CEUR-WS.org/Vol-2051/paperl.pdf

The AThOS Project: First Steps towards
Computational Accountability

Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio

Universita degli Studi di Torino — Dipartimento di Informatica
firstname.lastname@unito.it

Abstract. This work studies the support research on multiagent sys-
tems can give to the automation of computation of accountability (com-
putational accountability), an din particular to accountability in organi-
zational contexts. It introduces the idea of guaranteeing accountability
as a design property of socio-technical systems, and explain a set of
principles which a socio-technical system should respect. We explain the
ADOPT protocol, which is a way that allows to realize computational
accountability in an organizational setting, by means of multiagent sys-
tems technology.

Keywords: Computational Accountability, Business Artifacts, Normative MAS,
Social Commitments

1 The AThOS Project: Motivations and Introduction

Thanks to the recent technological advances, that make devices such as smart
phones and tablets indispensable tools in everyday life, the paradigm of So-
ciotechnical Systems (STSs) is rapidly spreading. STSs are complex systems
where human beings interact with each other by means of ICT infrastructures.
Humans may interact as members of the same organization, or enterprise, to
achieve an organizational (business) goal. More often than not, however, inter-
acting actors can belong to different organizations, and interaction is a means
for reaching their goals.

In STSs, humans are the central elements of the system, they are essential
to deliver the business goals. This central role of people makes STSs nondeter-
ministic systems, because human behavior is generally unpredictable'. However,
within organizations (and STSs) humans have relationships, duties, and com-
mitments, whose satisfaction is crucial to the delivery of the business goals and,
thus, to the well-being of the organization itself. Consistently, it is important,
both to the employee and to the management, to be aware when duties (or com-
mitments) are neglected, to understand the reasons, and decide if and how to act.
The problem is that the mere availability of an ICT infrastructure does not sup-
port the interacting principals in being aware of the expectations that are put on

! In the sense that the same person may react in different ways to similar situations,
depending on conditions that more often than not are not modeled in the system.

them, as it does not support who is in charge to get a clear picture of how tasks
are, or are not, being carried on. This aspect becomes aggravated when the STS
involves principals who belong to different organizations and cross-organizational
relationships have to be established and maintained.

It is precisely because of the principals’ autonomy that accountability becomes
a critical feature for an enterprise. When something deviates from the expected
and desired behavior, an accountable enterprise is committed to understand
what went wrong and why, and to find a proper course of repairing action. What
one expects from STSs is that such a process be, at least partially, automated.
In other words, STSs should provide the ground for a form of computational
accountability [4], where accountability is a property that can be checked at
runtime, or even enforced at design time.

There are, indeed, attempts in business software applications to model the
distribution of tasks and the related responsibility. For instance, the BPMN
language for modeling workflows supplies the lane construct to distribute tasks
among different actors. The idea is that an actor is responsible for performing
the activities that lay in its lane, but a lot is left to intuition. Specifically, re-
sponsibility is not modeled explicitly, it is grasped from the workflow structure
and may concern an office, not necessarily individuals. Then, being responsible
for carrying out some activity does not mean being accountable for it. A more
explicit instrument is the RACI matrix [29] by which each activity is associated
with at least one responsible actor, exactly one accountable actor, and possibly
some consulted and informed actors. The limit is that a RACI matrix is sub-
stantially an off-line resource that does not support actively an actor during her
activities. It cannot be used as a monitoring tool on-line, but just as piece of
data that a forum consults a posteriori to determine who was in charge of what.
In [14] RACI matrices are automatically derived from BPMN specifications, but
they are just used to support the resource assignment to each activity.

This paper reports the results of the two-year piloting phase of the AThOS?
project. The ambitious, long-term objective of the AThOS project is the de-
sign of a framework for computational accountability in the context of cross-
organizational business processes. From a methodological point of view, AThOS
aims at providing a modeling framework for STSs, where the focus is shifted from
a procedural representation of workflows to a declarative representation that is
centered around the key notions of interaction and social relationships among
actors. From a practical perspective, AThOS aims at providing a new enterprise
software engine that monitors on-going interactions (and processes), and sup-
ports accountability. To achieve these results, the framework we are developing
takes advantage of previous declarative approaches to the modeling of business
processes, and integrates them with an explicit, first-class representation of the
notion of “relationship”, that relies on social commitments [27]. On the practi-
cal side, relying on previous works in literature (among which [28,13]), we are
investigating the adoption of the paradigm of Multi-Agent Oriented Program-

2 The Accountable Trustworthy Organizations and Systems (AThOS) project, funded
by Universita degli Studi di Torino and Compagnia di San Paolo (CSP 2014).

ming for the realization of business processes. This would allow a programmer
to fully exploit the power of declarative agent programming frameworks (such
as JaCaMo [10]).

The paper begins by explaining the kind of accountability the research fo-
cuses on (Section 2). Then, it introduces the notion of accountability by design,
studying its feasibility in computational settings (Section 3). It continues by ex-
plaining the ADOPT protocol, which is a way to achieve computational account-
ability in multiagent systems (Section 4), and a first direction of implementation
(Section 5). A discussion ends the paper (Section 6).

2 Organizational accountability and why it is important

Accountability is a wide-ranging concept, that can take on many different char-
acteristics and meanings, depending on the discipline in which discussion takes
place. So, the first point that it is relevant to underline is that our focus is
posed on accountability in organizational settings. We do not care whether the
organization is persistent, meaning that it has long-lasting goals that will pro-
duce many interactions (like a selling company), or if it is specifically created
to achieve a once-in-a-time goal (like building a house), and will dissolve after-
wards. We assume, however, the organization’s functioning to be supported by
an STS. In such a context, we aim at realizing accountability as computational
process; more specifically, a backward-looking, institutional process that permits
one entity to be held to account by another.

