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Abstract
 

 
Species of Aspergillus in section Nigri are commonly associated with maize kernels and 

some strains in this group have the capacity for producing fumonisin mycotoxins, but there is 

little information about the damage they cause to maize ears, fumonisin (FB) contamination of 

grain, or their effects on maize seed germination and seedling health. We compared fumonisin-

producing and non-producing strains of A. niger, A. welwitschiae, A. phoenicis, A. tubingensis, 

and A. carbonarius from the U.S. and Italy in laboratory and field studies to assess their ability to 

cause maize ear rot, to contribute to FB contamination, and to affect seed germination and 

seedling growth. In laboratory experiments, some strains of each Aspergillus species reduced 

germination or seedling growth, but there was high variability among strains within species. 

There were no consistent differences between fumonisin-producing and non-producing strains. 

In field studies in Iowa and Illinois, strains were variable in their ability to cause ear rot 

symptoms, but this was independent of the ability of the Aspergillus strains to produce 

fumonisins. FB contamination of grain was not consistently increased by inoculation with 

Aspergillus strains compared to the control, and was much higher in F. verticillioides-inoculated 

treatments than in Aspergillus-inoculated treatments. The ratio of FB2 to FB1 was altered by 

inoculation by some Aspergillus strains, indicating that FB2 production by Aspergillus strains 

was occurring in the field. These results demonstrate the pathogenic capabilities of strains of 

Aspergillus in section Nigri but suggest that their effects on maize ears and seedlings are not 



related to their ability to produce fumonisins, and that fumonisin contamination of grain by 

Aspergillus is not a major issue in comparison to that caused by Fusarium spp.  

 

Introduction
 

 
Several species of Aspergillus are common among seedborne fungi in maize. The genus 

Aspergillus contains over 200 species, including those in section Nigri, comprising the species 

which produce black conidia (15). Black Aspergillus species are primarily associated with 

diseases in maize, peanut, grape, and onion (14). Many species of Aspergillus, including 

Aspergillus section Nigri, cause ear rot on maize and can also cause damage in storage if grain 

moisture content is sufficiently high (8). In the United States, they are not typically a major 

concern as seedling pathogens, although seedborne infection of up to 62% has been reported on 

maize, and occasional serious outbreaks  of Aspergillus ear rot have occurred (10). A survey of 

untreated commercial seed lots in the United States found an overall contamination of 2.8% (16). 

It was recently discovered that some Aspergillus species contain a cluster of genes similar 

to those controlling fumonisin production in Fusarium. However, Aspergillus species do not 

possess orthologues to all genes in the Fusarium fumonisin cluster; in particular, the lack of an 

orthologue to the Fusarium fum2 gene results in a lack of fumonisin B1 production (22). Instead, 

the primary fumonisin produced in Aspergillus is fumonisin B2 (19), biosynthesis of which 

requires the fum8 gene, found in some strains of Aspergillus.  In-vitro production of fumonisin 

B2 in Aspergillus niger was first confirmed in 2007 (6). Unlike Fusarium verticillioides, which 

produces fumonisin B1, fumonisin B2, and fumonisin B3, the A. niger strains were initially only 

observed to produce fumonisin B2 (6). Some strains of Aspergillus isolated from raisins were 

later reported to produce fumonisin B1 and fumonisin B3 as well (23), though this finding has 



been disputed (11, 12, 24). The fumonisin B2 produced by A. niger was compared to that 

produced by Fusarium spp., and no differences could be detected in the chemical structures, 

even though the genes for the synthases differ somewhat (9). Two additional fumonisins are also 

produced by A. niger: fumonisin B4, which is also present in small amounts in Fusarium species 

(13), and fumonisin B6, which has the same elemental composition as fumonisin B1, but differs 

in structure (9). 

It is unclear how fumonisin production benefits fumonisin-producing fungi. Preventing 

fumonisin B2 production by disruption of the fum8 gene in A. niger does not affect vegetative 

growth, sensitivity to temperature, or sensitivity to UV light, suggesting it does not play a role in 

normal growth of the fungus (19). 

In Fusarium, the role of fumonisins in pathogenicity is controversial.  Fumonisins are not 

necessary for pathogenicity, since it has been shown that non-producing strains can infect maize 

(4). However, in a study by Desjardins et al. (5), nearly all highly virulent strains also produced 

high levels of fumonisin B1, while many less virulent strains did not. Additionally, disease 

symptoms and stunting can be induced in maize seedlings by fumonisins alone, though the 

seedlings eventually outgrew the effects at the lower concentrations tested (2). Maize seedlings 

have some ability to detoxify low levels of fumonisin, but higher levels have detrimental effects, 

possibly by inducing premature senescence through their interference with sphingolipid 

metabolism (2). 

It is possible that fumonisins contribute to virulence or pathogenicity in Aspergillus 

species, but this has not yet been experimentally tested. This study is intended to begin an 

examination of this question by comparing the virulence of a range of fumonisin-producing and 

non-producing strains of Aspergillus section Nigri. 



We designed our study to compare a wide selection of strains from Aspergillus section 

Nigri, including both fumonisin-producing and non-producing strains. Warm germination and 

cold tests were used to evaluate seed germination under ideal and cold stress conditions, and 

rolled paper towel assays were used to measure effects of inoculation on seedling growth. Field 

studies were conducted in Iowa and Illinois to assess ear rot development and the effects of 

inoculation on fumonisin contamination of grain.  

