy.N), (T ≡ µα.C), (T ≡ [α]N) : Straightforward.

The next lemma states how the structural substitution T[α⇐ L] is related to the type of the
name α. When T ∈ TRM or T ≡ [β]N with α 6= β, the type of T[α⇐ L] remains the same as
that of T, which is similar to the term substitution lemma, but the context ∆ used to type
T[α⇐ L] changes to ∆′ which is equal to ∆ but for ∆′(α) = δ′×∆(α), where δ′ is a type of L
(in the same basis and context). When T ≡ [α]N the effect of the structural substitution is
more complex, and it affects also the type of T with respect to that of T[α⇐ L]. The fact that
this does not invalidate the type invariance of terms with respect to structural substitution
is due to the form of rule (µ) which essentially is a cut rule: indeed, the ‘cut type’ changes
in case of T with respect to that of T[α⇐ L], but then is hidden in the conclusion.

In the following proofs we let I, J, H, possibly with apices and indices, range over finite
and non-empty sets of indices.

Lemma 5.3 (Structural substitution lemma). Let α 6= β, and assume that α 6∈ fn(L); then:
(1) Γ `M[α⇐ L] : δ | α:κ, ∆ if and only if there exists δ′ such that Γ ` L : δ′ | ∆ and Γ `M : δ |

α:δ′×κ, ∆ .
(2) Γ ` ([β]N)[α⇐ L] : κ′ | α:κ, ∆ if and only if there exists δ′ such that Γ ` L : δ′ | ∆ and Γ `

[β]N : κ′ | α:δ′×κ, ∆ .
(3) Γ ` ([α]N)[α⇐ L] : κ′ | α:κ, ∆ if and only if either κ′ ∼C ω, or there exist δ′, κi and ρi for all

i ∈ I such that:
(a) Γ ` L : δ′ | ∆
(b) Γ ` [α]N : (δ′×κi→ρi)×δ′×κ | α:δ′×κ, ∆ for all i ∈ I
(c) ∧i∈I(κi→ρi)×κ ≤ κ′

Proof. By simultaneous induction on derivations. Observe that whenever α 6∈ fn(T) for
T ≡ M in part (1) and T ≡ ([β]N) in part (2), we have that T[α⇐ L] ≡ T, so that the lemma
is vacuously true by taking δ′ = ω. We only show the relevant cases.
(1) (⇒) : (µ) : Then M = µγ.C, δ = κ1→ρ and Γ ` C[α⇐ L] : (κ2→ρ)×κ2 | γ:κ1,α:κ, ∆ in a

sub-derivation. If ρ ∼R ω then κ1→ρ ∼D ω and the thesis trivially follows by
rule (ω). Otherwise assume that ρ 6∼R ω. We now distinguish two cases:
(C ≡ [β]N with α 6= β) : Then IH (2) applies, so there exists δ′ such that Γ ` L :

δ′ | γ:κ1, ∆ and Γ ` [β]N : (κ2→ρ)×κ2 | γ:κ1, α:δ′×κ, ∆ . Then by applying (µ),
Γ ` µγ.[β]N : κ1→ρ | α:δ′×κ, ∆ follows. For the second part, since γ is bound
in µγ.[β]N, by Barendregt’s convention γ 6∈ fn(L), so applying rule (Th) to
Γ ` L : δ′ | γ:κ1, ∆ gives Γ ` L : δ′ | ∆ .

(C ≡ [α]N) : Now IH (3) applies to D′, so that:
(a) Γ ` L : δ′ | ∆ for some δ′;
(b) Γ ` [α]N : (δ′×κi→ρi)×δ′×κ | α:δ′×κ, ∆ for all i ∈ I and some I;
(c) ∧i∈I(κi→ρi)×κ ≤C (κ2→ρ)×κ2.
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It follows that ∧i∈I(κi→ρi)≤D κ2→ρ and κ ≤C κ2. By Lem. 3.14 (4) the first
in-equation implies that there exists i0 ∈ I such that κ2 ≤C κi0 and ρi0 ≤R ρ.
Hence we have (δ′×κi0→ρi0)×δ′×κ ≤ (δ′×κ2→ρ)×δ′×κ2, and therefore

Γ ` [α]N : (δ′×κi0→ρi0)×δ′×κ | α:δ′×κ, ∆
(≤)

Γ ` [α]N : (δ′×κ2→ρ)×δ′×κ | α:δ′×κ, ∆
(µ)

Γ ` µγ.[α]N : κ1→ρ | α:δ′×κ, ∆

(⇐) : Let Γ ` L : δ′ | ∆ and assume D :: Γ ` µγ.C : κ1→ρ | α:δ′×κ, ∆ ends with rule (µ).
Again the thesis is trivial if ρ ∼R ω, so that we suppose that ρ 6∼R ω. As before we
have to distinguish the cases C ≡ [β]N with β 6= α and C ≡ [α]N. In the first case
IH (2) directly implies the thesis, so let’s consider the case C ≡ [α]N, in which D
ends with

Γ ` [α]N : (κ2→ρ)×κ2 | γ:κ1,α:δ′×κ, ∆
(µ)

Γ ` µγ.[α]N : κ1→ρ | α:δ′×κ, ∆

By Lem. 4.9 we know that there exist sub-derivations Di of D, with i ∈ I for some I,
such that

Di :: Γ ` N : δi | γ:κ1,α:δ′×κ, ∆, δ′×κ ≤C κi, and ∧i∈Iδi×κi ≤C (κ2→ρ)×κ2

It follows that (∧i∈Iδi)×δ′×κ ≤C (κ2→ρ)×κ2 which implies ∧i∈Iδi ≤D κ2→ρ and
δ′×κ ≤C κ2. Now the assumption ρ 6∼R ω implies ∧i∈Iδi 6∼D ω, and therefore

∧i∈Iδi ∼D ∧i∈I,j∈Ji κi,j→ρi,j ≤ κ2→ρ ≤ δ′×κ→ρ.

By Lem. 3.14 (4) this implies that there are I′ ⊆ I and J′i ⊆ Ji such that δ′×κ ≤C
κ2 ≤C ∧i∈I′,j∈J′i

κi,j and ∧i∈I′,j∈J′i
ρi,j ≤R ρ. Then κi,j ∼C δi,j×κ′i,j for every i, j, where

δ′ ≤D δi,j and κ ≤C κ′i,j. Since clearly δi ≤D ∧j∈J′i
κi,j→ρi,j, for all i ∈ I ⊇ I′, by (≤)

we have that Γ ` N : κi,j→ρi,j | γ:κ1,α:δ′×κ, ∆; by (Cmd) we get

Γ ` [α]N : (κi,j→ρi,j)×δ′×κ | γ:κ1,α:δ′×κ, ∆

for every i ∈ I′, j ∈ J′i . Now

(κi,j→ρi,j)×δ′×κ ∼C (δi,j×κ′i,j→ρi,j)×δ′×κ (as κi,j ∼C δi,j×κ′i,j)

≤C (δ′×κ′i,j→ρi,j)×δ′×κ (as δ′ ≤D δi,j)

Taking κ′ = ∧i∈I′,j∈J′i
(κ′i,j→ρi,j), IH (3) applies, from which Γ ` ([α]N)[α⇐ L] : κ′ |

γ:κ1,α:δ′×κ, ∆ follows. Using that κ ≤C κ′i,j for all i ∈ I′ and j ∈ J′i , we deduce

κ′ ≤C ∧i∈I′,j∈J′i
(κ→ρi,j)×κ ∼C (κ→∧i∈I′,j∈J′i

ρi,j)×κ ≤C (κ→ρ)×κ

and therefore Γ ` ([α]N)[α⇐ L] : (κ→ρ)×κ | γ:κ1,α:δ′×κ, ∆ by (≤), from which we
conclude Γ ` (µγ[α]N)[α⇐ L] : κ1→ρ | α:δ′×κ, ∆ by (µ) as desired.

(2) Note that ([β]N)[α⇐ L] ≡ [β](N[α⇐ L]).
(⇒) : (Cmd) : Then M = [β](N[α⇐ L]) : κ′|α:k, ∆, κ′ = δ′′×κ′′, ∆ = β:κ′′, ∆′, and

Γ`N[α⇐ L] : δ′′ | α:κ, β:κ′′, ∆ . Then by IH (1), there exists δ′ such that Γ` L : δ′ |∆
and Γ ` N : δ′′ | α:δ′×κ, β:κ′′, ∆′ . By rule (Cmd) we get Γ ` [β]N : κ′ | α:δ′×κ, ∆ .

(⇐) : The reasoning for this part is the reverse of part (⇒).
(3) We prove the two implications; note that ([α]N)[α⇐ L] ≡ [α](N[α⇐ L])L.
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(⇒) : Let D :: Γ ` [α](N[α⇐ L])L : κ′ | α:κ, ∆ be a derivation, and assume that κ′ 6∼C ω.
By Lem. 4.9 there exists the sub-derivations of D:

Di :: Γ ` (N[α⇐ L])L : δi | α:κ, ∆

where κ ≤C κi and ∧i∈Iδi×κi ≤C κ′. If all the δi ∼D ω then we have ω×κ ≤C ω×κi
for all i, hence ω×κ ≤C ∧i∈Iω×κi ≤C κ′. Taking δ′ = ω we trivially have that
Γ ` L : δ′ | ∆ and

(ω)
Γ ` N : ω | α:ω×κ, ∆

(Cmd)
Γ ` [α]N : ω×ω×κ | α:ω×κ, ∆

Now taking ρi = ω we have ω ∼D ω×κi→ω so that Γ ` [α]N : (ω×κi→ω)×ω×κ |
α:ω×κ, ∆ for all i, and (κi→ω)×κ ∼C ω×κ ≤C κ′.
Otherwise (not all the δi ∼D ω), assume (without loss of generality) that all the
δi 6∼D ω. By Lem. 4.9 every Di has sub-derivations:

D1
i,j :: Γ ` N[α⇐ L] : δi,j×κi,j→ρi,j | α:κ, ∆ and D2

i,j :: Γ ` L : δi,j | α:κ, ∆

(where ∧j∈Ji κi,j→ρi,j ≤D δi) for j varying over certain Ji. Note that since α 6∈ fn(L)
we can assume that D2

i,j :: Γ ` L : δi,j | ∆ , without any assumption for the name α. By
IH (1), from the existence of D1

i,j we infer that derivations

D̂1
i,j :: Γ ` N : δi,j×κi,j→ρi,j | α:δ′i,j×κ, ∆ and D̂2

i,j :: Γ ` L : δ′i,j | ∆

exist. Taking δ′ = ∧i∈I,j∈Ji(δi,j∧δ′i,j) we have:

CC ��D2
i,j

Γ ` L : δi,j|∆
CC ��D̂2

i,j

Γ ` L : δ′i,j | ∆ ∀i ∈ I′, j ∈ J′i
(∧)

Γ ` L : δ′ | ∆

Since δ′ ≤C δi,j implies δi,j×κi,j→ρi,j ≤D δ′×κi,j→ρi,j for all i ∈ I, j ∈ Ji, from the D̂1
i,j

we obtain the derivations:

CC ��D̂1
i,j

Γ ` N : δi,j×κi,j→ρi,j | α:δ′i,j×κ, ∆ δ′ ≤C δ′i,j
(St)

