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Abstract 

 

Recent evidence implicates adaptive immunity as a key player in the mechanisms supporting 

hepatic inflammation during the progression of experimental nonalcoholic fatty liver disease 

(NAFLD). In these settings, patients with NAFLD often show an increase in the circulating levels of 

antibodies against oxidative stress-derived epitopes (OSE).  Nonetheless, the actual role of 

humoral immunity in NAFLD is still unclear.  This study investigates the contribution of B-

lymphocytes to NAFLD evolution. 

B-lymphocyte immunostaining of liver biopsies from NAFLD patients showed that B-cells were 

evident within cell aggregates rich in T-lymphocytes. In these subjects, B/T-lymphocyte infiltration 

positively correlated with both circulating IgG targeting oxidative stress-derived epitopes (OSE) 

and interferon-γ (IFN-γ) levels. Furthermore, high prevalence of lymphocyte aggregates identified 

patients with more severe lobular inflammation and fibrosis. In mouse models of NAFLD, the onset 

of steatohepatitis was characterized by hepatic B2-lymphocytes maturation to plasma cells and by 

an elevation in circulating anti-OSE IgG titers. B-cell responses preceded T-cell activation and were 

accompanied by the up-regulation in the hepatic expression of B-cell Activating Factor (BAFF). 

Selective B2-cell depletion in mice over-expressing a soluble form of the BAFF/APRIL receptor 

Transmembrane Activator and Cyclophilin Ligand Interactor (TACI-Ig) prevented plasma cell 

maturation and Th-1 activation of liver CD4+ T-lymphocytes. Furthermore, TACI-Ig mice showed 

milder steatohepatitis and a decreased progression to fibrosis. Similarly, mice treatment with the 

BAFF-neutralizing monoclonal antibody Sandy-2 prevented hepatic B2-cell responses and 

ameliorated steatohepatitis.  

From these data we conclude that B2-lymphocyte activation is an early event in NAFLD evolution 

and contributes to the disease progression through the interaction with T-cells. Furthermore, 

combined clinical and experimental data suggest that elevated circulating anti-OSE IgG can identify 

a subset of NAFLD patients in whom adaptive immunity has a relevant role in the disease 

evolution toward fibrosis.    
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Introduction 

 

In the last decade, nonalcoholic fatty liver disease (NAFLD) has emerged as a growing cause of liver 

fibrosis/cirrhosis, while end-stage nonalcoholic steatohepatitis (NASH) is already the second most 

common indication for liver transplantation in the United States [1]. Moreover, NAFLD/NASH is 

increasingly recognized as an important cause of hepatocellular carcinoma (HCC) [2].    Beside the 

effects on the liver, epidemiological data indicate a strong association between NAFLD and the 

prevalence of extra-hepatic complications, such as type 2 diabetes mellitus, cardiovascular 

diseases, chronic kidney disease and osteoporosis [3]. In all these settings, hepatic inflammation 

that characterizes NAFLD evolution to nonalcoholic steatohepatitis (NASH) is considered the 

driving force for the progression to cirrhosis as well as an independent risk factor for extrahepatic 

complications [3]. However, the mechanisms responsible for steatohepatitis are still incompletely 

understood.   

Several factors have been proposed to sustain hepatic inflammation in NASH pathogenesis. 

Among these, the best characterized are persistent parenchymal injury due to oxidative stress and 

lipotoxicity, as well as inflammasome activation and the direct stimulation of Kupffer cells by 

either excess of circulating free fatty acids and cholesterol or by gut-derived bacterial products [4-

7]. As a result, circulating monocytes are recruited within the liver and, by differentiating into M1 

polarized macrophages, further contribute to the release of pro-inflammatory mediators and to 

oxidative stress-induced damage [8]. Although these mechanisms implicate an extensive 

involvement of innate immunity, they do not explain the large inter-individual variability in the 

development of hepatic inflammation.  

An emerging body of evidence indicates that, besides the role of innate immune responses, NASH 

is also characterized by the involvement of adaptive immunity. Indeed, lobular and portal 

lymphocyte infiltration is a histological feature of human NASH [9], while experimental NASH 

models show that CD4+ and CD8+ T-lymphocytes, B-lymphocytes and natural killer T-cells (NKT) are 

recruited within the liver in parallel with the worsening of steatohepatitis [10,11]. T-cell subsets in 

NASH livers express activation markers (CD44, CD69) and show an enhanced production of 

interferon-γ (IFN-γ), interleukin (IL)-17A, IL-17F and tumor necrosis factor superfamily member 14 

(TNFSF14; LIGHT), indicating that lymphocytes infiltrating the liver are functionally activated [10-

12]. These findings are supported by clinical observations showing that human NASH is 
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characterized by an increase in circulating IFN-γ-producing CD4+ T-cells as well as enhanced IFN-γ 

production within the liver [13,14] in relation to CD8+ T- and NKT-cell infiltration [10,15]. 