 

  



Materials and Methods
 

 
Germination and seedling disease assays  

Three types of assays were conducted to assess the effects of Aspergillus strains on maize 

seeds and seedlings: a warm germination assay, a cold germination assay (AOSA Rules), and a 

rolled-towel assay (Ellis et al., ). Twenty-six strains of black Aspergillus were obtained from 

maize kernel samples from Iowa, Idaho, Illinois, and Italy, and were selected to provide a broad 

representation of black Aspergillus species occurring on maize, including strains with and 

without fumonisin B2 production, as determined in a previous study (21) (Tables 1-3). The 

strains had initially been placed in Aspergillus section Nigri based on morphological 

characteristics, and were further identified to species based on β-tubulin and calmodulin gene 

sequences (21).  

Each Aspergillus strain was grown on potato dextrose agar under fluorescent light at 20-

25°C for 7 days.  The spores were rinsed off the plates, gently dislodging them from the 

colonies, and suspended in sterile distilled water. The spore concentrations of the suspensions 

were determined using a hemaocytometer, and they were diluted to a concentration of 106 

spores/ml. For all spore suspensions, Tween 80 was added as a surfactant at a rate of 0.125 ml to 

0.5 ml per liter of water. In the second run of the laboratory experiments, one strain (ITEM 

15167) produced insufficient spores to reach the necessary volume of 106 spores/ml, so 5 x 105 

was used instead. 

Two maize hybrids were used in the two repetitions of the warm germination, cold, and 

rolled paper towel assays. Hybrid A was an experimental hybrid obtained from Syngenta, and 

hybrid B was Syngenta hybrid 85v88-300GT (Syngenta Seeds, Northfield, MN). The maize 

kernels were first surface sterilized by submerging for 5 minutes in 0.6% sodium hypochlorite, 



followed by 3 minutes in 75% ethanol, and finally 2 minutes in sterile water. The kernels were 

then added to flasks containing the spore suspensions (or the control of Tween water), and placed 

on a shaker for 12 hours at 130 rpm for the first run, and 80rpm for the second, both at room 

temperature (20-25°C). For the first run of the warm germination and cold tests, 820 seeds were 

inoculated for each treatment, divided between two 250ml flasks with 100ml of suspension in 

each. For the second run, 850 seeds were placed in a single 500ml flask, with 300ml suspension. 

After the 12 hours, the suspension was drained off, and the kernels spread on paper towels to dry 

in a biosafety hood. 

After the kernels had dried, they were submitted to the Iowa State University Seed 

Testing Laboratory for a standard warm germination test and a cold test (1). In the warm 

germination test, the seeds were grown on moist blotter paper at 25°C, and evaluated after one 

week for the percentage germination. The cold test approximates stresses of early spring  

planting by covering seeds with a layer of moist sand-soil mixture, chilling for one week at 

10°C, and then warming up to 25°C for an additional week before evaluation of the percentage 

germination. For both assays, four replicates of 100 seeds each were used for each combination 

of Aspergillus strain and hybrid, including noninoculated control treatments.  

Maize seeds of the same two hybrids were used for the rolled paper towel assay.  Each 

replicate consisted of 15 seeds, placed two thirds of the way up on two layers of damp paper 

towel, and covered with a third towel after inoculation. There were 3 replicates for each 

treatment. In the first run (hybrid A) the U. S. strains were run as one experiment, and the Italian 

strains were run as a second, due to logistical considerations. In the second run (hybrid B), all 

strains were run in the same experiment. To inoculate, 0.1mL of spore suspension (or the control 

of Tween water) was pipetted over the top of each seed. They were covered with a third damp 



towel, loosely rolled vertically, and placed in individual unsealed plastic bags. These bags were 

stood upright in 5-gallon buckets and covered by placing a clear plastic bag over the top of each 

bucket to prevent contamination or drying. After 7 days of growth in ambient conditions 

(florescent lighting, 20-25°C), the seedlings were evaluated for growth. 

In the warm germination test, seedlings are scored as normal, abnormal, or dead, and the 

official germination percentage is equal to the percentage of normal seedlings. In the cold test, 

germination is evaluated on the basis of percentage emergence. In the rolled paper towel assay, 

the length of the longest root and shoot was measured on each seedling, at the point of the 

furthest distance from the seed. The roots and shoots were separated and weighed immediately 

after unwrapping each replicate, to avoid drying. The seed itself was not weighed, so non-

germinated seeds were recorded as 0 for both weights. For all measurements, the values for the 

fifteen seedlings on each towel were averaged and analyzed as a single observation. 

All data were analyzed using ANOVA (SAS version 6.1). Fisher’s protected least 

significant difference (LSD) was used to compare treatments, with the level of significance P < 

0.05. Data for some strains were missing in each experiment due to inadequate spore production.  

Field Experiments 

Experiments were conducted in Story Co., Iowa, USA, in 2012 and 2013, and in Peoria Co., 

Illinois, USA, in 2012. Experimental design was similar in both locations, but specific 

inoculation methods and fungal strains differed slightly.  

Iowa field experiments were conducted in a single location in both years with a single maize 

hybrid. Trials were planted in mid-April 2012 and mid-June 2013 in a reduced-tillage field 

where maize was the previous crop. Standard commercial fungicide/insecticide seed treatments 

were used, but no other fungicides or insecticides were applied. Weed control was accomplished 



by two applications of glyphosate during the early growth stages of the crop. Field plots were 

single rows spaced 75 cm apart by 5.2 m in length, with approximately 35 seeds per row. At silk 

emergence, five ears per row were arbitrarily selected and tagged for inoculation. Two types of 

inoculation were carried out, as described by Reid et al. (1996): silk inoculation and wound 

inoculation. For the silk inoculation, 2 ml of a spore suspension was injected by hypodermic 

needle into the silk channel of the selected ears, 7 to 10 days after silk emergence, without 

wounding the kernels or cob. For the wound inoculation, ears were wounded by pressing a pin-

bar against the side of the ear, approximately 21 days after silk emergence, followed immediately 

by injection through the husk of 2 ml of a spore suspension into the center of the wounded area. 