Γ ` N : δi,j×κi,j→ρi,j | α:δ′×κ, ∆
(≤)

Γ ` N : δ′×κi,j→ρi,j | α:δ′×κ, ∆

From this and by (Cmd) we get Γ ` [α]N : (δ′×κi,j→ρi,j)×δ′×κ | α:δ′×κ, ∆ for all i∈ I
and j ∈ Ji. On the other hand from the above, for all i ∈ I we have:

∧j∈Ji(κi,j→ρi,j)×κ ≤C δi×κi ≤C κ′

and hence ∧i,∈I,j∈Ji(κi,j→ρi,j)×κ ≤C κ′ as desired.
(⇐) : Let Di :: Γ ` [α]N : (δ′×κi→ρi)×δ′×κ | α:δ′×κ, ∆ be a derivation for all i ∈ I. By

Lem. 4.9 there exists a J such that there exist the sub-derivations Di,j :: Γ ` N : δi,j |
α:δ′×κ, ∆ and types κi,j such that for all j ∈ J

δ′×κ ≤C κi,j and δi,j×κi,j ≤C (δ′×κi→ρi)×δ′×κ

This implies that

δi,j×δ′×κ ≤C δi,j×κi,j ≤C (δ′×κi→ρi)×δ′×κ
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hence δi,j ≤D δ′×κi→ρi, for all i and j. By hypothesis Γ ` L : δ′ | ∆ , so that by IH (1)
there exist the derivations D′i,j :: Γ ` N[α⇐ L] : δi,j | α:κ, ∆ and therefore:

CC ��
D′i,j

Γ ` N[α⇐ L] : δi,j | α:κ, ∆
(≤)

Γ ` N[α⇐ L] : δ′×κi→ρi | α:κ, ∆

CC ��
Γ ` L : δ′ | ∆

(Wk)
Γ ` L : δ′ | α:κ, ∆

(App)
Γ ` (N[α⇐ L])L : κi→ρi | α:κ, ∆

(Cmd)
Γ ` [α](N[α⇐ L])L : (κi→ρi)×κ | α:κ, ∆

is a derivation D′i for all i ∈ I. Hence by (∧) we get

Γ ` [α](N[α⇐ L])L : ∧i∈I(κi→ρi)×κ | α:κ, ∆

and we conclude by the hypothesis ∧i∈I(κi→ρi)×κ ≤ κ′ and (≤).
We are now in place to prove the subject reduction theorem.

Theorem 5.4 (Subject reduction). If M→βµ N, and Γ `M : δ | ∆ , then Γ ` N : δ | ∆ .

Proof. By induction on the definition of the reduction relation; we will only consider the
cases for the three basic reduction rules.
((λx.M)N → M[N/x]) : By Lem. 4.9, if Γ ` (λx.M)N : δ | ∆ then there exists I such that,

for all i ∈ I, Γ ` λx.M : δi×κi→ρi | ∆ , Γ ` N : δi | ∆ and ∧i∈Iκi→ρi ≤D δ. By the same
lemma, for every i ∈ I there exists Ji such that Γ, x:δi,j `M : κi,j→ρi,j | ∆ for all j ∈ Ji and
∧j∈Ji δi,j×κi,j→ρi,j ≤D δi×κi→ρi. By Lem. 3.14 (4) the last in-equation implies that for all
i ∈ I there is a J′i ⊆ Ji such that:

δi×κi ≤C ∧j∈J′i
δi,j×κi,j and ∧j∈J′i

ρi,j ≤R ρi.

It follows that δi ≤D δi,j, and κi ≤C κi,j and ρi,j ≤R ρi, and hence κi,j→ρi,j ≤D κi→ρi, for
all i ∈ I and j ∈ J′i . Therefore, by (St) and (≤) we have Γ, x:δi `M : κi→ρi | ∆ , so that
by Lem. 5.2 (2) we have Γ `M[N/x] : κi→ρi | ∆ for all i ∈ I. From this we obtain that
Γ `M[N/x] :∧i∈Iκi→ρi|∆ by (∧), and conclude by (≤) using ∧i∈Iκi→ρi ≤D δ.

((µα.C)N → µα.C[α⇐N]) : By Lem. 4.9, if Γ ` (µα.C)N : δ | ∆ then there exists I such that,
for all i ∈ I, Γ ` µα.C : δi×κi→ρi | ∆ , Γ ` N : δi | ∆ and ∧i∈Iκi→ρi ≤D δ. By the same
lemma, for every i ∈ I there exists Ji such that Γ `C : (κi,j→ρi,j)×κi,j | α:κ′i,j, ∆ for all j∈ Ji

and ∧j∈Ji κ
′
i,j→ρi,j ≤D δi×κi→ρi. By Lem. 3.14 (4) the last in-equation implies that for all

i ∈ I there is a J′i ⊆ Ji such that:

δi×κi ≤C ∧j∈J′i
κ′i,j and ∧j∈J′i

ρi,j ≤R ρi.

Since each κ′i,j ∼C δ′i,j×κ′′i,j for some δ′i,j, κ′′i,j, we have δi ≤D δ′i,j and κi ≤C κ′′i,j for all i ∈ I
and j ∈ J′i . Note that also Γ ` N : δ′i,j | ∆ by (≤) for all i, j as above.

We distinguish the cases:
(C ≡ [β]L, with β 6= α) : By Lem. 5.3 (2), from Γ ` [β]L : (κi,j→ρi,j)×κi,j | α:δ′i,j×κ′′i,j, ∆

and Γ ` N : δ′i,j | ∆ we have that Γ ` [β]L[α⇐N] : (κi,j→ρi,j)×κi,j | α:κ′′i,j, ∆ and hence
Γ ` µα.[β]L[α⇐N] : κ′′i,j→ρi,j | ∆ for all i ∈ I and j ∈ J′i . Since κi ≤C κ′′i,j and ρi,j ≤R ρi we
deduce that κ′′i,j→ρi,j ≤D κi→ρi for all i ∈ I so that Γ ` µα.[β]L[α⇐N] : κi→ρi | ∆ by (≤)
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and Γ ` µα.[β]L[α⇐N] :∧i∈Iκi→ρi | ∆ by (∧), and we conclude Γ ` µα.[β]L[α⇐N] : δ |
∆ using ∧i∈Iκi→ρi ≤D δ and (≤).

(C ≡ [α]L) : we have Γ ` [α]L : (κi,j→ρi,j)×κi,j | α:κ′i,j, ∆ and since δi×κi ≤C ∧j∈J′i
κ′i,j by

(St) we know that Γ ` [α]L : (κi,j→ρi,j)×κi,j | α:δi×κi, ∆. By Lem. 4.9 in this case we have
that Γ ` L : κi,j→ρi,j | α:δi×κi, ∆ and δi×κi ≤C κi,j, from which we have that κi,j→ρi,j ≤D
δi×κi→ρi,j is a type of L and hence Γ ` [α]L : (δi×κi→ρi,j)×δi×κi | α:δi×κi, ∆ by (Cmd).
Now since Γ ` N : δi | ∆ for all i ∈ I, by Lem. 5.3 (3) we obtain Γ ` ([α]L)[α⇐N] :
∧j∈J′i

(κi→ρi,j)×κi | α:κi, ∆ for all i; on the other hand ∧j∈J′i
(κi→ρi,j) ∼D κi→∧j∈J′i

ρi,j ≤D
κi→ρi by the above, and we conclude:

CC ��
Γ ` ([α]L)[α⇐N] :∧j∈J′i

(κi→ρi,j)×κi|α:κi, ∆
(≤)

Γ ` ([α]L)[α⇐N] : (κi→ρi)×κi | α:κi, ∆
(µ)

Γ ` µα.([α]L)[α⇐N] : κi→ρi | α:κi, ∆

Since this holds for all i ∈ I and we know that ∧i∈Iκi→ρi ≤D δ, we eventually derive
Γ ` µα.([α]L)[α⇐N] : δ | α:κi, ∆ by (∧) and (≤).

(µα.[β]µγ.C→ µα.C[β/γ]) : Let Γ ` µα.[α′]µγ.C : δ | ∆ ; then by Lem. 4.9 there exists I such
that for all i ∈ I Γ ` [α′]µγ.C : (κi→ρi)×κi | α:κ′i , ∆ and ∧i∈Iκ

′
i→ρi ≤D δ.

We distinguish two cases:
(α 6= β) : By Lem. 4.9 for all i∈ I there exists Ji such that for all j∈ Ji it is derivable Γ ` µγ.C :

δi,j | α:κ′i , ∆ , ∆(β) ≤C ∧i∈I,j∈Ji κi,j and ∧j∈Ji δi,j×κi,j ≤C (κi→ρi)×κi, for all i ∈ I. The latter
implies that ∧j∈Ji δi,j ≤D κi→ρi and ∆(β) ≤C ∧i∈Iκi. By applying Lem. 4.9 to Γ ` µγ.C :
δi,j | α:κ′i , ∆ we know that for some Hi,j, Γ ` C : (κi,j,h→ρi,j,h)×κi,j,h | α:κ′i ,γ:κ′i,j,h, ∆ for all
i ∈ I, j ∈ Ji and h ∈ Hi,j, and ∧hκ′i,j,h→ρi,j,h ≤D δi,j for all i, j. From the in-equations above
we derive that∧j∈Ji ,h∈Hi,j κ

′
i,j,h→ρi,j,h≤D∧j∈Ji δi,j≤D κi→ρi, which implies by Lem. 3.14 (4)

the existence of certain J′I ⊆ Ji and H′i,j ⊆ Hi,j such that

κi ≤C ∧j∈J′i ,h∈H′i,j
κ′i,j,h and ∧j∈J′i ,h∈H′i,j

ρi,j,h ≤R ρi, for all i ∈ I.

It follows that ∆(β) ≤C ∧i∈Iκi ≤C ∧i∈I,j∈J′i ,h∈H′i,j
κ′i,j,h, so that by Lem. 5.2 (1) Γ `

C[β/γ] : (κi,j,h→ρi,j,h)×κi,j,h | α:κ′i , ∆ , from which we obtain by rule (µ) that Γ`µα.C[β/γ] :
κ′i→ρi,j,h | ∆ for all i ∈ I, j ∈ J′i and h ∈ H′i,j.

This implies that, by rule (∧), we can deduce for µα.C[β/γ] the type

∧i∈I,j∈J′i ,h∈H′i,j
κ′i→ρi,j,h ∼D ∧i∈Iκ

′
i→∧j∈J′i ,h∈H′i,j

ρi,j,h;

but we know from the above that ∧j∈J′i ,h∈H′i,j
ρi,j,h ≤R ρi for all i ∈ I and we conclude that

∧i∈Iκ
′
i→∧j∈J′i ,h∈H′i,j

ρi,j,h ≤D ∧i∈Iκ
′
i→ρi ≤D δ; hence the thesis follows by rule (≤).

(α = β) : Reasoning as in the previous case, but now we have that for all i∈ I (α:κ′i , ∆)(α) =
κ′i ≤C ∧j∈J′i ,h∈H′i,j

κ′i,j,h, so that we immediately get that ∧i∈Iκ
′
i→∧j∈J′i ,h∈H′i,j

ρi,j,h is a type of
µα.C[β/γ] which is less than ∧i∈Iκ

′
i→ρi ≤D δ, and we are done.