Conversely, the severity of experimental NASH is greatly lowered in Rag1-/- mice, which are unable 

to mount adaptive immune responses [10]. Accordingly, the lack of CD8+ T- and NKT-cells as well 

as LIGHT, IFN-γ and IL-17 deficiencies ameliorate steatohepatitis and prevent its evolution to HCC 

[10, 12, 16].  In these settings, we have shown that epitopes derived from oxidative stress (OSE), 

namely malonyldialdehyde (MDA) and 4-hydroxynonenal (4-HNE) protein adducts, are involved in 

the activation of adaptive immunity in NASH [11]. In fact, mice treatment with antioxidants lowers 

immune responses [17], whereas the immunization with MDA-adducts before NASH induction 

further stimulates lobular inflammation by promoting Th-1 activation of liver CD4+ helper T-cells 

[11]. Besides T-cell-mediated immunity, experimental NASH is also characterized by humoral 

immune responses involving the production of IgG against OSE [11,17].  Elevated titers of the 

same antibodies are detectable NAFLD/NASH patients in whom are associated with increased 

hepatic inflammation [19] and are an independent predictor of advanced fibrosis [18].  

These observations and the notion that adipose tissue infiltration by B-lymphocytes plays a key 

role in supporting systemic inflammation and insulin resistance in obesity [20,21], prompted us to 

investigated the role of B-lymphocytes in the pathogenesis of NASH.   

 

Materials & Methods 

Human specimen collection and analysis. Liver biopsies from 41 consecutive patients with 

NAFLD/NASH, referring to the Liver Unit of the University Hospital of Novara from 2011 to 2016, 

were analyzed. All samples were collected at the time of first diagnosis. Patients were 

characterized by anthropometric, clinical and biochemical data and liver biopsies were evaluated 

for the severity of steatohepatitis and fibrosis according to Kleiner et al. [22]. All subjects gave 

informed consent to the analysis and the study was planned according to the guidelines of the 

local ethical committee. The clinical and biochemical features of patients are reported in 

Supplementary Table 1. 

Animals and experimental protocol. Transgenic TACI-Ig mice on C57BL/6 background [23] were a 

kind gift of Dr. A. Villunger (Division of Developmental Immunology, Biocenter, Medical University 
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Innsbruck, Innsbruck, Austria). Eight-week-old male wild type and TACI-Ig mice were fed ad libitum 

with either methionine/choline deficient (MCD) diet for 1 or 4 weeks or with a choline deficient 

and amino acid defined (CDAA) diet for 12 or 24 weeks (Laboratorio Dottori Piccioni, Gessate, 

Italy). Control animals received the same diets supplemented by either choline/methionine or 

choline. In some experiments, mice were injected intra-peritoneally with the BAFF neutralizing 

monoclonal mouse IgG1 Sandy-2 [24] (2 µg/g body weight; Adipogen, Liestal, Switzerland) at the 

start and after two weeks of MCD diet. Control animals received isotype-matched IgG. The animals 

were housed at 22°C with alternating 12 hours light/dark cycles. The mice were not fasted before 

sample collections. In all the experiments euthanasia was performed under isofluorane anesthesia 

between 9 a.m. and 12 a.m. The experimental procedures complied with the EU guidelines for 

animal experimentation and were approved by the Italian Ministry of Health. 

Measurement of antibody titers against OSE. Anti-OSE IgG reactivity was evaluated by enzyme-

linked immunosorbent assay (ELISA). Malonyl-dialdehyde (MDA) adducts with either human serum 

albumin (MDA-HSA; human studies) or bovine serum albumin (MDA-BSA; animal studies) were 

prepared as previously reported [18] and used to coat polystyrene microwell ELISA plates (Nunc, 

Roskilde, Denmark). 

Biochemical analysis. Plasma alanine aminotransferase (ALT) and liver triglycerides were 

determined by spectrometric kits supplied by Gesan Production S.r.l. (Campobello di Mazara, Italy) 

and Sigma Diagnostics (Milan, Italy), respectively. Circulating TNF-α was evaluated by commercial 

ELISA kits supplied by Peprotech (Milano, Italy).   