The two inoculation types were applied in separate, adjacent experiments in both years. Within 

each inoculation type experiment, there were seven treatments, arranged in a randomized 

complete block design. Treatments consisted of inoculation with one of five strains of black 

Aspergillus, inoculation with a strain of Fusarium verticillioides, or a mock-inoculation with 

sterile distilled water with Tween. Aspergillus strains used in the studies were ITEM 15309, 

15335, 15337, 15353, and 15375 (Table 1); the F. verticillioides strain was ITEM 3927, a 

fumonisin-producing strain from Iowa maize. Following inoculation the ears were left 

uncovered; after the plants matured and dried in the field to approximately 20% kernel moisture 

content, ears were collected, brought to the laboratory and scored for ear rot severity using a 1-7 

scale (Reid et al., 1996), in which 1 = no symptoms, 2 = up to 3% ear rot severity, 3 = 4 to 10%, 

4 = 11 to 25%, 5 = 26 to 50%, 6 = 51 to 75%, and 7 = 76 to 100%. After scoring, ears were dried 

in a forced air grain dryer at 38°C until grain moisture was <13%. Ears were then hand-shelled 

and the kernels were ground using a Romer mill (Model 2A, Romer Labs, Washington, MO, 

USA).  



The Illinois field experiment was conducted in a single location in Peoria Co., IA, in 2012 with a 

single maize inbred line, B73. Trials were planted on 16 May 2012 in plots where wheat was the 

previous crop. Neither commercial fungicide/insecticide seed treatments, nor other fungicides or 

insecticides were used. Weed control was accomplished by a single spot application of 2,4-D / 

dicamba during the early growth stage of the crop and cultivation. Field plots were composed of 

rows spaced 100 cm apart by 20 m in length, with approximately 120 seeds per row. At silk 

emergence, 30 ears per row were arbitrarily selected and tagged for inoculation. Two types of 

inoculation were carried out: silk inoculation, as described by Reid et al. (1996) and wound 

inoculation, as described by Dowell et al. (2002). For the wound inoculation, ears were wounded 

making a 4 cm incision into the side of the ear, approximately 21 days after silk emergence, 

followed immediately by insertion through the husk of an 8 cm sterile pipe cleaner, saturated in a 

spore suspension, into the wounded area. The two inoculation types were applied in separate, 

adjacent experiments in both years. Within each inoculation type experiment, there were six 

treatments. Treatments consisted of inoculation with one of five strains of black Aspergillus, or a 

mock-inoculation with sterile distilled water. Aspergillus strains used in the studies were ITEM 

15309, ITEM 15337, ITEM 15353, and ITEM 15375 (Table 1), and ITEM 15333, a fumonisin-

producing strain of A. niger from Iowa maize. Following inoculation, methods were followed as 

described for the Iowa experiments.  

Grain from the Iowa and Illinois field experiments was analyzed for fumonisins B1, B2, and B3 

by LC-MS/MS at the NCAUR laboratory in Peoria, IL. All grain from each field plot was 

ground, and 10-g subsamples were extracted with 50 mL of acetonitrile / water (1:1, vol / vol). 

Maize solvent slurries were allowed to steep for 2 h, with gentle shaking, and then extracts were 

filtered through a Whatman 2V filter. The analytical method utilized a LC-MS/MS instrument 



consisting of a ThermoFisher (Sunnyvale, CA, USA) UltiMate 3000 ultra-high performance 

liquid chromatography (UPLC) system and an AB-SCIEX (Framingham, MA, USA)  QTRAP 

3200 mass spectrometer. The mass spectrometer was operated in positive mode utilizing an 

electrospray ionization (ESI) interface. Injections of 10 µL of analyte were eluted from a 

Phenomenex (Torrance, CA, U.S.A.) Kinetex XB-C18 2.1 x 50 mm column with a 600 µL/min 

gradient flow of water / methanol (MeOH). Approximately 10% of the column flow was directed 

to the ESI interface of the mass spectrometer. UPLC solvents were acidified with 0.3% acetic 

acid. The gradient program consisted of the following steps: 0 to 1 min, 40% MeOH; 1 to 11 

min, 40 to 95% MeOH; 11 to 13 min, 95% MeOH; 13 to 14 min, 95 to 40% MeOH; and 14 to 15 

min, 40% MeOH. ESI-MS/MS detection of fumonisins was accomplished by monitoring 

characteristic fragment ions (FB1: m/z 352, 528 and FB2, FB3: m/z 336, 512) from the m/z 722 

(FB1) and 706 (FB2, FB3) [M+H]+ ions of the fumonisins in multiple reaction monitoring mode. 

Quantitation of fumonisins was done on the basis of the integrated intensity of the m/z 352 and 

336 fragments compared with a calibration curve generated from fumonisin standard solutions. 

FB2 and FB3 were distinguished by chromatographic retention time.  

Data were analyzed using ANOVA (SAS ver. 9.4 or SAS Enterprise ver. 7.1, PROC GLM). 

Fisher’s protected least significant difference (LSD) was used to compare treatments, with the 

level of significance P < 0.05. Prior to data analysis, ear rot severity scores were transformed to 

percentages by converting the 1-7 scores to the mid-point of the percentage range of each score. 

The mean percentage of symptomatic kernels was calculated for the five ears from each plot, and 

those mean values were subjected to ANOVA. Data were analyzed separately for silk-channel 

and wound inoculations, because these inoculation treatments were done in separate 

experiments. Grain from the four replicate plots receiving the silk-channel inoculation in the 



Illinois field experiment were combined prior to fumonisin analysis; therefore there are no 

statistical replications for this treatment and these data were omitted from the ANOVA.  