We will now show that types are preserved under expansion, the opposite of reduction.

Theorem 5.5 (Subject expansion). If M→βµ N, and Γ ` N : δ | ∆ , then Γ `M : δ | ∆ .

Proof. By induction on the definition of reduction, where we focus on the rules and assume
δ 6∼D ω since otherwise the thesis is trivial.
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((λx.M)N → M[N/x]) : If Γ `M[N/x] : δ | ∆ , then by Lem. 5.2 (2) there exists a δ′ such
that Γ, x:δ′ `M : δ | ∆ and Γ ` N : δ′ | ∆ . Since δ 6∼D ω we have δ ∼D ∧i∈Iκi→ρi, so that
Γ, x:δ′ `M : κi→ρi | ∆ by rule (≤). By rule (Abs) we get Γ ` λx.M : δ′×κi→ρi | ∆ , and
by rule (App) Γ ` (λx.M)N : κi→ρi | ∆ for all i ∈ I, so that we conclude by rules (∧) and
(≤).

((µα.C)N → µα.C[α⇐N]) : By Lem. 4.9, from Γ ` µα.C[α⇐N] : δ | ∆ it follows that there
is an I such that for all i ∈ I it is derivable

Γ ` C[α⇐N] : (κi→ρi)×κi | α:κ′i , ∆ with ∧i∈Iκ
′
i→ρi ≤D δ.

We distinguish the following cases of C:
(C ≡ [β]L, with β 6= α) : Then, by Lem. 5.3 (2), for all i ∈ I there exists δ′i such that Γ `

N : δ′i | ∆ , and Γ ` [β]L : (κi→ρi)×κi | α:δ′i×κ′i , ∆ . Then, by rule (µ), Γ ` µα.[β]L :
δ′i×κ′i→ρi | ∆ , and Γ ` (µα.[β]L)N : κ′i→ρi | ∆ follows by rule (App). Using that
∧i∈Iκ

′
i→ρi ≤D δ the thesis follows by rules (∧) and (≤).

(C ≡ [α]L) : By Lem. 5.3 (3) we know that for all i ∈ I there exist Ji and types δ′i , κi,j
and ρi,j such that: (1) Γ ` N : δ′i | ∆ ; (2) Γ ` [α]L : (δ′i×κi,j→ρi,j)×δ′i×κ′i | α:δ′i×κ′i , ∆
for all i ∈ I; and (3) ∧j∈Ji(κi,j→ρi,j)×κ′i ≤C (κi→ρi)×κi. The in-equation (5) implies
that ∧j∈Ji κi,j→ρi,j ≤D κi→ρi and κ′i ≤C κi for all i ∈ I, so that by Lem. 3.14 (4) for
all i ∈ I there exists J′i ⊆ Ji such that κi ≤C ∧j∈J′i

κi,j and ∧j∈J′i
ρi,j ≤R ρi. Then

δ′i×κi,j→ρi,j ≤D δ′i×κi→ρi, and since κ′i ≤C κi we conclude that

(δ′i×κi,j→ρi,j)×δ′i×κ′i ≤C (δ′i×κi→ρi)×δ′i×κi.

From this, (1), and (2) above we get the derivations:

CC ��
Γ ` [α]L : (δ′i×κi,j→ρi,j)×δ′i×κ′i | α:δ′i×κ′i , ∆

(≤)
Γ ` [α]L : (δ′i×κi→ρi)×δ′i×κi | α:δ′i×κ′i , ∆

(µ)
Γ ` µα.[α]L : δ′i×κ′i→ρi | ∆

CC ��
Γ ` N : δ′i | ∆ (App)

Γ ` (µα.[α]L)N : κ′i→ρi | ∆
for all i ∈ I. From these derivations by rule (∧) we get the type ∧i∈Iκ

′
i→ρi ≤D δ and

we conclude Γ ` (µα.[α]L)N : δ | ∆ by (≤).
(µα[β]µγ.C→ µα.C[β/γ]) : If Γ ` µα.C[β/γ] : δ | ∆ then by Lem. 4.9 we have that for

some I and all i ∈ I:

Γ ` C[β/γ] : (κi→ρi)×κi | α:κ′i , ∆ and ∧i∈Iκ
′
i→ρi ≤D δ.

Assuming without loss of generality that γ 6∈ ∆ we distinguish the cases:
(α 6= β) : By Lem. 5.2 (1) we have that Γ ` C : (κi→ρi)×κi | γ:κ′′, α:κ′i , ∆ where ∆(β) = κ′′.

Then for all i ∈ I there is a derivation Di:

CC ��
Γ ` C : (κi→ρi)×κi | γ:κ′′, α:κ′i , ∆

(µ)
Γ ` µγ.C : κ′′→ρi | α:κ′i , ∆

(Cmd)
Γ ` [β]µγ.C : (κ′′→ρi)×κ′′ | α:κ′i , ∆

(µ)
Γ ` µα.[β]µγ.C : κ′i→ρi | ∆
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so that we conclude by rules (∧) and (≤) using ∧i∈Iκ
′
i→ρi ≤D δ.

(α = β) : In this case we reason as before but we get Γ ` C : (κi→ρi)×κi | γ:κ′i , α:κ′i , ∆ since
the type of γ has to be the same than that of β = α and (α:κ′i , ∆)(α) = κ′i , so that the
assumption about γ now differs in each derivation Di. But then we have:

CC ��
Γ ` C : (κi→ρi)×κi | γ:κ′i ,α:κ′i , ∆

(µ)
Γ ` µγ.C : κ′i→ρi | α:κ′i , ∆

(Cmd)
Γ ` [α]µγ.C : (κ′i→ρi)×κ′i | α:κ′i , ∆

(µ)
Γ ` µα.[α]µγ.C : κ′i→ρi | ∆

and we conclude as in the previous case.

We end this section with two examples.

Example 5.6. As stated by the last results, we now show that we can assign to (λxyz.xz(yz))(λab.a)
any type that is assignable to λba.a since (λxyz.xz(yz))(λab.a)→∗ λba.a. We first derive a
type for λba.a.

(Ax)
a:κ→ρ, b:ω ` a : κ→ρ |

(Abs)
b:ω ` λa.a : (κ→ρ)×κ→ρ |

(Abs)
` λba.a : ω×(κ→ρ)×κ→ρ |

Let Γ = x:(κ→ρ)×ω×κ→ρ, y:ω, z:κ→ρ, then we can derive:

(Ax)
Γ ` x : (κ→ρ)×ω×κ→ρ |

(Ax)
Γ ` z : κ→ρ |

(App)
Γ ` xz : ω×κ→ρ |

(ω)
Γ ` yz : ω |

(App)
Γ ` xz(yz) : κ→ρ |

(Abs)
Γ\z ` λz.xz(yz) : (κ→ρ)×κ→ρ |

(Abs)
Γ\z\y ` λyz.xz(yz) : ω×(κ→ρ)×κ→ρ |

(Abs)
` λxyz.xz(yz) : ((κ→ρ)×ω×κ→ρ)×ω×(κ→ρ)×κ→ρ |

(Ax)
a:κ→ρ, b:ω ` a : κ→ρ |

(Abs)
a:κ→ρ ` λb.a : ω×κ→ρ |

(Abs)
` λab.a : (κ→ρ)×ω×κ→ρ |

(App)
` (λxyz.xz(yz))(λab.a) : ω×(κ→ρ)×κ→ρ |

Example 5.7. Consider the reduction (µα.[α]x)x → µα.([α]x)[α⇐ x] ≡ µα.[α]xx. This last
term is not a proof term in the sense of Parigot, but of interest here since typing the self
application xx is a characteristic of intersection type systems. Let δ ∈ LD be arbitrary. Now
we have:

(Ax)
x:δ∧(δ×κ→ρ) ` x : δ∧(δ×κ→ρ) | α:δ×κ

(≤)
x:δ∧(δ×κ→ρ) ` x : δ×κ→ρ | α:δ×κ

(Cmd)
x:δ∧(δ×κ→ρ) ` [α]x : (δ×κ→ρ)×(δ×κ) | α:δ×κ

(µ)
x:δ∧(δ×κ→ρ) ` µα.[α]x : δ×κ→ρ |

(Ax)
x:δ∧(δ×κ→ρ) ` x : δ∧(δ×κ→ρ) | α:δ×κ

(≤)
x:δ∧(δ×κ→ρ) ` x : δ | α:δ×κ

..

..

..

(App)
x:δ∧(δ×κ→ρ) ` (µα.[α]x)x : κ→ρ |

as well as:
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(Ax)
x:δ∧(δ×κ→ρ) ` x : δ∧(δ×κ→ρ) | α:κ

(≤)
x:δ∧(δ×κ→ρ) ` x : δ×κ→ρ | α:κ

(Ax)
x:δ∧(δ×κ→ρ) ` x : δ∧(δ×κ→ρ) | α:κ

(≤)
x:δ∧(δ×κ→ρ) ` x : δ | α:κ

(App)
x:δ∧(δ×κ→ρ) ` xx : κ→ρ | α:κ

(Cmd)
x:δ∧(δ×κ→ρ) ` [α]xx : (κ→ρ)×κ | α:κ

(µ)
x:δ∧(δ×κ→ρ) ` µα.[α]xx : κ→ρ |

Observe that the ‘cut type’ in the first derivation, δ×κ (appearing twice in the type (δ×κ→ρ)
×(δ×κ) of the premise of rule (µ)), differs from the cut type κ in (κ→ρ)×κ occurring in
the premise of (µ) of the second derivation; indeed the latter is of a smaller size than the
former.

A similar but simpler derivation can be obtained from the previous one in the case of
the reduction (µα.[α]x)y→ µα.([α]x)[α⇐ y] ≡ µα.[α]xy, where there is no self-application:
indeed we have that x:δ×κ→ρ, y:δ` (µα.[α]x)y : κ→ρ | and x:δ×κ→ρ, y:δ`µα.[α]xy : κ→ρ |
are derivable in a very similar manner.

6. CHARACTERISATION OF STRONG NORMALISATION

One of the main results for λµ, proved in [46], states that all λµ-terms that correspond
to proofs of second-order natural deduction are strongly normalising; the reverse of this
property does not hold for Parigot’s system, since there, for example, not all terms in normal
form are typeable.

The full characterisation of strong normalisation (M is strongly normalising if and
only if M is typeable in a given system) for the λ-calculus is a property that is shown for
various intersection systems (see [18], Sect. 17.2 and the references there). So it is a natural
question whether there exists a similar characterisation of strongly normalising λµ-terms in
the present context, by suitably restricting the system in Sect. 4. We answer this question
here; the proof is a revised version of that in [12], obtained by a simplified type syntax and
by just restricting the full system, instead of considering one of its variants.

To simplify the technical treatment we shall ignore the structural reduction rule (ren);
in fact the set of strongly formalisable terms remains the same, no matter whether this rule
is considered or not.

We establish the relation between our result to the one for Parigot’s system in the next
section.