The accountability process activates when a state of interest is reached, and
an authoritative entity wishes to hold to account those behind said state. Fol-
lowing [11], the process encompasses three primary phases: 1) an investigative
entity (forum) receives all information regarding the agents’ actions, effects, per-
missions, obligations, etc. that led to the situation under scrutiny, 2) the forum
contextualizes actions to understand their adequacy and legitimacy, and finally
3) the forum passes judgment on agents with sanctions or rewards. Our goal
consists in automating the entire process for use in a MAS, although we will
presently leave out the sanctioning piece of the third phase, which is already

studied in the literature on electronic institutions [16]. To realize our goal, we
begin by looking at the reasoning process behind accountability to identify points
of adaptation into the software world. Following [12], we believe that three condi-

tions should all realize for an STS to support an accountability system: agency,
causal relevancy, and avoidance opportunity. Such conditions enable account-
ability attribution. Agency means that the involved individuals are autonomous
(indeed, in our setting they are autonomous by assumption), that they have
reasoning capacity (idem), and that they can distinguish right and wrong. The
third condition is the one that, in our understanding, calls for support by an
STS. In order to distinguish right from wrong, individuals must be aware of the
binds they have with the others and with the organization, as agent’s “ethics”
will be expressed through adherence to norms and commitments contextualized
within an organization. Causal relevancy expresses the necessity of causation

linking a given agent to a situation under scrutiny. The avoidance opportunity
condition specifies that an “agent should have had a reasonable opportunity to
have done otherwise” [12]. Once again, awareness of the conditions an individual
will be held to account for is crucial, since such knowledge has an impact on the
choices of individuals as well as on its liability.

The realization of organizational accountability brings along practical advan-
tages which motivate the purpose of studying accountablity as a system prop-
erty. Evidence is provided by many studies and documents which promote the
adoption of accountability frameworks. Among them, reports by the United Na-
tions [33] and organizations like the OECD [26]. We briefly summarize the main
reasons for realizing accountability frameworks and, thus, to study computa-
tional accountability. First of all, accountability within an organization is more
than reporting information, disclosing reasons, or sanctioning the culprits. It is
generally considered as a powerful feedback mechanism aimed at improving per-
formance. An accountability framework, like the one of UNICEF [31] or WHO
[32], explicitly establishes desired results, monitors and measures performance,
uses the feedback obtained by the accountable parties to decide which changes
should be made (which actions should be taken) to achieve the intended result.
Such a process enables the evolution of an organization in a way that is func-
tional to the fulfillment of its objectives. It is helpful both in those situations
where the objectives, to be achieved, need to rely on external actors after the
stipulation of a covenant, and in those cases where objectives depend entirely on
processes that are internal to the organization itself. Another positive effect of
organizational accountability is that it helps turning implicit expectations into
explicit expectations. This is important because expectations that are not com-
municated create confusion and tensions inside an organization. Parties may be
unaware of what they should deliver. Instead, a clear awareness of the expec-
tations (and of the accountabilities) increases reliability, improves performance
and trust, and helps to achieve common goals.

3 Accountability by Design

The research question that raises at this point is whether it is possible to create
STSs that show accountability as a design property, that is, such that in every
state the accountable parties are clearly identifiable. Providing accountability
by design requires decision of how to tackle certain situations, long discussed
in philosophy as ethical dilemmas. One of these concerns is causal determin-
ism, that in our context we can rephrase as whether or not an agent should be
considered accountable for an adverse state if this state is inevitable, whatever
action the agent will perform. We adopt the incompatibilist position to moral
responsibility and conclude in a software setting that an agent cannot be held
accountable in causal determinism but that the discovery of inevitable states
lies with the agents. If an agent stipulates provisions for an inevitable adverse
state, that same adversity would be represented to some degree in its provisions
due to its inevitable nature. The agent would still be held accountable for the

state, because it effectively declares responsibility for a goal through its accepted
stipulated conditions. Likewise if an agent offers to realize a goal in the pres-
ence of a certain provisions, it is declaring for all intents and purposes that the
goal is possible under certain conditions. Should that agent offer up an incor-
rect assessment and the goal be effectively impossible even with stipulations, the
agent will nevertheless be held accountable, because the organization “believes”
an agent’s declaration. We therefore conclude, thanks to the distributed nature
of our vision of accountability, that an organization can consider absent both
impossibilities and inevitabilities. Another ethical dilemma concerns knowledge
of the consequences of one’s actions. That is, can one be held accountable for an
unforeseeable outcome?

As an example, consider a setting where a house is being built. The companies
and the workers who contribute to the construction constitute an organization.
In particular, the organization involves two members: one who should prepare
a wall, wall-preparer, and another, painter, who should paint the wall white at
some agreed price. The wall-preparer fulfills her /his task by spackling the wall
but instead of using a standard white spackle some dark colored one (a remainder
of a previous work) is used. Due to this unexpected action, painter has not the
correct amount of materials and cannot fulfill the painting task at the agreed
price. Though not coerced, painter cannot fulfill what expected of him/her,
due to the choices of another. Clearly, despite the fact that wall-preparer did
what assigned, the kind of spackle that was used hampers the painter’s work. In
this case it is difficult to identify an accountable party: the painter might have
provided adequate provisions instead of giving them as granted, the wall-preparer
might have asked if an unusual choice would have had consequences before doing
the work, the organization might have checked that the two members properly
coordinated. Their selfishness prevents their understanding the assigned tasks
as part of a greater work, and the lack of an explicit account of the relationships
between the agents (and their tasks) contributes to the picture but. On the
other hand, if expectations are not clear and shared, how could it be otherwise?
For instance, wall-preparer does not know the circumstances under which the
painter can achieve its goal, should it be held accountable for its decision of using
a colored spackle? To foster the good functioning of the organization, then, there
is the need of adequate support.