Results
 

 
Germination and seedling disease assays 

Aspergillus strains varied substantially in their effects on warm germination and cold test 

results for both hybrids.  Several strains differed significantly from the non-inoculated control in 

each test. Some strains ranked more consistently near the high or low end in all four tests, while 

the ranking of other strains varied widely among experiments. 

For hybrid A, the warm germination percentage varied from approximately 75% to nearly 

100%, with the control near the high end of the range at 96.5% (Fig 1A). Twelve of the 24 

strains reduced warm germination significantly compared to the control. Among the 13 

fumonisin-producing strains, seven reduced warm germination significantly. In the cold test, the 

differences were even more pronounced, with cold test germination ranging from less than 40% 

to over 80% (Fig 1B). In this case, the control was near the middle of the range at 62.5%, with 

some strains of Aspergillus resulting in significantly higher cold test germination than the 

control. Eleven of the 26 strains significantly reduced cold test germination, 11 strains did not 

differ from the control, and four strains had cold test germination values significantly higher than 

the control. Among the 14 fumonisin-producing strains, seven reduced cold test germination, 

five did not differ from the control, and two were significantly higher than the control. 

In hybrid B, in the warm germination test results were much lower overall, but still 

showed a wide variation among treatments, from a minimum of approximately 45%, to the 

control at 71.0% (Fig. 2A). Nineteen of the 25 strains significantly reduced warm germination 

compared to the control. Eleven of the 13 fumonisin-producing strains significantly warm 

reduced germination compared to the control. Hybrid B performed even worse than hybrid A in 

the cold test, with no treatment resulting in cold test germination greater than 60%, and some 



near 40% (Fig. 2B). The control was at the lower end of the range at 49.8%. Among the 25 

strains, only two strains (both fumonisin-producing) had cold test germination values 

significantly lower than the control, and four strains had results significantly higher. Among the 

13 fumonisin-producing strains, two reduced cold test germination, 10 did not differ from the 

control, and one was significantly higher than the control. 

For both maize hybrids, there were no significant differences in overall means for warm 

germination or cold test results between the fumonisin-producing Aspergillus strains and the 

non-producing strains (hybrid A: P = 0.3893 and P = 0.8225; hybrid B: P = 0.1723 and P = 

0.2058). There were significant differences among species for effects on warm germination for 

hybrid A, and for cold germination for hybrid B. However, the only consistent pattern was 

significantly lower mean germination following inoculation with A. niger strains compared to A. 

welwitschiae and A. phoenicis.  

In the rolled-towel assays with hybrid A, there were significant differences among the 

U.S. strains for effects on root weight, shoot weight, and shoot length, but not for root length 

(Table 1). Three of the 10 strains reduced root weight, including two of the six fumonisin-

producing strains. Eight strains reduced shoot weight, including five fumonisin-producing 

strains. Nine of the strains reduced shoot length, including five fumonisin-producing strains. In 

the assay with the Italian strains, there were significant differences among the strains in all four 

variables for maize hybrid A (Table 2). In root weight, all 11 of the strains differed significantly 

from the control, with one of the six fumonisin-producing strains increasing the root weight, and 

all other strains decreasing it. Ten strains reduced shoot weight, including five fumonisin-

producing strains. Four strains increased root length, including two fumonisin-producing strains. 

Ten strains reduced shoot length, including five fumonisin-producing strains. For hybrid B, there 



also were significant effects on all four variables (Table 3). Twenty-four of the 25 strains 

reduced root weight, including all 13 fumonisin-producing strains; 22 strains reduced shoot 

weight, including 12 fumonisin-producing strains; 13 strains reduced root length, including eight 

fumonisin-producing strains, and 21 strains reduced shoot length, including 11 fumonisin-

producing strains. 

Differences in overall means of the various measures of seedling growth between 

fumonisin-producing and non-producing strains were not consistent. For hybrid A inoculated 

with U.S. strains, there was no detectible difference between fumonisin-producing and non-

producing strains with regard to seedling root weight, shoot weight, root length, or shoot length 

(P values from 0.7303 to 0.8359). However, among the Italian strains, inoculation with 

fumonisin-producing strains resulted in significantly higher seedling shoot weight and length 

compared to the non-producing strains (P < 0.05), with no difference in root weight or length (P 

= 0.3665 and P = 0.6318, respectively). With hybrid B, seedlings inoculated with fumonisin-

producing strains resulted in seedlings with decreased root and shoot weight compared to the 

strains without fumonisin production (P = 0.0313 and P = 0.0363, respectively). The root and 

shoot lengths were not significantly different (P = 0.1565 and P = 0.1498, respectively). 

In the rolled paper towel assays, effects on seedling variables did not differ consistently 

among Aspergillus species. For hybrid A inoculated with the U. S. strains of Aspergillus, 

inoculation with A. phoenicis resulted in significantly lower root weight, shoot weight, and shoot 

length relative to A. welwitschiae, and root weight relative to A. niger. Among the Italian strains, 

there were no significant differences among species. On hybrid B, inoculation with A. niger 

reduced root weight relative to A. welwitschiae, and reduced shoot weight and length relative to 



both A. tubingensis and A. welwitschiae. Inoculation with A. phoenicis reduced shoot weight 

relative to A. tubingensis as well. 