6.1. The restricted type system. For the untyped λ-calculus, the characterisation of strong
normalisation states that a λ-term is strongly normalisable if and only if it is typeable in a
restricted system of intersection types, where ω is not admitted as a type and consequently
the rule (ω) is not part of the system. Alas a straightforward extension of this result does
not hold for the λµ-calculus, at least with respect to the system presented in this paper. This
is due to the fact that the natural interpretation of a type κ = δ1× · · · δk×ω (for k > 0) is
the set of continuations whose leading k elements are in the denotations of δ1, . . . , δk; since
continuations are infinite tuples, the ending ω represents the lack of information about the
remaining infinite part. Therefore these occurrences of ω cannot be simply deleted without
substantially changing the semantics of the type system and questioning the soundness of
its rules.
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We solve the problem of restricting the type assignment system to the extent of typing
strongly normalising terms here by defining a particular subset of the type language. There
the type ω is allowed only in certain harmless positions such that its meaning becomes just
the universe of terms we are looking for, i.e. the strongly normalising ones. This amounts to
restricting the sets of types LD and LC to those having ω only as the final part of product
types. We shall then suitably modify the standard interpretation of intersection types,
adapting Tait’s computability argument.

For what concerns the atomic types, a single constant type υ suffices for our purposes.
Therefore restricted types are of two sorts instead of three.

Definition 6.1 (Restricted Types and Pre-order).
(1) The sets LR

D of (restricted) term types and LR
C of (restricted) continuation types are defined

inductively by the following grammars, where υ is a type constant:

LR
D : δ ::= κ→υ | δ∧δ
LR

C : κ ::= ω | δ×κ | κ∧κ

(2) We define the set LR of (restricted) types as LR = LR
D ∪ LR

C and the relations ≤R
A over LR

A
(for A = D, C) as the pre-order induced by the least intersection type theories T R

A such
that:

κ ≤R
C ω (δ1×κ1)∧(δ2×κ2)≤R

C (δ1∧δ2)×(κ1∧κ2)
δ1 ≤R

D δ2 κ1 ≤R
C κ2

δ1×κ1 ≤R
C δ2×κ2

κ2 ≤R
C κ1

κ1→υ≤R
D κ2→υ

σ∧τ ≤R
A σ σ∧τ ≤R

A τ
σ≤R

A τ1 σ≤R
A τ2

σ≤R
A τ1∧τ2

(A = D, C)

(3) We define the length of a continuation type, | · | : LR
C→N, as follows:

|ω| = 0
|δ×κ| = 1 + |κ|
|κ1∧κ2| = max ( |κ1| , |κ2| )

By definition, we have that LR
D ⊆ LD and LR

C ⊆ LC. All the rules axiomatising ≤R
A

are instances of the rules axiomatising ≤D and ≤C in Def. 3.9 and 3.13, hence ≤R
A ⊆ ≤A

for A = D, C; in other words, the theories TA can be seen as extensions of the respective
theories T R

A . It is natural to ask whether TA (for A = D, C) is conservative with respect to T R
A .

This is not obvious: in a derivation of σ≤A τ in the formal theory TA, even if σ, τ ∈ LR
A, one

could have used a type σ′ 6∈ LR
A and the transitivity rule with premises σ≤A σ′ ≤A τ, which

cannot be derived in the formal presentation of ≤R
A. For example, consider the inequalities:

δ1×δ2×ω ≤C δ1×ω×ω =C δ1×ω,

where the axiom ω×ω =C ω is used (see Def. 3.13). If δ1, δ2 ∈ LR
D then both δ1×δ2×ω and

δ1×ω are in LR
C, but δ1×ω×ω 6∈ LR

C because ω 6∈ LR
D.

However this is not a counterexample, since δ2×ω≤R ω which implies that δ1×δ2×ω≤R

δ1×ω is derivable in T R
C . As a matter of fact, we can show that σ≤R τ if and only if σ≤ τ

for any σ, τ ∈ LR by a semantic argument.

Lemma 6.2. Take R = {⊥ v>} and set ΘR(υ) = >. Then for all σ, τ ∈ LR
A, where A = D, C,

if ΘA(τ)vΘA(σ) then σ≤R
A τ.

Proof. By induction over the structure of types.
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(σ, τ ∈ LR
D) : Let σ = δ, and τ = δ′. Then δ = ∧i∈I(κi→υ) and δ′ = ∧j∈J(κ

′
j→υ); hence:

ΘD(δ
′) = tj∈J(ΘC(κ

′
j)⇒>)vti∈I(ΘC(κi)⇒>) = ΘD(δ) ⇒ (by hypothesis)

∀ j ∈ J ∃ ij ∈ I [ΘC(κij)vΘC(κ
′
j) ] ⇒ (*)

∀ j ∈ J ∃ ij ∈ I [κ′j ≤R
C κij ] ⇒ (by induction)

∀ j ∈ J ∃ ij ∈ I [κij→υ≤R
D κ′j→υ ] ⇒

δ≤R ∧j∈J κij→υ≤R
D ∧j∈J(κ

′
j→υ) = δ′

where (*) follows by contraposition: if for some j0 ∈ J we had ΘC(κi) 6vΘC(κ
′
j0) for all

i ∈ I then tj∈J(ΘC(κ
′
j)⇒>)(ΘC(κ

′
j0)) = > and ti∈I(ΘC(κi)⇒>)(ΘC(κ

′
j0)) = ⊥.

(σ, τ ∈ LR
C) : Let σ = κ, τ = κ′. Since the ordering over C = D× D× · · · is component-

wise,

〈d1, d2, . . .〉 t 〈d′1, d′2, . . .〉 = 〈d1 t d′1, d2 t d′2, . . .〉,
and ΘC(κ∧κ′) = ΘC(κ)tΘC(κ

′), we can assume that κ = δ1× · · · ×δn×ω and κ′ =
δ′1× · · · ×δ′m×ω. Hence the hypothesis ΘC(κ)vΘC(κ

′) reads as

〈ΘD(δ1), . . . , ΘD(δn),⊥, . . .〉 v 〈ΘD(δ
′
1), . . . , ΘD(δ

′
m),⊥, . . .〉

where ⊥, . . . stands for infinitely many ⊥s; then ΘD(δ1)vΘD(δ
′
i) for all i≤min(m, n).

It is easy to see that ΘD(δ) 6= ⊥ for any δ ∈ LR
D, and therefore n≤m. Then by induction,

δi ≤R
D δ′i for all i≤ n. Now δn+1× · · · ×δm×ω≤R

C ω by definition, hence

δ1× · · · ×δn×δn+1× · · · ×δm×ω ≤R
C δ′1× · · · ×δ′m×ω

Theorem 6.3. The pre-orders ≤R
D and ≤R

C are the restriction to LR of ≤D and ≤C, respectively.

Proof. Let σ, τ ∈ LR
A for either A = D, C, then:

σ≤A τ ⇒ [[σ ]]A ⊆ [[τ ]]A (Cor. 4.13)
⇒ ↑A ΘA(σ) ⊆ ↑A ΘA(τ) (Lem. 4.12)
⇒ ΘA(τ)vΘA(σ) (since ΘA(σ) ∈ ↑A ΘA(τ))
⇒ σ≤R

A τ (Lem. 6.2)

Since trivially ≤R
A ⊆ ≤A, this establishes the thesis.

Definition 6.4 (Restricted Bases, Contexts, Judgments, and Type Assignment).
(1) A restricted basis is a basis Γ such that δ ∈ LR

D for all x:δ ∈ Γ. Similarly, a restricted name
context is a context ∆ with κ ∈ LR

C for all α:κ ∈ ∆. Finally, for T ∈ TRM ∪ CMD we say
that Γ ` T : σ | ∆ is a restricted judgement if σ ∈ LR and Γ and ∆ are a restricted basis and
a restricted name context respectively.

(2) The restricted judgement Γ ` T : σ | ∆ is derivable in the restricted typing system, written
Γ R̀ T : σ | ∆ , if it is derivable in the system of Def. 4.2 without using rule (ω), and all
the judgements in the derivation are restricted.

Since the restricted system is just the intersection type system of Section 4, where types
occurring in judgements are restricted, and rule (ω) is disallowed, we can use results
from the previous section in proofs. However care is necessary, since the lack of rule (ω)
invalidates expansion property, as we illustrate in Sect. 6.3.

We only observe that, while it is clear that in the restricted system no term can have type
ω, this is still the case for commands, because ω ∈ LR

C and we have subsumption rule in
the system. However judgements of the shape Γ R̀ C : ω | ∆ cannot occur in any derivation
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deducing a type for a term. In fact, if the subject M of the conclusion is a term including the
command C then, for some α, µα.C must be a subterm of M; but rule (µ), which is the only
applicable rule, doesn’t admit Γ R̀ C : ω | ∆ as a premise.

6.2. Typability implies Strong Normalisation. In this subsection we will show that – as
can be expected of a well-defined notion of type assignment that does not type recursion
and has no general rule that types all terms – all typeable terms are strongly normalising.

For the full system of Def. 4.2 this is not the case. In fact, by means of types not allowed
in the restricted system, it is possible to type the fixed-point constructor

λ f .(λx. f (xx))(λx. f (xx))

in a non-trivial way, as shown by the following derivation:

Example 6.5. The fixed-point combinator is typeable in the system of Def. 4.2:

(Ax)
f :ω×ω→υ, x:ω ` f : ω×ω→υ |

(ω)
f :ω×ω→υ, x:ω ` xx : ω |

(App)
f :ω×ω→υ, x:ω ` f (xx) : ω→υ |

(Abs)
f :ω×ω→υ ` λx. f (xx) : ω×ω→υ |

(ω)
f :ω×ω→υ ` λx. f (xx) : ω |

(App)
f :ω×ω→υ ` (λx. f (xx))(λx. f (xx)) : ω→υ |

(Abs)
` λ f .(λx. f (xx))(λx. f (xx)) : (ω×ω→υ)×ω→υ |

Notice that this term does not have a normal form, so is not strongly normalisable.

We start by showing that if a term is typeable in the restricted system then it is strongly
normalising. We adapt Tait’s computability argument and the idea of saturated sets to our
system (see [38], Ch. 3).

Definition 6.6 (Term Stacks). The set Stk of (finite) term stacks, whose elements we shall
denote by

⇀
L, is defined by the following grammar:

Stk :
⇀
L ::= ε | L ::

⇀
L

where ε denotes the empty stack and L ∈ TRM. Moreover, we define stack application as
follows:

M ε =∆ M
M (P ::

⇀
L) =∆ (MP)

⇀
L

So, if
⇀
L ≡ L1 :: · · · :: Lk :: ε we have M

⇀
L ≡ ML1 · · · Lk. We extend the notion of structural

substitution to stacks as follows:
T [α⇐ ε] =∆ T
T [α⇐ P ::

⇀
L] =∆ (T [α⇐ P]) [α⇐ ⇀

L]

for T ∈ TRM ∪ CMD, when each Li does not contain α.

We normally omit the trailing ε of a stack. Notice that

[α]M[α⇐ ⇀
L] ≡ [α]M [α⇐ L1] [α⇐ L2] · · · [α⇐ Ln] ≡ [α](M [α⇐ ⇀

L])
⇀
L

The notion of string normalisation is formally defined as:

Definition 6.7. The set SN of terms that are strongly normalisable is the set of all terms
M ∈ TRM such that no infinite reduction sequence out of M exists; we write SN (M) for
M ∈ SN , and SN ∗ for the set of finite stacks of terms in SN , and write SN (

⇀
L) if

⇀
L ∈ SN ∗.
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The following property of strong normalising terms is straightforward:

Proposition 6.8.
(1) If SN (x

⇀
M) and SN (

⇀
N), then SN (x

⇀
M

⇀
N).