3.1 Characterization of Organizational Accountability

Accountability as a design property means that an STS is built in such a way that
accountability can be determined from any future institutional state. Indeed,
our goal lies in automating the entire process, that is, to create a structure
that creates and collects contextualized information so that accountability can
actually be determined from any future institutional state. We consider integral
to this process the following steps: a forum must receive all information, including
all causal actions, regarding a given situation under scrutiny, the forum must be
able to contextualize actions to understand their adequacy and legitimacy, and
finally the forum must be able to pass judgment on agents. One of the key

difficulties in realizing our goal lies with the notion of contextualized action. In
our own societies, contextualizing might entail an examination of circumstances:
for example, what should have a person done, why didn’t she/he do that, what
impact did her/his actions have, and given what the person had to work with,
did she/he act in an exemplary fashion? The same process in a MAS would be
guided by the same type of questions, though in order to facilitate the answers,
we need to make use of different structures. In particular, we need structures that
allow assessing who is accountable without actually infringing on the individual
and private nature of agents.

We identify the following necessary-but-not-sufficient principles a MAS must
exhibit in order to support the determination of organizational accountability.

Principle 1 All collaborations and communications subject to considerations
of accountability among the agents occur within a single scope that we call
organization.

Principle 2 An agent can enroll in an organization only by playing a role that
is defined inside the organization.

Principle 3 An agent willing to play a role in an organization must be aware
of all the powers associated with such a role before adopting it.

Principle 4 An agent is only accountable, towards the organization or another
agent, for those goals it has explicitly accepted to bring about.

Principle 5 An agent must have the leeway for putting before the organization
the provisions it needs for achieving the goal to which it is committing. The
organization has the capability of reasoning about the requested provisions
and can accept or reject them.

Principle 1 calls for situatedness. Accountability must operate in a specific con-
text because individual actions take on their significance only in the presence
of the larger whole. What constitutes a highly objectionable action in one con-
text could instead be worthy of praise in another. Correspondingly, a forum can
only operate in context and an agent’s actions must always be contextualized.
The same role in different contexts can have radically diverse impacts on the
organization and consequently on accountability attribution. When determining
attribution, thus, an organization will only take into account interactions that
took place inside its boundaries. Placing an organizational limit on accountabil-
ity determination serves multiple purposes. It isolates events and actors so that
when searching for causes/effects, one need not consider all actions from the be-
ginning of time nor actions from other organizations. Agents are reassured that
only for actions within an organization will they potentially be held accountable.
Actions, thanks to agent roles (Principle 2), also always happen in context.

To adequately tackle accountability by categorizing action, we must deal with
two properties within a given organization: 1) an agent properly completes its
tasks and 2) an agent does not interfere with the tasks of others. The principles
2-5 deal more explicitly with the first property, i.e., how to ensure that agents
complete their tasks in a manner fair for both the agents and the organization.
The second property is also partially satisfied by ensuring that, in the presence
of goal dependencies, the first agent in sequence not to complete its goal will bear

accountability, not only for its incomplete goal, but for all dependent goals that
will consequently remain incomplete. That is, should an agent be responsible
for a goal on whose completion other agents wait, and should that agent not
complete its goal, then it will be accountable for its incomplete goal and for that
goal’s dependents as well.

As an organizational and contextual aid to accountability, roles attribute so-
cial significance to an agent’s actions and can, therefore, provide a guide to the
severity of non-adherence. Following the tradition initiated by Hohfeld [20], a
power is “one’s affirmative ‘control’ over a given legal relation as against an-
other.” The relationship between powers and roles has long been studied in
fields like social theory, artificial intelligence, and law. By Principle 3 we stip-
ulate that an agent can only be accountable for exercising the powers that are
publicly given to it by the roles it plays. Such powers are, indeed, the means
through which agents affect their organizational setting. An agent cannot be
held accountable for unknown effects of its actions but, rather, only for conse-
quences related to an agent’s known place in sequences of goals. On the other
hand, an agent cannot be held accountable for an unknown goal that the organi-
zation attaches to its role, and this leads us to Principle 4. An organization may
not obligate agents to complete goals without prior agreement. In other words,
an organization must always communicate to each agent the goals it would like
the agent to pursue. Notice that with this principle we diverge from consider-
ations in the field of ethics regarding accountability in the presence of causal
determinism [19,12], where even in the absence of alternate possibilities humans
can be morally responsible thanks to the significance of the choice to act. Find-
ing the conversation fundamentally shifts when speaking of software agents, we
consequently conclude that accountability is not attributable in the presence of
impossibilities. Correspondingly, agents must be able to stipulate the conditions
under which a given goal’s achievement becomes possible, i.e. the agent’s re-
quested provisions. The burden of discovery for impossibilities, therefore, rests
upon an agent collective who announce them by their combined silence for a
given goal. That is, a goal becomes effectively impossible for a group of agents
should no agent stipulate a method of achievement. Conversely, an agent also
declares a goal possible the moment it provides provisions to that goal. Should
an uniformed agent stipulate insufficient provisions for an impossible goal that
is then accepted by an organization, that agent will be held accountable because
by voicing its provisions, it declared an impossible goal possible. The opportu-
nity to specify provisions, therefore, is fundamental in differentiating between
impossibilities and possibilities.