Field experiments 

Ear rot symptoms and signs typical of Aspergillus section Nigri occurred in inoculated 

treatments in all three experiments. In the Iowa experiments, ear rot symptoms were more severe 

in 2012 than in 2013. Ear rot severity was higher in the experiments with wound inoculations 

than in those with silk-channel inoculations. Aspergillus strains caused ear rot symptoms with 

severity similar to that caused by the F. verticillioides strain. In 2012, ear rot severity for all five 

Aspergillus strains was not significantly different from the F. verticillioides strain for both 

inoculation methods (Fig. 5a); in 2013, severity was significantly greater for strain ITEM 15253 

(A. niger) than for F. verticillioides for the silk-channel inoculation, whereas the other strains 

were not different from F. verticillioides (Fig. 5b). Ear rot severity in inoculated treatments was 

not always significantly different from the mock-inoculated control. In 2012, the F. 

verticillioides treatment did not differ from the control for either inoculation method, but three 

and two Aspergillus strains had greater severity than the control for the silk-channel inoculation 

and the wound inoculation, respectively (Fig. 5a). In 2013, the F. verticillioides treatment 

differed from the control only for the wound inoculation, whereas one and three Aspergillus 

strains differed from the control in the silk-channel inoculation and the wound inoculation, 

respectively. The fumonisin non-producing strain, ITEM 15375, differed from the control only in 

the 2013 wound inoculation treatment (Fig. 5b); this strain did not differ significantly from the 

other Aspergillus strains in 2012, and in 2013 it differed only from strain ITEM 15353 in the 

silk-channel treatment.  



Fumonisin concentrations in grain were highest in the F. verticillioides treatments in 

2012, but also were very high in the mock-inoculated, wounded control treatment, which was not 

significantly different from the F. verticillioides treatment (Table 4). In the silk-channel 

inoculation, concentrations of fumonisin B2 and total fumonisins did not differ between the 

control and the Aspergillus-inoculated treatments. The ratio of fumonisin B2 to fumonisin B1 (a 

measure of fumonisin production by Aspergillus spp.) was significantly higher for Aspergillus 

strains 15335 and 15337 compared to the other treatments. In the wound inoculation, 

Aspergillus-inoculated treatments were significantly lower in fumonisin B2 and total fumonisins 

than the F. verticillioides treatment and the control. The FB2/FB1 ratio was significantly higher 

for Aspergillus strains 15337 and 15353 compared to the control, the F. verticillioides treatment, 

and Aspergillus strain 15375 (a non-fumonisin producing strain) (Table 4). Fumonisins were 

lower in 2013 than in 2012, and no treatments were different from the control in the silk-channel 

inoculations. In the 2013 wound inoculations, only the F. verticillioides treatment differed from 

the control in fumonisin B2 and total fumonisins. The FB2/FB1 ratio was significantly higher for 

all four fumonisin-producing Aspergillus strains compared to the control, the F. verticillioides 

treatment, and the fumonisin non-producing Aspergillus strain 15375 (Table 4). 

In the Illinois experiment, the silk-channel inoculation resulted in more severe ear rot 

symptoms compared to the pipe-cleaner inoculation method. In the silk-channel inoculation 

treatment, four of the five Aspergillus strains showing significantly higher severity than the 

control. In the wound inoculation treatment, ear rot severity was lower than in the silk-channel 

inoculation, and only ITEM 15337 (A. niger) was significantly different from the control. The 

fumonisin non-producing strain, ITEM 15375, differed from the control in the silk-channel 



inoculation treatment only, and was not significantly different from the other Aspergillus strains 

in either treatment (Fig. 6).   

In contrast to the Iowa results, fumonisin concentrations in grain were highest in the silk-

channel inoculation treatments, including the mock-inoculated control (Table 4). Statistical 

comparisons among strains were not possible in the silk-channel inoculation treatments. In the 

wound inoculations, there were some significant differences among strains in fumonisin 

concentrations or FB2/FB1 ratio, but none differed significantly from the control (Table 4). 

Discussion
 

 
The results of this study indicate that fungal strains in Aspergillus section Nigri can be 

pathogenic to maize ears, germinating seeds and seedlings. Although storage molds in general 

are associated with reduced emergence (18) and seedling disease (20), there are no previously 

published studies reporting the pathogenicity of Aspergillus section Nigri on maize seedlings. 

Windham and Williams (25) reported on ear rot development following the inoculation of maize 

ears with A. niger, but they did not report effects on germination or seedling disease.   

There was a wide range in both the warm and cold germination values among the 

Aspergillus strains compared. Results were variable between the warm germination and cold 

tests, and between the two hybrids, suggesting that the pathogenicity of these Aspergillus strains 

depends strongly on experimental conditions and host genotype. Hybrid B performed poorly, 

even in the absence of inoculation, suggesting poor quality seed. Results confirm that some 

Aspergillus section Nigri strains can reduce germination and emergence in maize, but other 

strains have little capacity to do so.  

Differences in aggressiveness among Aspergillus species in section Nigri were not 

consistently evident. Among the species compared, A. niger inoculation often resulted in reduced 



germination, but results varied among experiments. The single strain of A carbonarius did not 

show a high level of pathogenicity, often not differing from the control. However, little can be 

concluded about this species based on only one strain. In the rolled paper towel assays, nearly all 

the strains of Aspergillus reduced shoot length and weight. Among the species, strains of A. 

phoenicis tended to result in shoot and root lengths and weights lower than the other species, but 

these differences were not always significant. Root length was less strongly affected than the 

other variables, and in some cases, root length actually increased with inoculation, even though 

root weight was reduced. It is possible that growth of lateral roots was reduced by some 

Aspergillus strains, causing more nutrients to be directed to lengthening the radicle and primary 

roots. If there are significant species differences in aggressiveness, larger number of strains of 

each species may be required in order to detect this. 