(2) If SN (M[N/x]
⇀
P) and SN (N), then SN ((λx.M)N

⇀
P).

(3) If SN (M), then SN (µα.[β]M).
(4) If SN (µα.[β]M[α⇐ ⇀

N]
⇀
L) and SN (

⇀
N), then SN ((µα.[β]M)

⇀
N

⇀
L).

(5) If SN (µα.[α]M[α⇐ ⇀
N]

⇀
N

⇀
L), then SN ((µα.[α]M)

⇀
N

⇀
L).

Definition 6.9 (Type Interpretation). We define a pair of mappings

‖ · ‖ = 〈‖ · ‖1, ‖ · ‖2〉 : (LR
D→ ℘(TRM))× (LR

C→ ℘(Stk))

interpreting types as sets of terms and stacks. Writing ‖δ‖ = ‖δ‖1 and ‖κ‖ = ‖κ‖2, the
definition is as follows:

‖κ→υ‖ = {T | ∀ ⇀
L ∈ ‖κ‖ [SN (T

⇀
L) ]}

‖ω‖ = SN ∗
‖δ×κ‖ = {N ::

⇀
L | N ∈ ‖δ‖ &

⇀
L ∈ ‖κ‖}

‖σ∧τ‖ = ‖σ‖ ∩ ‖τ‖ (σ, τ ∈ LR
A, A = D, C).

We will now show that the interpretation of a type is a set of strongly normalisable
terms and that neutral terms (those starting with a variable) are in the interpretation of any
type.

Lemma 6.10. For any δ ∈ LR
D and κ ∈ LR

C:
(1) ‖δ‖ ⊆ SN and ‖κ‖ ⊆ SN ∗.
(2) x

⇀
N ∈ SN ⇒ x

⇀
N ∈ ‖δ‖.

Proof. By induction on the structure of types.
(1) Let δ = κ→υ and M ∈ ‖δ‖: then, for any

⇀
L ∈ ‖κ‖, by definition, SN (M

⇀
L), so in

particular SN (M). The case κ = ω follows by definition; the case κ = δ×κ′ follows
by induction, since ‖δ‖ ⊆ SN and ‖κ′‖ ⊆ SN ∗. The cases δ = δ1∧δ2 and κ = κ1∧κ2
follow immediately by induction.

(2) Let x
⇀
N ∈ SN and δ = κ→υ. If

⇀
L ∈ ‖κ‖ then

⇀
L ∈ SN ∗ by point (1), so that x

⇀
N

⇀
L ∈ SN

by observing that the only possible reductions are inside the components of
⇀
N and

⇀
L,

which are in SN by assumption. Then by definition x
⇀
N ∈ ‖δ‖.

Observe that υ 6∈ LR
D, and therefore we do not have the clause ‖υ‖ = SN in Def. 6.9, as was

the case in [12]. This clause would be consistent with the previous definition, but having
υ ∈ LD (the unrestricted language of term types) enforces the equation υ =D ω→υ which is
false in the above interpretation. In fact, λx.xx ∈ SN = ‖υ‖, so that (λx.xx) :: ε ∈ SN ∗ =
‖ω‖, but (λx.xx)((λx.xx) :: ε) ≡ (λx.xx)(λx.xx) 6∈ SN , and therefore ‖υ‖ 6⊆ ‖ω→υ‖. In
[12] we managed to avoid this incoherence by ruling out ω from LR

C and by interpreting
types κ→υ differently according to the shape of κ; in fact, in that paper ‖κ→υ‖ is the set of
representable functions from SN ∗ to SN only when κ 6= ω, while ‖ω→υ‖ is just SN .

We will now show that our type interpretation respects type inclusion.

Lemma 6.11. For all σ, τ ∈ LR: σ≤R τ ⇒ ‖σ‖ ⊆ ‖τ‖.
Proof. By easy induction over the rules in Def. 6.1. For κ ≤R

C ω, notice that ‖κ‖ ⊆ SN ∗ =
‖ω‖ by Lem. 6.10 (1). If κ ≤R

C κ′, then κ = δ1× · · · ×δn×ω, κ′ = δ′1× · · · ×δ′m×ω, m≤ n, and
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δi ≤R
D δ′i . By induction, ‖δi‖ ⊆ ‖δ′i‖ for all i≤m; notice that ‖δi+1× · · · ×δn×ω‖ ⊆ ‖ω‖ =

SN ∗ by Lem. 6.10 (1), so we can conclude ‖κ‖ ⊆ ‖κ′‖. Assume κ1→υ≤R
D κ2→υ because

κ2 ≤R
C κ1, then by induction ‖κ2‖ ⊆ ‖κ1‖. Assume now M ∈ ‖κ1→υ‖, then by definition

for all
⇀
L ∈ ‖κ1‖, we have M

⇀
L ∈ SN . Since ‖κ2‖ ⊆ ‖κ1‖, also for all

⇀
L ∈ ‖κ2‖ we have

M
⇀
L ∈ SN , and therefore also M ∈ ‖κ2→υ‖.

The next lemma states that our type interpretation is closed under expansion for the
logical and for the structural reduction, with the proviso that the term or stack to be
substituted is an element of an interpreted type as well.

Lemma 6.12. For any δ, δ′ ∈ LR
D and κ ∈ LR

C:

(1) If M[N/x]
⇀
P ∈ ‖δ‖ and N ∈ ‖δ′‖, then (λx.M)N

⇀
P ∈ ‖δ‖.

(2) If (µα.[β]M[α⇐ ⇀
N])

⇀
P ∈ ‖δ‖ and

⇀
N ∈ ‖κ′‖, then (µα.[β]M)

⇀
N

⇀
P ∈ ‖δ‖.

(3) If (µα.[α]M[α⇐ ⇀
N]

⇀
N)

⇀
P ∈ ‖δ‖, then (µα.[α]M)

⇀
N

⇀
P ∈ ‖δ‖.

Proof. By induction on the structure of types. If δ = κ→υ, then from M[N/x]
⇀
P ∈ ‖κ→υ‖

by definition we have SN (M[N/x]
⇀
P

⇀
Q) for all

⇀
Q ∈ ‖κ‖ and from N ∈ ‖δ′‖ that SN (N) by

Prop. 6.10 (1). Then by Lem. 6.8 (2) also SN ((λx.M)N
⇀
P

⇀
Q), so by definition (λx.M)N

⇀
P ∈

‖κ→υ‖. The case δ = δ1∧δ2 follows directly by induction.
The second and third case follow similarly, but rather using Prop. 6.8 (4) and 6.8 (5),

respectively.

In Theorem 6.15 we will show that all typeable terms are strongly normalisable. In
order to achieve that, in Lem. 6.14 we will first show that for a term M typeable with δ, any
substitution instance Mξ (i.e. replacing all free term variables by terms, and feeding stacks to
all free names) is an element of the interpretation of δ, which by Lem. 6.10 implies that Mξ

is strongly normalisable. We need these substitutions to be applied all ‘in one go’, so define
a notion of parallel substitution. The main result is then obtained by taking the substitution
that replaces term variables by themselves and names by stacks of term variables. The
reason we first prove the result for any substitution is that, in the proof of Lem. 6.14, in the
case for λx.M and µα.C the substitution is extended, by replacing the bound variable or
name with a normal term (or stack).

Definition 6.13.
(1) A pair of partial mappings ξ = 〈ξ1, ξ2〉 : (VAR→ TRM) × (NAME→ TRM∗), where

we simply write ξ x = ξ1(x) and ξ α = ξ2(α), is a parallel substitution if, for every
p, q∈ dom(ξ), if p 6= q then p 6∈ fv(ξq) and p 6∈ fn(ξq).

(2) Borrowing a notation for valuations, for a parallel substitution ξ we define the applica-
tion of ξ to a term or a command by:

xξ =∆ N (if ξx = N)
yξ =∆ y (if y 6∈ dom(ξ))

(λx.M)ξ =∆ λx.Mξ

(MN)ξ =∆ MξNξ

([α]M)ξ =∆ Mξ ::(ξα)
(µα.[α]M)ξ =∆ µα.[α]Mξ (ξ α)
(µα.[β]M)ξ =∆ µα.[β]Mξ (if α 6= β)
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(3) We define ξ[N/x] and ξ[α⇐ ⇀
L] as, respectively,

ξ[N/x] y =∆
{

N (if y = x)
ξ y (otherwise)

ξ[α⇐ ⇀
L] β =∆

{ ⇀
L (if α = β)

ξ β (otherwise)

(4) We say that ξ extends Γ and ∆, if, for all x:δ ∈ Γ and α:κ ∈ ∆, we have, respectively,
ξ x ∈ ‖δ‖ and ξ α ∈ ‖κ‖.

Lemma 6.14 (Replacement Lemma). Let ξ be a parallel substitution that extends Γ and ∆. Then:
if Γ R̀ T : σ | ∆ then Tξ ∈ ‖σ‖.

Proof. By induction on the structure of derivations. We show some more illustrative cases.
(Ax) : then M = x. Since x:δ ∈ Γ and ξ extends Γ, we have xξ = ξ x ∈ ‖δ‖.
(Abs) : Then M = λx.M′, δ = δ′×κ→ν, and Γ, x:δ′ ` M′ : κ→ν | ∆ . Take N ∈ ‖δ′‖; since

x is bound, by Barendregt’s convention we can assume that it does not occur free in
the image of ξ, so ξ[N/x] is a parallel substitution that extends Γ, x:δ′ and ∆. Then by
induction, we have M′ξ[N/x] ∈ ‖κ→ν‖. Since x does not occur free in the image of ξ,
M′ξ[N/x] = M′ξ[N/x], so also M′ξ[N/x] ∈ ‖κ→ν‖. By Lem. 6.12 (1), also (λx.M′ξ)N ∈
‖κ→ν‖. By definition of ‖κ→ν‖, for any

⇀
L∈ ‖κ‖we have SN ((λx.M′ξ)N

⇀
L); notice that

N ::
⇀
L ∈ ‖δ×κ‖, so (λx.M′)ξ ∈ ‖δ′×κ→ν‖.

(App) : Then M = PQ, and there exists δ such that Γ ` P : δ×κ→ν | ∆ and Γ ` Q : δ | ∆ .
Then by induction, we have Pξ ∈ ‖δ×κ→ν‖ and Qξ ∈ ‖δ‖; notice that PξQξ = (PQ)ξ.
Take

⇀
L ∈ ‖κ‖, we get Qξ ::

⇀
L ∈ ‖δ×κ‖, so also SN (PξQξ

⇀
L). But then also PξQξ ∈ ‖κ→ν‖.

(Cmd) : Then T = [α]M, σ = δ×κ, ∆ = α:κ, ∆′, and Γ R̀ M : δ | ∆′ is the premise of the rule.
In this case ([α]M)ξ = Mξ ::(ξα), and we have that Mξ ∈ ‖δ‖ by induction, and ξα ∈ ‖κ‖
by the hypothesis that ξ extends ∆ = α:κ, ∆′. So Mξ ::(ξα) ∈ ‖δ×κ‖ by definition.