Going back to the painter example, before agreeing to be the organization’s
painter, painter would stipulate provisions for its role goals, in this case, white
wall. An organization, accepting painter’s provisions, would then add white wall
as a goal condition to the job description of wall-preparer. Wall-preparer would
in turn accept its new goal condition. Come execution time, when wall-preparer
adds the black stripe, not only will painter’s provisions not be met, but wall-
preparer will also have violated its own goal conditions. Since wall-preparer

knows what it did was wrong thanks to goal conditions, causally contributed
to an adverse situation of work failure, and could have avoided causally con-
tributing, it will be held accountable for the adverse state.

4 Reaching Accountability via the ADOPT Protocol

We now introduce our vision to achieve computational accountability via a
proper design of the interactions between software components. The first step
is a paradigm shift: from the process-oriented view to the agent-oriented view.
The process-oriented view is substantially activity-centric — that is, procedural.
It focuses on the (business) process that is carried on by a software component,
but overlooks the interaction between components, at the core of the realiza-
tion of STSs. Instead, an STS can be conveniently thought of as a Multi-agent
System (MAS) where software agents interact with each other on behalf of hu-
man principals. An advantage of the agent perspective is that it enables the
use of some design (and programming) abstractions.These are, for instance, the
environment where the agents operate, the norms governing organizations and
institutions, the roles, and their powers, possibly defined therein, and an explicit
representation of interactions, for instance, via social commitments.

The agent abstraction allows us to think of software modules as goal-oriented
components. That is, the focus moves from the activities within a process to the
goal the process aims at reaching. The design process can therefore be modu-
larized, because the interactions among agents (i.e., components) can be kept
separated from the inner process of each agent. In fact, interactions can be
specified as a consequence of the agents’ goals. That is, the agents create and
maintain interactions as a means for reaching their goals. The internal process
of the agent lies at a different design level with respect to interaction. For the
accountability purpose, only the interaction level is relevant since it makes ex-
plicit the engagements that agents have agreed upon. Monitoring the progress
of these engagements is one the main objectives of an accountable system.

Our intuition is that an STS can be seen as an organization in which agents
(i.e., the software components of the STS at hand) can join and operate. More
precisely, we follow the ontological definition of organizations given in [9]. Or-
ganizations are characterized by roles, which are first-class modeling entities.
Roles are actually social roles, and are related to their players (i.e., the agents),
and their organization by three properties: (1) a role must always be associated
with the institution it belongs to and with its player; (2) a role is meaningful
only within the institution it belongs to, and hence the definition of a role is
only given within an institution; (3) the actions defined for a role in an institu-
tion have access to the state of the institution and of other roles; these actions
are, therefore, the powers a role player is endowed with. In order to obtain an
accountable organization, we require that the interactions between the organiza-
tion and its members follow a given accountability protocol (ADOPT? [3,5]) that,

3 Accountability-Driven Organization Programming Technique

by realizing the five principles introduced above, guarantees accountability as a
design property of the system as a whole. In essence, the accountability protocol
makes the legal relationships between each agent and its organization explicit.
Relationships are expressed as a set of (abstract) commitments (i.e., contracts),
directed from the agents towards the organization itself, and vice versa. ADOPT
consists of two phases: the enactment phase, and the goal-assignment phase.

Enactment Phase. In this phase, an agent enrolls in an organization by playing
a role. During this phase, the agent is made aware of the powers the organization
will grant to it as a player of a specific role, and the agent will commit towards
the organization to use these powers when time will demand it. Let Ag; be the
agent willing to enroll in organization Org:

(1) Ag; : commit to be a player for role R; with powers pwr; 1 ...pwr; , if Org accepts
(2) Org : accept Ag; as player of role R;
(3) Ag; : commit to use the powers pwr; 1 ... pwr;, when Org demands to

In step (1) agent Ag; asks Org to join the organization becoming a player of
role R;, with powers pwr;; ...pwr; ,. Note that a power calls for a capability
of the agent to exercise it. For instance, the wall-preparer is given the power
to prepare the walls of the house being built, but to prepare the wall it needs
materials, skill, and to take approriate action. Thus, the powers associated with
role R; will pose some capability requirements on the agent side. An agent willing
to play role R; is made aware of the capabilities it has to possess for being a
proper actor of that role. The powers will be the means through which the agent
will operate within the organization by changing the state of the organization
itself. Capabilities, instead, will be sets of behaviors, owned by the agent, that
allow it to exercise the powers that go with some role the agent plays. In the
enactment phase the agent takes on the responsibility of this (previously implicit)
declaration. This allows overcoming the impossibility to inspect the agents’ code
(which is not disclosed) that characterizes, in particular, cross-organizational
settings as well as many STSs: the organization cannot verify whether the agent’s
implementation is compliant with the capability requirements, but if, during the
execution, the agent will be unable to exercise one of its powers, it will be deemed
accountable thanks to the commitments established during this phase.