There was no clear relationship between fumonisin production and aggressiveness as a 

seedling pathogen. One of the most aggressive strains overall was ITEM 15114, not a fumonisin-

producer, while one of the fumonisin-producing strains, strain 7, produced consistently low 

levels of symptoms. The lack of association between fumonisin B2 production and effects on 

germination for either hybrid indicates that fumonisin production is not necessary for, and 

probably has little or no role in the aggressiveness of black Aspergillus strains as seedborne 

pathogens. In the rolled-towel assays, there was some evidence for greater aggressiveness of 

fumonisin-producing strains toward hybrid B, but this was not consistent for hybrid A. For 

hybrid A, shoot length and weight were reduced to a greater extent by fumonisin non-producing 

strains from Italy compared to the fumonisin-producing strains. This suggests that the differences 

observed were due to characteristics of the strains themselves, rather than their ability to produce 



fumonisin. It is also possible that hybrid B was more susceptible to fumonisin B2 than hybrid A, 

though no effects of fumonisin production were evident for either hybrid in the germination tests. 

The fact that inoculation with some strains resulted in higher emergence than the control 

in both cold tests may be due to competition with other pathogens in the media, as the sand used 

in the standard cold test is not sterile. It is also possible that other seedborne pathogens that are 

favored by cool soil conditions played a role. Weakly pathogenic strains of Aspergillus may have 

competed with pathogenic organisms already present in the sand, resulting in a net increase in 

germination. 

Field experiments involved a smaller number of strains than the laboratory experiments, 

but results regarding pathogenicity, species comparisons, and the role of fumonisins are similar.  

There was no consistent difference in results between A. niger and A. welwitschiae, and the 

fumonisin non-producing strain produced ear rot severity similar to the other strains. Some 

strains of Aspergillus produced ear rot symptoms similar in severity to those caused by F. 

verticillioides, but other strains did not differ from the mock-inoculated control. Ear rot severity 

was in a similar range as reported by Windham and Williams (2012) for strains of A. niger, . In 

Iowa in 2012, ear rot severity was relatively high in the mock-inoculated control for the wound 

treatment, and fumonisin concentrations for this treatment were higher than in the Aspergillus-

inoculated treatments. A similar observation occurred in the Illinois experiment. The wounding 

procedure (which differed between the two locations) appeared to have promoted infection by 

other fungi present in the fields, particularly fumonisin-producing Fusarium species. Lower 

fumonisins in the wounded, Aspergillus-inoculated treatments may have been the result of 

competition between the inoculated strains (which produce low amounts of fumonisin B2) and 

endemic Fusarium strains (which include strains that produce high amounts of fumonisin B1, B2, 



and other forms). Overall, ear rot severity and fumonisin levels were lower in 2013 than 2012 in 

Iowa, at least partially because late planting in 2013 resulted in altered ear morphology with 

more exposed ear tips.  

The Illinois results demonstrated very severe ear rot symptoms and high fumonisin levels 

for the silk-channel inoculation. Environmental conditions obviously differed between the two 

locations, and the use of an inbred line in Illinois, rather than a hybrid, may have contributed to 

the relatively higher disease severity compared to the Iowa results. Results for the wound 

inoculation were similar between the locations in 2012, in spite of the use of different wounding 

procedures (method of Reid et al., 1996 in Iowa vs. method of Dowell et al., 2002, in Illinois).  

Inoculation with Aspergillus strains that produce fumonisin B2 did not result in increases 

in fumonisin B2 or total fumonisins in the grain, compared to the mock-inoculated control. 

However, the elevated FB2/FB1 ratio that resulted from these inoculations (Table 4) indicates that 

these strains were actively producing fumonisin B2 in the infected kernels. This was not evident 

by comparing fumonisin B2 concentrations among the treatments, likely because Aspergillus 

strains produce small amounts of fumonisin B2 relative to the amounts produced by endemic 

Fusarium spp.   

Taken together, the results of this study suggest that fumonisin-producing and non-

producing strains of Aspergillus spp. have similar levels of aggressiveness as maize pathogens. 

Pathogenicity tests comparing wild-type Aspergillus strains against strains mutated by disruption 

of the fum8 gene would provide a more definitive assessment of the role of fumonisin B2 

production in the pathogenicity of fungi in Aspergillus section Nigri. Most studies with 

fumonisin-producing Fusarium species have concluded that there is little or no role of 

fumonisins in disease development (3); however, fumonisins are phytotoxic (2) and some 



researchers have concluded that fumonisins play a role in pathogenicity or virulence (7, 17). 

Fumonisin production by Aspergillus spp. does not include fumonisin B1, and overall levels of 

production are much lower than in Fusarium spp. (21). If fumonisins can influence seedling 

disease, the effects may not be evident with the low levels of fumonisin B2 production that occur 

with Aspergillus spp. 
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Table 1. Effect of Aspergillus strain inoculation on seedling growth in rolled paper towel assay, U. S. strains, hybrid A. Asterisks 
indicate treatments significantly different from the non-inoculated control (α = 0.05). 

Strain Origin Species FB2  Root weight (g) Shoot weight (g) Root length (cm) Shoot length (cm) 
Control NA NA NA 1.85 5.24 13.22 9.69 
ENDO 3233 Illinois A. niger + 1.33 3.06* 16.42 5.80* 
NRRL 62522 Illinois A. phoenicis + 1.12* 2.52* 13.33 5.00* 
NRRL 62526 Illinois A. phoenicis + 1.00* 2.28* 12.20 4.44* 
ITEM 15304 Iowa A. tubingensis - 0.87* 1.89* 9.95 3.38* 
ITEM 15309 Idaho A. welwitschiae + 2.05 5.00 14.47 9.26 
ITEM 15318 Iowa A. tubingensis - 1.43 3.93 15.73 6.85* 
ITEM 15335 Iowa A. welwitschiae + 1.36 2.99* 15.91 5.21* 
ITEM 15337 Iowa A. niger + 1.48 2.92* 13.21 5.43* 
ITEM 15349 Iowa A. tubingensis - 1.42 3.56* 15.76 5.87* 
ITEM 15375 Iowa A. niger - 1.72 3.51* 15.47 6.40* 

 
  



Table 2. Effect of Aspergillus strain inoculation on seedling growth in rolled paper towel assay, Italian strains, hybrid A. Asterisks 
indicate treatments significantly different from the non-inoculated control (α = 0.05). 