(µ) : Then M = µα.C, C = [β]N, σ = κ→ν and the premise of the rule is Γ R̀ C : (κ′→ν)×κ′ |
α:κ,∆, where α 6∈ ∆. For any

⇀
L ∈ ‖κ‖ the parallel substitution ξ ′ = ξ[α⇐ ⇀

L] extends Γ
and α:κ, ∆ since ξ extends ∆, hence by induction:

Cξ ′ = Nξ ′ ::(ξ ′β) ∈ ‖(κ′→ν)×κ′‖ (6.1)

We then distinguish two different sub-cases.
(α = β) : Then M = µα.[α]N and κ = κ′. If

⇀
L ∈ ‖κ‖ then Nξ[α⇐ ⇀

L ] ∈ ‖κ→ν‖ by
(6.1) above. Since α does not occur free in the image of ξ, Nξ[α⇐ ⇀

L ] = Nξ[α⇐
⇀

L],
so we have Nξ[α⇐

⇀
L] ∈ ‖κ→ν‖, and therefore SN (Nξ[α⇐

⇀
L]

⇀
L). But then also

SN (µα.[α]Nξ[α⇐
⇀
L]

⇀
L), by Lem. 6.8 (3), and by Lem. 6.8 (5) SN ((µα.[α]Nξ)

⇀
L); so

(µα.[α]N)ξ ∈ ‖κ→ν‖.
(α 6= β) : Then ∆ = β:κ′, ∆′. Assume

⇀
L ∈ ‖κ‖, then ξ[α⇐ ⇀

L] extends Γ and α:κ, β:κ′, ∆′

and, by (6.1), we have Nξ[α⇐ ⇀
L ] ∈ ‖κ′→ν‖. Now let

⇀
Q ∈ ‖κ′‖, then SN (Nξ[α⇐ ⇀

L ]
⇀
Q)

and then also SN ((N
⇀
Q)ξ[α⇐ ⇀

L ]). Then SN (µα.[β](N
⇀
Q)ξ[α⇐ ⇀

L ]) by Lem. 6.8 (3), so
by Def. 6.9, SN (µα.[β](N

⇀
Q)ξ[α⇐ ⇀

L ]); then also SN (µα.[β](N
⇀
Q)ξ[α⇐

⇀
L]).
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Then SN ((µα.[β](N
⇀
Q)ξ)

⇀
L) by Lem. 6.8 (4). Notice that [β]Nξ

⇀
Q = [β]Nξ[β⇐

⇀
Q];

since ξβ =
⇀
Q, we can infer that [β]Nξ

⇀
Q = [β]Nξ, so SN ((µα.[β]N)ξ

⇀
L). But then

(µα.[β]N)ξ ∈ ‖κ→ν‖.
(∧) : By induction.

(≤) : By induction and Lem. 6.11.

We now come to the main result of this section, that states that all terms typeable in the
restricted system are strongly normalisable.

Theorem 6.15 (Typeable terms are SN ). If Γ `M : δ | ∆ for some Γ, ∆ and δ, then M ∈ SN .

Proof. Let ξ be a parallel substitution such that ξ x = x for all x ∈ dom(Γ) and ξ α = ⇀yα for
α ∈ dom(∆), where the length of the stack ⇀yα is |κ| if α:κ ∈ ∆ (notice that ξ is well defined).
By Lem. 6.10, ξ extends Γ and ∆. Hence, by Lem. 6.14, Mξ ∈ ‖δ‖, and then Mξ ∈ SN by
Lem. 6.10 (1). Now

Mξ ≡ M [x1/x1, . . . , xn/xn, α1⇐ ⇀yα1
, . . . , αm⇐ ⇀yαm

]
≡ M [α1⇐ ⇀yα1

, . . . , αm⇐ ⇀yαm
]

Then, by Prop. 6.8, for any
⇀
β also (µα1.[β1] · · · µαm.[βm]M)⇀yα1

· · · ⇀yαm
∈ SN , and therefore

also M ∈ SN .

6.3. Strongly Normalising Terms are Typeable. In this section we will show the coun-
terpart of the previous result, i.e. that all strongly normalisable terms are typeable in our
restricted intersection system. This result has been claimed in many papers [48, 5], but has
rarely been proven completely.

First we give the shape of terms and commands in normal forms.

Definition 6.16 (Normal Forms). The sets N ⊆ TRM (and, implicitly, C ⊆ CMD) of normal
forms are defined by the grammar:

N ::= xN1 · · ·Nk | λx.N | µα.[β]N (β 6= α or α ∈ N)

It is straightforward to verify that N and C coincide with the sets of irreducible terms and
commands, respectively.

We can now show that all terms and commands in normal form are typeable in the
restricted system.

Lemma 6.17.
(1) If N ∈N then there exist Γ, ∆ and κ→υ ∈ LR

D such that Γ R̀ N : κ→υ | ∆ .
(2) If C∈ C then there exist Γ, ∆ and κ ∈ LR

C such that Γ R̀ C : (κ→υ)×κ | ∆ .

Proof. By simultaneous induction over the definitions of N and C.
(N ≡ xN1 . . . Nk) : Since N1, . . . , Nk ∈N , by induction (1) we have that, for all i≤ k, there

exist Γi, ∆i and δi such that Γi R̀ Ni : δi | ∆ i (the structure of each δi plays no role in
this part). Take Γ = Γ1∧ · · · ∧Γk∧{x:δ1× · · · ×δk×ω→υ} and ∆ = ∆1∧ · · · ∧∆k. Then,
by weakening, also Γ R̀ Ni : δi | ∆ for all i≤ k, and Γ R̀ x : (δ1× · · · ×δk×ω)→υ | ∆ . By
repeated applications of (App) we get Γ R̀ xN1 · · ·Nk : ω→υ | ∆ .

(N ≡ λx.M) : By induction (1) there exist Γ, δ′, and ∆ such that Γ, x:δ′ ` M : κ→υ | ∆ (if
x 6∈ fv(M), we can add x:δ by weakening, for any δ′ ∈ LR

D). Then by (Abs) we obtain
Γ ` λx.M : δ×κ→υ | ∆ .
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(N ≡ µα.C) : By induction (2) there exist Γ, κ, κ′, and ∆ such that Γ R̀ C : (κ→υ)×κ | α:κ′, ∆
(if α 6∈ fn(C), we can add α:κ′ by weakening, for any κ′ ∈LR

C). We get Γ R̀ µα.C : κ′→υ |∆
by applying rule (µ).

(C ≡ [β]N) : By induction (1) there exist Γ, δ = κ→υ, and ∆ such that Γ R̀ N : δ | ∆ . If
β 6∈ dom(∆), by weakening also Γ R̀ N : δ | β:κ, ∆ , and by rule (Cmd) we obtain Γ R̀ [β]N :
(κ→υ)×κ | β:κ, ∆ . If β ∈ dom(∆) then ∆ = β:κ′, ∆′ for some κ′, and we can construct:

CC ��
Γ ` N : κ→υ | β:κ′, ∆′

(St)
Γ ` N : κ→υ | β:κ∧κ′, ∆′

(Cmd)
Γ ` [β]N : (κ→υ)×(κ∧κ′) | β:κ∧κ′, ∆′

CC ��
(κ→υ)×(κ∧κ′)≤R (κ→υ)×κ

Γ ` [β]N : (κ→υ)×κ | β:κ∧κ′, ∆′

which shows the result.

In the last case, we are forced to use (κ′→υ)×(κ∧κ′) instead of (κ′→υ)×κ (otherwise
we could not apply rule (µ) to type µα.[β]N) which comes at the price of weakening the
assumption β:κ to β:κ∧κ′. However, this is not a disadvantage since we get, for example, Γ R̀

µβ.[β]N : (κ∧κ′)→υ | ∆′ which safely records in the antecedent type κ∧κ′ the functionality
of N; notice that, in fact κ′→υ≤R (κ∧κ′)→υ.

We will now show that typing in the restricted system is closed under expansion, with
the proviso that the term that gets substituted is typeable as well. We first establish that
types are preserved from a contractum to the respective redex.

Lemma 6.18 (Contractum expansion).
(1) If Γ R̀ M[N/x] : δ | ∆ and Γ R̀ N : δ′ | ∆ , then Γ R̀ (λx.M)N : δ | ∆ .
(2) If Γ R̀ µα.C[α⇐N] : δ | ∆ and Γ R̀ N : δ′ | ∆ , then Γ R̀ (µα.C)N : δ | ∆ .

Proof.
(1) As in the corresponding case of Thm. 5.5, observing that term types have to be in LR

D,
we have that δ and δ′ cannot be equivalent to ω. Remark that in the proof of Thm. 5.5
the fact that δ′ might be equivalent to ω is of use omly in case x 6∈ fv(M). Here we have
to assume Γ R̀ N : δ′ | ∆ , since otherwise Γ R̀ (λx.M)N : δ | ∆ is not derivable.

(2) As in the corresponding case of Thm. 5.5. We observe that by Lem. 4.9, Γ R̀ µα.C[α⇐N] :
δ | ∆ and δ 6∼R

D ω imply that all the sub-derivations Γ R̀ C : (κi→ν)×κi | α:κ′i , ∆ are such
that ∧i∈Iκ

′
i→ν≤R

D δ which implies that (κi→ν)×κi 6∼R
C ω. Indeed, (κi→ν)×κi ∼R

C ω only
if κi ∼R

C ω for all i (that is allowed) and ν ∼D ω, which is not the case in either full and
restricted type theories.

Note that the hypothesis Γ R̀ N : δ′ | ∆ is again necessary in case α 6∈ fn(C).

It is tempting to conclude from Lem. 6.18 that if M → N by contracting a redex PQ such
that Γ R̀ Q : δ′ | ∆ for some δ′, then Γ R̀ N : δ | ∆ implies Γ R̀ M : δ | ∆ . But, unfortunately,
this is false even for the ordinary λ-calculus itself.

The problem is that in case of (β)-reduction the fact that

if Γ `M[N/x] : σ | and Γ ` N : τ | , then Γ ` (λx.M)N : σ |
does not extend to arbitrary contexts C[M[N/x]]: i.e., it is false that

if Γ ` C[M[N/x]] : σ | and Γ ` N : τ | , then Γ ` C[(λx.M)N] : σ |
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In fact, the basis Γ for typing C[M[N/x]] changes in the proof, so induction does not apply.
Reformulating this as

if Γ1 ` C[M[N/x]] : σ | and Γ2 ` N : τ | , then Γ1∧Γ2 ` C[(λx.M)N] : σ |
(which has been used by various authors) gives no improvement; the problem is that a free
variable in N might be bound in the context, which implies that the derived type might
change (get bigger in the sense of ≤), and that Γ1∧Γ2 is not a correct basis for C[(λx.M)N],
since it contains types for bound variables. This suggests the property

if Γ1 ` C[M[N/x]] : σ | and Γ2 ` N : τ | ,
then there exists Γ3 ≤ Γ1, ρ ≥ σ such that Γ3 ` C[(λx.M)N] : ρ |

but this is also not achievable, since the use of ≤ in the derivation for P in MP (where
MP→ MQ) forces a ≥ step on M which is not always achievable; this throws the proof for
the case of application irreparably out of kilter.