The internal decision process, by which Org decides whether to accept the
agent, are outside the scope of ADOPT. Here we are only interested in the final
decision of accepting the agent. Step (2) encodes such a case. Once Org has
accepted Ag;, this agent is obliged, by the engagement created at step (1), to
commit to use R; powers in case Org will ever need them. This is done with the
commitments created at step (3). After these three steps, agent Ag; is enrolled
within the organization. Notably, these few steps are sufficient to satisfy the first
three principles we have identified. In fact, the protocol imposes the existence
of an organization within which all the relevant events must occur (Principle 1).
The protocol allows an agent to be part of an organization only by playing a
role within that organization (Principle 2), and finally, the protocol is such that
an agent is aware of the powers it will possibly use within the organization as
player of a specific role (Protocol 3).

Goal-assignment Phase. The second phase of ADOPT considers the assignment
of goals to some member of the organization. According to Principle 5, an agent
should be able to negotiate with the organization the provisions it needs in order
to accomplish a given goal. This negotiation is not part of the ADOPT proposal,
and any negotiation algorithm can be used. Here, we just assume that after the
negotiation, the agent and the organization have agreed upon the goal g; ; the
organization wants Ag; to perform, and the provision prov; ; the agent demands
to the organization as a prerequisite. Such an agreement is “sealed” by the agent
and the organization in the ADOPT protocol as below outlined.

(4) Org : commit to assign goal g; with provisions prov; j if Ag; accepts

(5) Agi : commit to bring about g; . if Org assigns it and brings about provisions prov;,
(6) Org : assign g;.x to Ag;

(7) Org : bring about provision prov; i

(8) Agi : achieve goalg; &

In step (4), Org commits towards agent Ag; that, if the agent will accept to
accomplish the goal, it will assign the goal to the agent, and will supply Ag; the
agreed provisions. Thus, also Org takes on commitments towards its members.
These commitments, in particular, assure that Org will never ask an agent to
bring about a goal, for which either no agreement was reached, or provisions are
missing. In case Org contravenes this expectation, it will be held accountable
as any other player in the system. In step (5), Ag; creates the commitment of
bringing about goal g; », provided that the provisions prov; , have been supplied,
and the goal has been assigned to it. In the last three steps, the two parties
operate so as to satisfy their commitments. Org will bring about the provisions?,
and will assign goal ¢; 1 to Ag;. On its side, Ag; will try achieve the assigned
goal so as to satisfy its commitment towards Org.

ADOPT supports the realization of an accountable system through the mu-
tual commitments that exist between Org and any agent Ag;, which are made
explicit. This feature realizes Principle 4, for which an agent is accountable only
for those goals it has explicitly accepted to achieve. In fact, in our proposal,
an organization cannot command one of its members to achieve a goal. Rather,
the organization will propose a goal, and the agent will have to decide whether
explicitly accepting that goal. Only in this way it becomes possible to assess
accountability. It is possible to verify that the ADOPT protocol satisfies Princi-
ple 4 via model checking. In fact, differently from the other principles that are
directly satisfied by the structure of the organization we propose, the verification
of this principle demands consideration of the possible evolutions of the proto-
col. Indeed, one has to guarantee that, in any possible run of the protocol, the
organization assigns a goal to an agent only when this goal is accepted. In [3] we
discuss how the ADOPT protocol can be encoded as an interpreted system [18],
and then, by means the MCMAS model checker [21], the validity of Principle 4
can be verified in terms of CTL formulae.

4 Provisions will reasonably be supplied by other agents within the organization.

Active

— antecedent
(__Conditional

I T 1
antecedent_fail consequent consequent_fail

} } |
(" Expired) (_ Satisfied) (_ Violated)

Fig. 1. Commitment life cycle.

5 Implementing ADOPT and Future Directions

One straightforward way for implementing ADOPT is to rely on the notion of
social commitment [15,27]. A social commitment (sometimes called commitment,
for simplicity, in the following) is a sort of contract between two parties: a debtor
commits towards a creditor to bring about a consequent condition con should
an antecedent condition ant occur. Social commitments, thus, find a direct map-
ping with the commitments that arise in the ADOPT protocol. Formally, com-
mitments have the form C(debtor, creditor, ant, con), and their evolution follows
the lifecycle reported in Figure 1: a commitment is Violated either when its an-
tecedent is true but its consequent will forever be false, or when it is canceled
when Detached. It is Satisfied, when the engagement is accomplished (notice
that a commitment does not need to be detached before being satisfied). It is
Ezpired, when it is no longer in effect and therefore the debtor would not fail to
comply even if does not accomplish the consequent. Active has two substates:
Conditional as long as the antecedent does not occur, and Detached when the
antecedent has occurred. Commitments have a normative value because when
the antecedent condition is satisfied, the debtor is obliged to bring about the
consequent, lest the violation of the commitment. Differently from obligations
in deontic logic, however, a commitment can only be created by its debtor; thus,
its creation is a consequence of an internal process of the debtor, rather than
the consequence of a normative system as it happens with obligations.

Commitments can be used to specify the semantics of message-based pro-
tocols, or they can be a means for specifying protocols on their own, see for
instance the JaCaMo+ agent platform [1], an extension of JaCaMo [10], where
commitment-based protocols are made available as a specification of protocol ar-
tifacts. Commitments are, therefore, a viable tool for the realization of account-
able systems because, on the one side, the ADOPT protocol is easily mapped
into a commitment-based interaction protocol and, on the other side, there are
agent platforms that support commitments as a native programming element,
providing a technological infrastructure for the implementation of accountable
STSs. The adoption of commitments opens also novel development directions,
that we will shortly outline in the rest of this section.