Strain Origin Species FB2  Root weight (g) Shoot weight (g) Root length (cm) Shoot length (cm) 
Control NA NA NA 2.61 6.33 15.88 10.94 
ITEM 15065 Marche A. carbonarius - 1.75* 3.54* 16.84 5.65* 
ITEM 15078 Marche A. niger + 2.15* 3.79* 15.92 6.50* 
ITEM 15096 Veneto A. niger - 1.73* 3.38* 18.05 6.06* 
ITEM 15099 Veneto A. niger + 1.64* 3.60* 17.55 6.12* 
ITEM 15114 Veneto A. niger - 1.64* 2.72* 18.27* 4.83* 
ITEM 15129 Veneto A. welwitschiae - 1.79* 4.25* 19.38* 6.48* 
ITEM 15132 Veneto A. welwitschiae + 1.77* 3.91* 18.74* 6.53* 
ITEM 15165 Piemonte A. niger + 3.24* 6.29 20.28* 10.70 
ITEM 15167 Lombardia A. niger + 1.66* 4.08* 18.24 7.11* 
ITEM 15206 E.-Romagna A. niger + 1.43* 3.28* 15.98 5.21* 
ITEM 15225 Molise A. niger - 2.16* 3.46* 17.87 5.82* 

 

  



Table 3. Effect of Aspergillus strain inoculation on seedling growth in rolled paper towel assay, U. S. and Italian strains, hybrid B. 
Strain names in italics indicate fumonisin production. Asterisks indicate treatments significantly different from the non-inoculated 
control (α = 0.05). 

Strain Origin Species FB2  Root weight (g) Shoot weight (g) Root length (cm) Shoot length (cm) 
Control NA NA NA 4.45 4.89 18.45 8.26 
ENDO 3233 Illinois B. niger + 1.81* 2.10* 12.33* 3.92* 
NRRL 62518 Illinois A. niger + 1.55* 1.98* 12.13* 4.09* 
NRRL 62522 Illinois B. phoenicis + 2.10* 2.48* 15.32 5.00* 
NRRL 62526 Illinois B. phoenicis + 2.04* 2.02* 15.12 4.21* 
ITEM 15304 Iowa B. tubingensis - 2.81* 3.13* 16.29 5.46* 
ITEM 15309 Idaho B. welwitschiae + 3.46* 3.80* 16.43 7.44 
ITEM 15318 Iowa B. tubingensis - 2.78* 3.54* 18.02 6.39* 
ITEM 15330 Iowa A. tubingensis - 2.04* 2.50* 12.54* 4.61* 
ITEM 15335 Iowa B. welwitschiae + 2.35* 2.51* 16.00 4.86* 
ITEM 15337 Iowa B. niger + 1.79* 1.99* 13.88* 4.16* 
ITEM 15349 Iowa B. tubingensis - 2.51* 3.36* 15.61 5.81* 
ITEM 15353 Iowa A. niger + 2.36* 2.22* 14.88* 4.87* 
ITEM 15375 Iowa B. niger - 2.51* 2.27* 14.26* 4.54* 
ITEM 15065 Marche B. carbonarius - 4.06 4.25 18.77 8.04 
ITEM 15078 Marche B. niger + 2.22* 1.69* 14.18* 3.26* 
ITEM 15096 Veneto B. niger - 1.91* 1.82* 13.37* 3.86* 
ITEM 15114 Veneto B. niger - 1.89* 1.78* 13.29* 3.73* 
ITEM 15129 Veneto B. welwitschiae - 1.93* 1.96* 11.11* 3.87* 
ITEM 15132 Veneto B. welwitschiae + 2.13* 2.49* 14.34* 5.04* 
ITEM 15165 Piemonte B. niger + 2.08* 2.41* 13.67* 4.68* 
ITEM 15167 Lombardia B. niger + 2.82* 3.85 18.01 7.30 
ITEM 15178 E.-Romagna A. niger - 2.18* 2.39* 15.58 4.80* 
ITEM 15187 E.-Romagna A. welwitschiae - 3.16* 3.62* 19.34 6.50* 
ITEM 15206 E.-Romagna A. niger + 2.21* 2.32* 14.65* 4.37* 
ITEM 15225 Molise B. niger - 3.53* 3.87 19.26 6.90 

 



Table 4. Fumonisin contamination of grain from field experiments conducted in Iowa and Illinois following inoculation of maize ears 
with fumonisin-producing or non-producing strains of Aspergillus. Fumonisin-producing F. verticillioides was included as a positive 
control in the Iowa experiments. Strain numbers in bold indicate fumonisin B2 – producing strains.  