To illustrate this in the context of our system, take λx.(λy.x)(xx) which reduces to λx.x,
which we can type as follows:

(Ax)
x:ω→υ ` x : ω→υ |

(Abs)
` λx.x : (ω→υ)×ω→υ |

We cannot infer this type for λx.(λy.x)(xx) in the restricted system. To type the sub-term
xx when rule (ω) is not available, the best we can do is (setting δ = κ→υ):

(Ax)
x:(δ×κ→υ)∧δ ` x : (δ×κ→υ)∧δ |

(≤R)
x:(δ×κ→υ)∧δ ` x : δ×κ→υ |

(Ax)
x:(δ×κ→υ)∧δ ` x : (δ×κ→υ)∧δ |

(≤R)
x:(δ×κ→υ)∧δ ` x : δ |

(App)
x:(δ×κ→υ)∧δ ` xx : δ |

Using the same type for x, for λy.x we can construct:

(Ax)
y:δ, x:(δ×κ→υ)∧δ ` x : (δ×κ→υ)∧δ |

(≤R)
y:δ, x:(δ×κ→υ)∧δ ` x : κ′→υ |

(Abs)
x:(δ×κ→υ)∧δ ` λy.x : δ×κ′→υ |

for any κ′ such that (δ×κ→υ)∧δ≤R κ′→υ, and therefore

CC ��
x:(δ×κ→υ)∧δ ` λy.x : δ×κ′→υ |

CC ��
x:(δ×κ→υ)∧δ ` xx : δ |

(App)
x:(δ×κ→υ)∧δ ` (λy.x)(xx) : κ′→υ |

(Abs)
` λx.(λy.x)(xx) : ((δ×κ→υ)∧δ)×κ′→υ |

So we cannot infer the type (ω→υ)×ω→υ for λx.(λy.x)(xx) and a general subject-expansion
result doesn’t hold in the restricted system, not even by requiring typability of all substituted
subterms.

We can however show the weaker but sufficient statement that although assignable
types are not preserved, typability is: we cannot type λx.(λy.x)(xx) with (ω→υ)×ω→υ,
but still we can type it in the restricted system.

We will established this through considering leftmost-outermost reduction (lor), following
a suggestion by Betti Venneri; this technique is also the one used in [38], and in [7] in the
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context of the strict type assignment system of [5]; [10] presents the proof for the system
with strict types and a co-variant type inclusion relation of [6].

Definition 6.19. An occurrence of a redex R = (λx.P)Q or (µα.[β]P)Q in a term M is called
the left-most outer-most redex of M (lor(M)), if and only if:
(1) there is no redex R′ in M such that R′ = C[R] with C[−] 6= [−] (outer-most) ;
(2) there is no redex R′ in M such that M = C0[C1[R′]C2[R]] (left-most).
We write M→lor N when M reduces to N by contracting lor(M).

The correct subject expansion result (with respect to lor, Lem. 6.20) is now the one used
for the proof that all strongly normalisable terms are typeable, which uses induction on the
length of the lor-path.

Lemma 6.20. Assume M→lor N with lor(M) = PQ. If Γ R̀ N : δ | ∆ , and Γ R̀ Q : δ′′ | ∆ , then
there exist Γ′, ∆′ and δ′ such that Γ′ R̀ M : δ′ | ∆′ .

Proof. First we observe that, since δ ∈ LR
D, δ = ∧i∈Iκi→υ for some I so that certain κi ∈ LR

C,
and δ 6∼D ω (in the full type theory). Hence Γ R̀ N : κi→υ | ∆ for all i ∈ I. Hence it suffices
to show the thesis when δ is an arrow type. We reason by induction over the structure of
terms.
(M ≡ VP1 · · · Pn) : We distinguish two sub-cases:

(V ≡ lor(M)) : Then M→lor V ′P1 · · · Pn ≡ N and V ′ is the contractum of V ≡ PQ. By
Lem. 4.9 we know that Γ R̀ V ′P1 · · · Pn : κ→υ | ∆ implies that

Γ R̀ V ′ : δj,1× · · · ×δj,n×κ→υ | ∆
for all j ∈ J, and Γ R̀ Ph : δj,h | ∆ for all h ∈ n. Since V ′ is the contractum of the redex
PQ and Γ R̀ Q : δ′′ | ∆ , we can apply Lem. 6.18 and get

Γ R̀ V : dj,1× · · · ×δj,n×κ→υ | ∆ ,

from which, repeatedly applying rule (App), we get Γ R̀ VP1 · · · Pn : κ→υ | ∆ . Take
Γ′ = Γ, δ′ = κ→υ and ∆′ = ∆.

(V ≡ z) : Then lor(M) = lor(Ph) for some h∈ n, and N ≡ VP1 · · · P′h · · · Pn with Ph →lor
P′h. Reasoning as in the previous case we get Γ R̀ P′h : δj,h | ∆ and

Γ(z) ≤ δj,1× · · · ×δj,h× · · · ×δj,n×κ→υ.

By induction there exist Γ1, δ′j,h and ∆1 such that Γj,h R̀ Ph : δ′j,h | ∆j,h . We then set

Γ′ = Γ ∧ ∧j∈J,h∈Hj Γj,h ∧ {z:δj,1× · · · ×δ′j,h× · · · ×δj,n×κ→υ}
∆′ = ∆ ∧ ∧j∈J,h∈Hj ∆j,h

Then by applying rules (St) and (App) we conclude Γ′ R̀ z P1 · · · Pn : κ→υ | ∆′ as
desired.

(M ≡ λy.M′) : If M →lor N, then N = λy.N′ and M′ →lor N′. Then there exists δj and
κj such that δ = ∧j∈Jδj×κj→υ, and Γ, y:δj R̀ N′ : κj→υ | ∆ for all j ∈ J. By induction,
there exists Γ′′, ∆′′, δ′j, and κ′j such that Γ′′, y:δ′j R̀ M′ : κ′j→υ | ∆′′ . Then, by rule (Abs),
Γ′′ R̀ λy.M′ : δ′j×κ′j→υ | ∆′′ for all j ∈ J so that Γ′′ R̀ λy.M′ : ∧j∈Jδ

′
j×κ′j→υ | ∆′′ ; take

Γ′ = Γ′′, ∆′ = ∆′′, and δ′ = ∧j∈Jδ
′
j×κ′j→υ.

(M ≡ µα.[β]M′) : If M→lor N, then N = µα.[β]N′ and M′ →lor N′. By Lem. 4.9, using the
fact that δ is non-trivial by assumption, and assuming α 6= β we have that
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Γ ` N′ :∧j∈J,h∈Hj κj,h→υ | α:κ′j,β:κ′j,h, ∆,

where ∧j∈J,h∈Hκj,h→υ≤D κj→υ for all j ∈ J and ∧j∈Jκj→υ≤D δ.
By induction there exist Γj,h, δ′j,h = ∧j∈J,h∈Hj,u∈Uj,h κ′j,h,u→υ, κ′′j , κ′′j,h and ∆j,h such that

Γj,h R̀ N′ :∧j∈J,h∈Hj,u∈Uj,h κ′j,h,u→υ | α:κ′′j ,β:κ′′j,h, ∆j,h.

Taking Γ′ = Γ ∧ ∧j∈J,h∈Hj Γj,h
∆′ = ∆ ∧ ∧j∈J,h∈Hj ∆j,h ∧ {α:∧j∈J,h∈Hj κ

′′
j , β:∧j∈J,h∈Hj,u∈Uj,h(κ

′
j,h,u∧κ′′j,h)}

we have that Γ′ R̀ [β]N′ : (κ′j,h,u→υ)×κ′j,h,u |∆′ for all j∈ J, h∈ Hj, u∈Uj,h, possibly using
rule (St); we get the result by applying rules (µ) and (∧).

(M ≡ µα.[α]M′) : This case is similar to the previous one and easier.

We observe that considering leftmost-outermost reduction in the proof above is crucial
to rule out the case M ≡ VP1 · · · Pj · · · Pn → VP1 · · · P′j · · · Pn because Pj → P′j where
V ≡ PQ is a redex, hence different than a variable. In fact, the induction hypothesis now
tells us that if P′j : δ′j then Pj : δj for some δj which is in general unrelated to δ′j; now nothing
ensures that δj is compatible with the type of V. Instead, we can solve the problem for
V ≡ z by taking a suitable weaker assumption for the typing of z, which is the same
trick to circumvent the difficulty noted before the last lemma, that arises both with λ and
µ-abstraction.

We can now show that all strongly normalisable λµ-terms are typeable in the restricted
system.

Theorem 6.21 (Typeability of SN -Terms). For all M ∈ SN there exist Γ and ∆ and a type δ
such that Γ R̀ M : δ | ∆ .

Proof. First observe that lor is normalising. Then we reason by induction on the maximum
of the lengths of reduction sequences for a strongly normalisable term M to its normal form
(denoted by #(M)).
(#(M) = 0) : Then M is in normal form, and by Lem. 6.17, there exist Γ and δ such that

Γ R̀ M : δ | ∆ .
(#(M) ≥ 1) : Let M →lor N by contracting the redex PQ = lor(M), then #(N) < #(M).

Then #(Q) < #(M) (since Q ∈ SN is a proper subterm of a redex in M). Then by
induction there exist Γ1, Γ2, ∆1, ∆2, δ1, and δ2 such that Γ1 R̀ N : δ1 |∆1 and Γ2 R̀ Q : δ2 |∆2 .
By Lem. 6.20 there exist Γ, ∆, and δ such that Γ R̀ M : δ | ∆ .

7. SIMPLY TYPED λµ-CALCULUS AND INTERSECTION TYPES

In the previous sections we considered the λµ-calculus as a type-free calculus; in this
section we will show that we can establish a connection between our intersection type
assignment system and Parigot’s logical assignment system. We will show that logical
formulas translate into types of the appropriate sort, and moreover that this can be done in
the restricted system of Sect. 6. Hence, the characterisation result carries over and can be
used to establish the strong normalisation property of Parigot’s calculus.

We use a version of Parigot’s logical system as presented in [45], which is equivalent to
the original one if just terms (so not also proper commands, i.e. elements of CMD) are typed.
This implies that the rule for ⊥ does not need to be taken into account.
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We briefly recall Parigot’s first-order type assignment system, that we call the Simply-
Typed λµ-calculus.

Definition 7.1 (Parigot’s Simply Typed λµ-calculus).
(1) The set LF of Logical Formulas is defined by the following grammar:

A, B ::= ϕ | A→B

where ϕ ranges over an infinite, denumerable set of Proposition (Type) Variables.
(2) Judgements are of the form Π P̀ M : A | Σ , where M ∈ TRM; Π and Σ are finite mappings

from VAR and NAME, respectively, to formulas, and are normally written as finite sets
of pairs of term variables and formulas and of names and formulas respectively, as in
Π = {x1:A1, . . . , xn:An} and Σ = {α1:B1, . . . , αm:Bm}.

(3) The inference rules of this system are:

(Ax) : Π, x:A ` x : A | Σ (µ1) :
Π ` M : A | α:A, Σ

Π ` µα.[α]M : A | Σ
(µ2) :

Π ` M : B | α:A, β:B, Σ

Π ` µα.[β]M : A | β:B, Σ

(→I) :
Π, x:A ` M : B | Σ

Π ` λx.M : A→B | Σ
(→E) :

Π ` M : A→B | Σ Π ` N : A | Σ
Π ` MN : B | Σ

We write Γ P̀ M : A | Σ to denote that this judgement is derivable in this system.