5.1 Accountability of Information Management with Normative
Business Artifacts

In the quest for the computational accountability, we have previously advocated
a shift from a procedural view to an agent-oriented view, which usually features
on a declarative approach. Think, for instance to BDI agents and the way they
are realized in many agent-based platforms (e.g. JaCaMo [10] and JaCaMo+
[1]). Indeed, the use of declarative formalisms for Business Process Management
is not new. BALSA [7] is a first attempt to define processes in terms of declara-
tive ECA-rules (i.e., Event-Condition-Action). The BALSA methodology relies
on the important notion of business artifact [25]. A business artifact is a key con-
ceptual business entity that is used in guiding the operation of a business. It is a
concrete, identifiable, self-describing chunk of information. It is characterized by
two specifications: (1) an information model that defines what relevant data are
traced by the artifact, and (2) a lifecycle model that defines how such data can
evolve as a consequence of business operations on the artifact itself. Importantly,
both specifications are accessible to the processes that use the business artifact.
The BALSA methodology is targeted to specify a data-centric declarative model
of business operations. It can be summarized in three steps: 1) identify the rel-
evant business artifacts of the problem at hand and their lifecycles, 2) develop
a detailed specification of the services (or tasks) that will cause the evolution of
the business artifact lifecycles, 3) define a number of ECA-rules that create asso-
ciations between services and business artifacts. ECA-rules thus are the building
blocks to define, in a declarative way, processes operating on data.

BALSA is extremely interesting, in particular because it introduces a novel
perspective on the modeling of business processes. However, when it comes to the
coordination of different business processes, the methodology refers to choreogra-
phy languages and techniques proposed for service-oriented computing. Thence
one of the major disadvantages of this approach and of its descendants, that is
the lack of a clear separation of concerns between the coordination logic and the
business logic. A business process will internalize the message exchange specified
by the choreography at hand. Should the choreography be changed, it would
be necessary to modify also the business processes accordingly. The happens
because choreographies realize a form of subject coordination.

In [2] we introduce the notion of normative business artifact, as a way to
obtain objective coordination. Inspired by the activity theory [17], we propose
to use a business artifact as a coordination medium. To this end, the business
artifact is enhanced with a normative layer in which the mutual expectations
that each agent has on the others are made explicit, and hence can be used
for coordinating the agents’ activities. Apart from the advantage of having a
form of objective coordination, normative business artifacts allow one to think
about accountability of data and information management. That is, instead of
considering just the state changes of a piece of information, it is also important
to take into account other aspects of information management such as its cor-
rectness, its accessibility and spreading (inside and outside an organization), its
usage during the decision making of agents, and so on. An interesting direction

of research is to investigate the use of social commitments for tackling these in-
formation management aspects as accountability requirements that, specified at
design time, become a guide for the practical development of accountable ST'S.

5.2 Practical Reasoning and Accountability

The ADOPT protocol aims at supporting accountability at the organizational
level, that is, ADOPT formalizes how an accountable relationship can be estab-
lished between an organization and each of its members. Our long-term goal,
however, is to realize an accountable system where the accountability property
cuts across all aspects of an organization, and hence it holds not only between
the organization and each member, but also between any two members of the
organization. This is particularly important, and challenging, in an STS, where
agents are autonomous in the achievement of their goals, and the interactions
raising in this process may be problematic. The intuition, thus, is that every
interaction that arises between any two agents in an organization should be ac-
countable, in the sense that it should always be possible to identify an agent
that is held to account towards another agent about its conduct. It is worth
noting, however, that the accountability property must not be thought of as a
means for limiting the autonomy of the agents. On the contrary, in our view, an
accountable system supports the agents in their practical reasoning by making
their (mutual) expectations explicit.

Commitments can play a fundamental role in realizing this vision since they
formalize a tie between the internal goal of an agent with the relationships that
the same agent may create in order to achieve that goal. In [30] this relation
between goals and commitments is formalized by an operational semantics given
as a set of patterns of practical reasoning rules. The Social-Continual Planning
(SCP) technique introduced in [6] is a first attempt to integrate practical rules
within a planning framework. SCP enables agents to plan their interactions as
a means for achieving their goals. As future work, we intend to extend the SCP
technique so as to guarantee that the planned interactions compose, altogether,
an accountable system.

Another important aspect that we have to consider in the development of an
accountable system, is that agents are autonomous and can violate their commit-
ments on purpose. This eventuality must not be overlooked by a well-designed
accountable framework; nonetheless, an accountable system is not, in our view,
finalized to sanctioning the agents that violate their commitments (although
sanctioning mechanisms could be contemplated). Our goal, in fact, is in providing
agents with feedback about their accountability relationships. Under this respect,
an accountable framework should include some form of diagnostic reasoning (see
e.g., [24,23]), in order to detect deviations from the expected evolutions of an
interaction, and provide the involved agents with possible explanations of what
has occurred. These explanations (the feedback) are an important source of in-
formation that the agents can exploit in their practical reasoning for recovering
from the violation of some commitments. A plan repair technique, driven by the
results of a diagnostic inference in a multi-agent setting, is discussed in [22]. In

the next future, we aim at integrating such a plan repair technique within SCP,
this would allow agents not only to plan their interactions, but also to properly
react when these interactions do not progress as expected.