Location-Year Inoculation Strain Species  FB2 (µg/g) Total FB (µg/g) Ratio (FB2/ FB1)
Iowa-2012 Silk-channel Control NAx 0.13 b 0.52 b 0.61 b
  ITEM 15309 A. welwitschiae 0.51 b 3.41 b 0.44 b
  ITEM 15337 A. niger 0.87 b 1.24 b 23.84 a
  ITEM 15353 A. niger 2.35 b 3.82 b 3.42 b
  ITEM 15335 A. welwitschiae 4.06 b 4.99 b 20.16 a
  ITEM 15375 A. niger 1.02 b 4.53 b 0.32 b
  ITEM 3927 F. verticillioides 20.48 a 76.46 a 0.47 b
       
 Wound Control NA 37.59 a 141.35 a 0.43 b
  ITEM 15309 A. welwitschiae 10.89 b 28.57 b 0.90 ab
  ITEM 15337 A. niger 9.53 b 18.24 b 1.51 a
  ITEM 15353 A. niger 10.18 b 26.28 b 1.90 a
  ITEM 15335 A. welwitschiae 8.15 b 21.45 b 0.96 ab
  ITEM 15375 A. niger 3.09 b 15.87 b 0.24 b
  ITEM 3927 F. verticillioides 42.15 a 159.27 a 0.44 b
       
Iowa-2013 Silk-channel Control NA 1.53 a 3.99 a 0.64 a
  ITEM 15309 A. welwitschiae 2.72 a 7.55 a 0.62 a
  ITEM 15337 A. niger 3.55 a 8.67 a 0.77 a
  ITEM 15353 A. niger 1.40 a 1.43 a NA
  ITEM 15335 A. welwitschiae 1.27 a 1.27 a NA
  ITEM 15375 A. niger 0.28 a 0.70 a 1.30 a
  ITEM 3927 F. verticillioides 2.52 a 4.88 a 1.04 a
       
 Wound Control NA 4.43 b 12.25 b 0.65 c
  ITEM 15309 A. welwitschiae 8.05 b 15.03 b 8.61 a
  ITEM 15337 A. niger 4.42 b 6.67 b 2.55 b
  ITEM 15353 A. niger 6.23 b 9.16 b 4.74 b 



  ITEM 15335 A. welwitschiae 9.18 b 13.57 b 6.81 a
  ITEM 15375 A. niger 4.88 b 14.12 b 0.86 c
  ITEM 3927 F. verticillioides 15.86 a 36.35 a 0.84 c
       
Illinois-2012 Silk-channelz Control NA 56.47 270.24 0.30
  ITEM 15309 A. welwitschiae 4.92 6.44 13.90
  ITEM 15337 A. niger 41.06 54.29 13.83
  ITEM 15353 A. niger 68.07 90.04 12.55
  ITEM 15333 A. niger 33.90 50.00 10.6
  ITEM 15375 A. niger NDy ND NAx

       
 Wound Control NA 9.81 ab 47.17 a 0.32 ab
  ITEM 15309 A. welwitschiae 5.61 b 17.98 a 0.56 ab
  ITEM 15337 A. niger 1.36 b 10.13 a 0.21 b
  ITEM 15353 A. niger 8.96 ab 43.55 a 0.32 ab
  ITEM 15333 A. niger 17.97 a 91.96 a 0.90 a
  ITEM 15375 A. niger 1.47 b 10.79 a 0.21 b
x NA = Not Applicable 
y ND = Not Detected 
z Grain from all four replicate plots was combined for fumonisin analysis; therefore there are no statistical replications for these 
treatments 
  



 

 
Fig. 1. Germination percentages in warm germination test for maize kernels (hybrid A) 
inoculated with strains of Aspergillus with and without production of fumonisin B2. Hatch marks 
indicate strains with fumonisin production. Strains to the right of the vertical line were not 
significantly different from the water control (LSD = 6.9%, α = 0.05). Error bars represent the 
standard error of the mean. 
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Fig. 2. Germination percentages in cold test for maize kernels (hybrid A) inoculated with strains 
of Aspergillus with and without production of fumonisin B2. Hatch marks indicate strains with 
fumonisin production. Strains between the two vertical lines were not significantly different from 
the water control (LSD = 10.4%, α = 0.05). Error bars represent the standard error of the mean. 
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Fig. 3. Germination percentages in warm germination test for maize kernels (hybrid B) 
inoculated with strains of Aspergillus with and without production of fumonisin B2. Hatch marks 
indicate strains with fumonisin production. Strains to the right of the vertical line were not 
significantly different from the water control (LSD = 9.3%, α = 0.05). Error bars represent the 
standard error of the mean. 
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Fig. 4. Germination percentages in cold test for maize kernels (hybrid B) inoculated with strains 
of Aspergillus with and without production of fumonisin B2. Hatch marks indicate strains with 
fumonisin production. Strains between the two vertical lines were not significantly different from 
the water control (LSD = 6.6%, α = 0.05). Error bars represent the standard error of the mean. 
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Fig. 5. Ear rot severity for maize ears inoculated with strains of Aspergillus section Nigri 
(ITEM15309 through ITEM15375) or Fusarium verticillioides (ITEM3927) in Iowa field 
experiments in 2012 (a) and 2013 (b). Inoculation methods (Silk-channel or Wound) were 
applied in separate experiments. Data are transformed to percentages from original 1 to 7 disease 
severity scale scores. Capital letters indicate significant differences among strains inoculated by 
the silk-channel method; lower-case letters indicate significant differences among strains 
inoculated by the wound method, according to Fisher’s protected least significant difference (α = 
0.05).  
  



 
Fig. 6. Ear rot severity for maize ears inoculated with strains of Aspergillus section Nigri in an 
Illinois field experiment in 2012. Inoculation methods (Silk-channel or Wound) were applied in 
separate experiments. Data are transformed to percentages from original 1 to 7 disease severity 
scale scores. Capital letters indicate significant differences among strains inoculated by the silk-
channel method; lower-case letters indicate significant differences among strains inoculated by 
the wound method, according to Fisher’s protected least significant difference (α = 0.05).  
 