Through the Curry-Howard correspondence (formulas as types and proofs as terms), the
underlying logic of this system is the minimal classical logic ([4]).

Comparing Parigot’s system with ours we observe that rules (→I) and (→E) bear some
similarity with (Abs) and (App), and rules (µ1) and (µ2) are similar to a combination of (µ)
and (Cmd):

Lemma 7.2. The following rules are derivable in the system of Def. 4.2 (and in the restricted system
as well):

Γ ` M : κ→υ | α:κ, ∆
(µ1)

Γ ` µα.[α]M : κ→υ | ∆
Γ ` M : κ′→υ | α:κ,β:κ′, ∆

(µ2)
Γ ` µα.[β]M : κ→υ | β:κ′, ∆

Proof. Consider the derivations:

CC ��
Γ ` M : κ→υ | α:κ, ∆

(Cmd)
Γ ` [α]M : (κ→υ)×κ | α:κ, ∆

(µ)
Γ ` µα.[α]M : κ→υ | ∆

CC ��
Γ ` M : κ′→υ | α:κ,β:κ′, ∆

(Cmd)
Γ ` [β]M : (κ′→υ)×κ′ | α:κ,β:κ′, ∆

(µ)
Γ ` µα.[β]M : κ→υ | β:κ′, ∆

As an example illustrating the fact that the system for λµ is more expressive than the simply
typed λ-calculus, we consider the following proof of Peirce’s Law, which we take from [44]:

(Ax)
x:(A→B)→A ` x : (A→B)→A | α:A

(Ax)
x:(A→B)→A, y:A ` y : A | α:A, β:B

(µ2)
x:(A→B)→A, y:A ` µβ.[α]y : B | α:A

(→I)
x:(A→B)→A ` λy.µβ.[α]y : A→B | α:A

(→E)
x:(A→B)→A ` x(λy.µβ.[α]y) : A | α:A

(µ1)
x:(A→B)→A ` µα.[α](x(λy.µβ.[α]y)) : A |

(→I)
` λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A |
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We observe that the term λx.µα.[α](x(λy.µβ.[α]y)) is typable in the restricted type system
(and hence in the full system as well) by a derivation with the very same structure. Indeed,
let δA→B =∆ κA→B→υ, where κA→B =∆ (κA→υ)×κB and κA, κB ∈ LR

C are arbitrary; set further
κ(A→B)→A =∆ δA→B×κA and δ(A→B)→A =∆ κ(A→B)→A→υ (=∆ δA→B×κA→υ), then

(with Γ = x:((κA→υ)×κB→υ)×κA→υ)

(Ax)
Γ ` x : ((κA→υ)×κB→υ)×κA→υ | α:κA

(Ax)
Γ, y:κA→υ ` y : κA→υ | α:κA, β:κB

(µ2)
Γ, y:κA→υ ` µβ.[α]y : κB→υ | α:κA

(Abs)
Γ ` λy.µβ.[α]y : (κA→υ)×κB→υ | α:κA

(App)
Γ ` x(λy.µβ.[α]y) : κA→υ | α:κA

(µ1)
Γ ` µα.[α](x(λy.µβ.[α]y)) : κA→υ |

(Abs)
` λx.µα.[α](x(λy.µβ.[α]y)) : (((κA→υ)×κB→υ)×κA→υ)×κA→υ |

As suggested in the example above, we can interpret formulas into intersection types
of our system. Notably types from the restricted language LR do suffice.

Definition 7.3. The translation functions ·D : LF→LR
D and ·C : LF→LR

C are defined by:

ϕC =∆ υ×ω
(A→B)C =∆ (AC→υ)×BC

AD =∆ AC→υ

We extend these mappings to bases and name contexts by: ΠD = {x:AD | x:A ∈Π} and
ΣC = {α:AC | α:A ∈ Σ}.

It is straightforward to show that the above translations are well defined.

Theorem 7.4 (Derivability preservation). If Π P̀ M : A | Σ then ΠD `M : AD | ΣC .
Proof. Each rule of the simply-typed λµ-calculus has a corresponding one in the restricted
intersection type system; hence it suffices to show that rules are preserved when translating
formulas into types. The case of (Ax) is straightforward.

(→I) :
ΠD, x:AD ` M : BD | ΣC

(Abs)
ΠD ` λx.M : (A→B)D | ΣC =∆

ΠD, x:AC→υ ` M : BC→υ | ΣC

(Abs)
ΠD ` λx.M : ((AC→υ)×BC)→υ | ΣC

(→E) :
ΠD ` M : (A→B)D | ΣC Π ` N : AD | ΣC

(App)
Π ` MN : BD | Σ

=∆

ΠD ` M : ((AC→υ)×BC)→υ | ΣC Π ` N : AC→υ | ΣC

(App)
ΠD ` MN : BC→υ | ΣC

(µ1) :
ΠD ` M : AD | α:AC, ΣC

(µ1)
ΠD ` µα.[α]M : AD | ΣC =∆

ΠD ` M : AC→υ | α:AC, ΣC

(µ1)
ΠD ` µα.[α]M : AC→υ | ΣC

(µ2) :
ΠD ` M : BD | α:AC, β:BC, ΣC

(µ2)
ΠD ` µα.[β]M : AD | β:BC, ΣC =∆

ΠD ` M : BC→υ | α:AC, β:BC, ΣC

(µ2)
ΠD ` µα.[β]M : AC→υ | β:BC, ΣC

Strong normalisation of typeable terms in Parigot’s simply-typed λµ-calculus (first proved
in [45]) now follows as a corollary of our characterisation result.

Corollary 7.5 (Strong Normalisability of Parigot’s Simply Typed λµ-calculus). If Π P̀ M : A |
Σ , then M ∈ SN .
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Proof. By Thm. 7.4 and Lem. 7.2, if Π P̀ M : A | Σ then ΠD
R̀ M : AD | ΣC . That M is SN

now follows from Thm. 6.21.

We end this section by observing that negation can be added to the syntax of logical
formulas without disrupting the correspondence with the (restricted) intersection types.
Let ⊥ be added to the formula syntax as a special atom for falsehood. Then consider the
logical system which is obtained from Def. 7.1 by replacing rules (µ1) and (µ2) by:

Π ` C :⊥ | α:A, Σ
(Activate)

Π ` µα.C : A | Σ
Π ` M : A | α:A, Σ

(Passivate)
Π ` [α]M :⊥ | α:A, Σ

The resulting system is the same as in [19], and in [47] Section 3.1 but with two contexts
instead of a single one. The only difference is that in rule (Passivate) we require the
assumption α:A in the name contexts, which is just added to the conclusion in both [19] and
[47] since there contraction and weakening are implicitly assumed.

In this new system, the rules (µ1) and (µ2) are admissible. By defining ¬A =∆ A→⊥
and considering all the formulas in the Σ context as negated, rule (Activate) corresponds
to the reductio ad absurdum rule of classical logic. On the other hand rule (Passivate) can be
read as the ¬-elimination rule, saying that from A and ¬A we get falsity.

To interpret ⊥ into our intersection type system we need to keep track of the contradic-
tion from which it arises; therefore we write the slightly different rule:

Π ` M : A | α:A, Σ
(Passivate′)

Π ` [α]M :⊥A | α:A, Σ

where ⊥A is a new constant for each formula A. Now, by adding

⊥C
A =∆ (AC→υ)×AC

to the translation, we obtain:

ΠD ` C :⊥C
B | α:AC, ΣC

ΠD ` µα.C : AD | ΣC =∆
ΠD ` C : (BC→υ)×BC | α:AC, ΣC

(µ)
ΠD ` µα.C : AC→υ | ΣC

ΠD ` M : AD | α:AC, ΣC

ΠD ` [α]M :⊥C
A | α:AC, ΣC =∆

ΠD ` M : AC→υ | α:AC, ΣC

(Cmd)
ΠD ` [α]M : (AC→υ)×AC | α:AC, ΣC

8. RELATED WORK

The starting point of the present work is [9], where a type assignment system for λµ-
terms with intersection and union types was proved to be invariant under reduction and
expansion. That system was without apparent semantical justification, which motivated
the present new construction. With respect to the system of [9], our system does not use
union types, and introduces product types for continuations, which is its main characteristic.
The introduction of product types is inspired to the continuation model of [51], which is
the main source of this paper, together with [17], which contains the first construction of
a λ-model as a filter model. However, as explained in the introduction and in the main
body of the paper, we have followed the inverse path, from the model to the type system,
building over [22] and [1].

In [11] we conjectured that in an appropriate subsystem of the present one, it should
be possible to type exactly all strongly normalising λµ-terms. We established that result in
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[12], though via a less elegant variant of our system than the restricted system in Sect. 6.
The first to state the characterisation result for the λ-calculus was Pottinger [48], using a
notion of type assignment similar to the intersection system of [20, 23], but extended in that
it is also closed for η-reduction, which is equivalent to adding a co-variant type inclusion
relation; in particular, this is a system that is defined without the type constant ω. However,
to show that all typeable terms are strongly normalisable, [48] only suggests a proof using
Tait’s computability technique [52]. A detailed proof, using computability, in the context of
the ω-free BCD-system [17] is given in [5]; to establish the same result, saturated sets are
used by Krivine in [38] (Ch. 4), in Ghilezan’s survey [33], and in [10].

The converse of that result, namely the property that all strongly normalisable terms
are typeable has proven to be more elusive: it has been claimed in many papers but not
shown in full (we mention [48, 5, 33]); in particular, the proof for the property that type
assignment is closed for subject expansion (the converse of subject reduction) is dubious.
Subject expansion can only reliably be shown for left-most outermost reduction, which is
used for the proofs in [38, 13, 7, 10], and our result follows that approach.

The translation in Sect. 7 that maps simple types into our extension of intersection types
is a form of negative translation; in [37] it is extended to the system in [9], thereby relating
the original intersection and union type assignment system for λµ to ours.

The model in [51] is not a model of de Groote and Saurin’s Λµ-calculus, but a variant
of it, dubbed a ‘stream model’ in [41]; it provides a sound interpretation of the extended
calculus. Building over stream models, in [26] it has been proven that the same type theory,
but with different rules of the type assignment, gives a finitary description of the model
matching the reduction in the stronger sense that the approximation theorem holds.

In [42] an extension of Λµ is considered, called Λµcons. A type assignment for Λµcons

based on [26]’s type system is proposed, and subject reduction and strong normalisation of
the reduction on the typed Λµcons are proven. In [40] the same system is shown to enjoy
Friedman’s theorem.

CONCLUSIONS

We have presented a filter model for the λµ-calculus which is an instance of Streicher and
Reus’s continuation model, and a type assignment system such that the set of types that
can be given to a term coincides with its denotation in the model. The type theory and the
type assignment system can be viewed as the logic for reasoning about the computational
meaning of λµ-terms, much as is the case for λ-calculus.

By restricting the assignment system to a subset of the intersection types we have ob-
tained an assignment system where exactly the strongly normalising λµ-terms are typeable.

Finally, we have given a translation of intersection types into logical formulas and
proved that if a term is typeable in Parigot’s type assignment system for λµ, then it is
typeable by its translation in the restricted intersection type system. As a by-product we
have a new proof that proof terms in the λµ-calculus are strongly normalising.
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