6 Discussion and Conclusions

In this paper we have summarized the main results about computational ac-
countability we have collected in the scope of the AThOS project. AThOS was
a two-year, local project completed in 2017, whose main objective was to shed
some light on the design and development of accountable Sociotechnical Systems
(STSs). Current methodologies for the development of STSs, are mainly focused
on procedural aspects, with the purpose of gaining in efficiency of execution.
Many such systems rely on languages (like BPMN, YAML, or UML Activity
Diagrams) and related tools for modeling workflows. The procedural perspec-
tive is inadequate for the computational accountability purpose. First of all, it
results in a too rigid model where the possible lines of activity are all delineated
a priori. Each actor is forced to follow a predefined course of action, without
the possibility to deviate for taking advantage of arising opportunities or for
managing unexpected emergencies. More importantly, a procedural perspective,
being activity-centric, overlooks the interaction dimension, which is central for
the accountability reasoning. An accountability system, in fact, should in prin-
ciple involve at least two actors: one which is held to account for its actions, and
one (often referred to as the forum) which judges the conduct of the previous
one. Both actors rely on the relationships they have created, and on the mutual
expectations these relationships induce, to sustain their position (i.e., good vs.
bad conduct). The AThOS project answers to these deficiencies by modeling
STSs based on the typical abstractions provided by the agent-oriented paradigm
(e.g., electronic institutions, organizations, norms, etc.). By leveraging on these
abstraction, the main contribution of AThOS lies in the definition of organi-
zational accountability: the STS becomes the organization within which all the
relevant interactions among the actors (i.e., the agents) occur, and are explicitly
traced. We have introduced five principles underpinning the accountability at the
organizational level, and presented the ADOPT protocol as a means for satisfy-
ing these principles at the design of the STS. From a practical point of view, we
have envisaged the use of social commitment for representing, and manipulating,
the accountability relationships between the organization and its members.
Social commitments pave the way to further extensions that are sketched
in the paper. They provide a promising solution for dealing with accountability
of data and information management, overcoming some limits of the artifact-
centric proposals [7,3], namely the use of choreographies for the synchronization
of the activities of different processes. Since choreographies capture interaction
only in terms of exchanged messages, it will not be possible, by looking at a
choreography, to reason on the relationships between some actors, or to have
expectations on their behavior. In AThOS, we have investigated an extension
to business artifacts with a normative layer. Such a normative layer makes ex-

plicit the mutual expectations that processes (i.e., agents in our agent-oriented
perspective) may have on each other while using a given business artifact. A
first advantage of normative business artifacts is that the coordination among
agents needs not a further modeling element such a choreography. Indeed, the
business artifact itself becomes the medium of coordination, with a significant
improvements from the software engineering point view, as we have observed.
In addition, normative business artifact could be the key for the definition of
accountability of data and information. The idea, is not only to model how the
information can evolve over an interaction, but also how operations on data
influence the way in which agents behave.

Another interesting line of research that stems from using social commit-
ments is about acting in an accountable system. In [6] we have introduced
a methodology—Social Continual Planning—integrating practical reasoning pat-
terns relating goals and commitments [30] into a multi-agent planning frame-
work. The technique is a good starting point for developing systems where the
accountability property is guaranteed not only between an agent and the orga-
nization it belongs to, but also between any two agents that come to interact
in the attempt to achieve their own goals. Thus, this is a promising line for
reaching the desiderata of establishing accountable relationships across all levels
of an organization.

References

1. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Commitment-based
Agent Interaction in JaCaMo+. Fundamenta Informaticae, 157:1-33, 2018.

2. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
Objective Coordination with Business Artifacts and Social Engagements. In E. Te-
niente and M. Weidlich, editors, Business Process Management Workshops, BPM
2017 International Workshops, Revised Papers, volume 308 of Lecture Notes in
Business Information Processing (LNBIP), pages 1-18, Barcelona, Spain, 2018.
Springer. This paper has been presented at the First Workshop on BP Innovations
with Artificial Intelligence, BPAT 2017, organized by Koehler, J., Montali, M., Sri-
vastava, B., Stuckenschmidt, H., De Masellis, R., Di Fracescomarino, C., Maggi,
F. M., and Senderovich, A.

3. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Ste-
fano Tedeschi. ADOPT JaCaMo: Accountability-Driven Organization Program-
ming Technique for JaCaMo. In A. Bo, A. Bazzan, J. Leite, L. van der Torre,
and S. Villata, editors, PRIMA 2017: Principles and Practice of Multi-Agent Sys-
tems, 20th International Conference, number 10621 in Lecture Notes in Computer
Science, pages 295-312, Nice, France, October 30th-November 3rd 2017. Springer.

4. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and
Stefano Tedeschi. Computational accountability. In Proceedings of the AI*IA
Workshop on Deep Understanding and Reasoning: A Challenge for Next-generation
Intelligent Agents 2016, volume 1802 of CEUR Workshop Proceedings, pages 56—62.
CEUR-~-WS.org, 2017.

5. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Ste-
fano Tedeschi. Supporting Organizational Accountability inside Multiagent Sys-
tems. In R. Basili, F. Esposito, S. Ferilli, and F. A. Lisi, editors, AT*IA 2017:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Advances in Artificial Intelligence, XVI International Conference of the Italian
Association for Artificial Intelligence, volume 10640 of Lecture Notes in Computer
Science, pages 403—417, Bari, Italy, November 14th—17th 2017. Springer.

Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio. Social continual plan-
ning in open multiagent systems: A first study. In PRIMA 2015: Principles and
Practice of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy,
October 26-30, 2015, Proceedings, pages 575-584, 2015.

Kamal Bhattacharya, Nathan S. Caswell, Santhosh Kumaran, Anil Nigam, and
Frederick Y. Wu. Artifact-centered operational modeling: Lessons from customer
engagements. IBM Systems Journal, 46(4):703-721, 2007.

Kamal Bhattacharya, Richard Hull, and Jianwen Su. A data-centric design method-
ology for business processes, pages 503-531. Handbook of Research on Business
Process Modeling. IGI Publishing, 2009.

Guido Boella and Leendert W. N. van der Torre. The Ontological Properties of
Social Roles in Multi-Agent Systems: Definitional Dependence, Powers and Roles
playing Roles. Artificial Intelligence and Law Journal (AlLaw), 15(3):201-221,
2007.

Olivier Boissier, Rafael H. Bordini, Jomi F. Hiibner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Sci. Comput. Program.,
78(6):747-761, 2013.

Mark Bovens, Robert E. Goodin, and Thomas Schillemans, editors. The Ozford
Handbook of Public Accountability. Oxford University Press, 2014.

Matthew Braham and Martin van Hees. An anatomy of moral responsibility. Mind,
121(483), 2012.

P. Bresciani and P. Donzelli. A Practical Agent-Based Approach to Requirements
Engineering for Socio-technical Systems. In Agent-Oriented Information System,
volume 3030 of LNCS. Springer, 2003.

Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. Automated Re-
source Assignment in BPMN Models Using RACI Matrices, pages 56-73. Springer,
Berlin, Heidelberg, 2012.

Cristiano Castelfranchi. Commitments: From individual intentions to groups and
organizations. In ICMAS, pages 41-48. The MIT Press, 1995.

Mark d’Inverno, Michael Luck, Pablo Noriega, Juan A. Rodriguez-Aguilar, and
Carles Sierra. Communicating open systems. Artif. Intell., 186:38-94, 2012.

Yrj6 Engestrom, Reijo Miettinen, and Raija-Leena Punamaéki, editors. Perspectives
on Activity Theory. Cambridge University Press, Cambridge, UK, 1999.

Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. Reasoning about knowledge.
MIT Press, 1995.

Harry G. Frankfurt. Alternate possibilities and moral responsibility. The Jounral
of Philosophy, 66(23), 1969.

Wesley Newcomb Hohfeld. Some fundamental legal conceptions as applied in ju-
dicial reasoning. The Yale Law Journal, 23(1):16-59, 1913.

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-source
model checker for the verification of multi-agent systems. STTT, 19(1):9-30, 2017.
Roberto Micalizio. Action failure recovery via model-based diagnosis and confor-
mant planning. Computational Intelligence, 29(2):233-280, 2013.

Roberto Micalizio and Pietro Torasso. Agent cooperation for monitoring and di-
agnosing a MAP. In Multiagent System Technologies, Tth German Conference,
MATES 2009, Hamburg, Germany, September 9-11, 2009. Proceedings, pages 66—
78, 2009.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Roberto Micalizio and Pietro Torasso. Cooperative monitoring to diagnose multi-
agent plans. Journal of Artificial Intelligence Research, 51:1-70, 2014.

Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3):428 — 445, 2003.

OECD. Effective institutions and the 2030 agenda for sustainable develop-
ment. http://wuw.effectiveinstitutions.org/media/Session_1_Background_
note_SDG.pdf.

Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97-113, 1999.

Munindar P. Singh. Norms as a basis for governing sociotechnical systems. ACM
Transactions on Intelligent Systems and Technology, 5(1):21:1-21:23, 2013.
Michael L. Smith and James Erwin. Role and responsibility charting
(RACI). https://pmicie.starchapter.com/images/downloads/raci_r_web3_1.
pdf, 2005.

Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. Relating Goal and
Commitment Semantics. In Post-proc. of ProMAS, volume 7217 of LNCS. Springer,
2011.

United Nations Children’s Fund. Report on the accountability sys-
tem of UNICEF. https://www.unicef.org/about/execboard/files/
09\discretionary{-}{}{}15\discretionary{-}{}{}accountability\
discretionary{-}{}{}0DS-English.pdf, 2009. E/ICEF/2009/15.

World Health Organization. WHO accountability framework. http://www.who.
int/about/who_reform/managerial/accountability-framework.pdf, 2015.
Mounir Zahran. Accountability Frameworks in the United Nations Sys-
tem. https://www.unjiu.org/en/reports-notes/JIU)20Products/JIU_REP_
2011_5_English.pdf, 2011. UN Report.

 http://www.effectiveinstitutions.org/media/Session_1_Background_note_SDG.pdf
 http://www.effectiveinstitutions.org/media/Session_1_Background_note_SDG.pdf
https://pmicie.starchapter.com/images/downloads/raci_r_web3_1.pdf
https://pmicie.starchapter.com/images/downloads/raci_r_web3_1.pdf
 https://www.unicef.org/about/execboard/files/09\discretionary {-}{}{}15\discretionary {-}{}{}accountability\discretionary {-}{}{}ODS-English .pdf
 https://www.unicef.org/about/execboard/files/09\discretionary {-}{}{}15\discretionary {-}{}{}accountability\discretionary {-}{}{}ODS-English .pdf
 https://www.unicef.org/about/execboard/files/09\discretionary {-}{}{}15\discretionary {-}{}{}accountability\discretionary {-}{}{}ODS-English .pdf
 http://www.who.int/about/who_reform/managerial/accountability-framework.pdf
 http://www.who.int/about/who_reform/managerial/accountability-framework.pdf
 https://www.unjiu.org/en/reports-notes/JIU%20Products/JIU_REP_2011_5_Englis h.pdf
 https://www.unjiu.org/en/reports-notes/JIU%20Products/JIU_REP_2011_5_Englis h.pdf