Histology and immunohistochemistry. Serial sections from paraffin-embedded human liver 

biopsies were immune-stained with anti-CD20 and anti-CD3 antibodies (Roche/Ventana, Tucson, 

AZ, USA) using Bond Polymer Refined Detection kit on the Bond Max auto-stainer (Leika 

Biosystems, Wetzlar, Germany). The presence of B-/T-cell aggregates was evaluated semi-

quantitatively according to the size and number. Hematoxylin/eosin stained mouse liver sections 

were scored blindly for steatosis, lobular inflammation and fibrosis [11]. Collagen deposition was 

detected by Picro-Sirius Red staining. Liver activated hepatic stellate cells were evidenced in 

formalin-fixed sections using an α-smooth muscle actin (α-SMA) polyclonal antibody (Labvision, 

Bio-Optica, Milan, Italy) in combination with a horseradish peroxidase polymer kit (Biocare 
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Medical, Concord, CA, USA). The extension of Sirius Red and α-SMA-positive areas was quantified 

by histo-morphometric analysis using the ImageJ software (https://imagej.nih.gov/ij/). 

Intrahepatic mononucleated cell isolation and flow cytometry analysis. Liver mononucleated cells 

were isolated from the livers of naive and MCD-fed mice and purified on a density gradient 

(Lympholyte®-M, Cedarlane Laboratoires Ltd. Burlington, Canada) as described in [25]. Cells were 

washed with Hank’s medium and incubated 30 min with de-complemented mouse serum to block 

nonspecific immunoglobulin binding. The cells were then stained with fluorochrome-conjugated 

antibodies for CD45, CD3, CD4, CD8, B220, IgM, CD69, CD23, CD43, MHCII CD11c, CD80 

(eBiosciences, San Diego CA, USA), CD138 (BD Biosciences, Franklin Lakes, NJ, USA) and analyzed 

with a FACScalibur (Becton Dikinson, Franklin Lakes, NJ, USA) or AttuneTM NxT (Thermo Fischer 

Scientific, Waltham, MS, USA) flow cytometers. Intracellular staining for TNF-α, IFN-γ and IL-10 

was performed using specific fluorochrome-conjugated antibodies (eBiosciences, San Diego CA, 

USA) after cell permeabilization with saponin (Permeabilization Kit, eBiosciences, San Diego CA, 

USA). Single cells were pre-gated on CD45+. 

mRNA extraction and Real time PCR. Liver RNA was retro-transcribed with the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy) in a Techne TC-312 thermocycler 

(TecneInc, Burlington NJ, USA). Real Time PCR was performed in a CFX96™ Real-time PCR 

System (Bio-Rad, Hercules, California, USA) using TaqMan Gene Expression Master Mix and 

TaqMan Gene Expression probes for mouse TNF-α, IL-12p40, CCL2, CXCL10, IFN-γ, CD154, T-bet, 

BAFF, APRIL, α1-procollagen, TGF-β1, α-SMA and beta-actin (Applied Biosystems Italia, Monza, 

Italy). All samples were run in duplicate and the relative gene expression was calculated as 2-ΔCt 

over that of β-actin gene. The values were expressed as fold increase over control samples.  

Data analysis and statistical calculations. Statistical analyses were performed by SPSS statistical 

software (SPSS Inc. Chicago IL, USA) using one-way ANOVA test with Tukey’s correction for 

multiple comparisons or Kruskal-Wallis test for non-parametric values. Significance was taken at 

the 5% level. Normality distribution was preliminarily assessed by the Kolmogorov-Smirnov 

algorithm. 
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Results 

B- and T-lymphocyte responses in human NASH. 

We previously reported that NAFLD/NASH patients have humoral immunity against OSE [18,19]. 

These findings were confirmed in the present study by measuring circulating IgG targeting MDA-

derived adducts in a new cohort of 41 patients (17 male/24 female) with histological diagnosis of 

NAFLD/NASH. Among these patients, 10 (24%) had steatosis only, 7 (17%) steatosis with mild 

lobular inflammation, while the remaining 24 (59%) had NASH with variable degrees of fibrosis. As 

shown in Figure 1A, 18 (43%) of NAFLD/NASH patients had titers of anti-OSE IgG above the control 

threshold. Furthermore, in agreement with previous observations [18], the prevalence of 

advanced fibrosis or cirrhosis (staging ≥2) was higher among the subjects with elevated anti-OSE 

IgG as compared to those with anti-OSE reactivity within the control range (OR=3.25; 95% CI 1.03-

15; p=0.05). As compared to healthy controls, NAFLD/NASH patients had also elevated circulating 

IFN-γ levels (Fig. 1B). Serum IFN-γ was higher among NAFLD/NASH patients showing high anti-OSE 

IgG reactivity (Fig. 1C) and positively correlated with the severity of fibrosis (Spearman r=0.59; 95% 

CI 0.07-0.86; p=0.03). Immunostaining of serial sections from liver biopsies of the same patients 

using, respectively, the B-cell marker CD20 and the T-cell marker CD3 showed that in 26 (63%) 

liver specimens CD20+ B-cells were evident within mononucleated cell aggregates rich of CD3+ T-

lymphocytes (Fig 1D). The prevalence of B/T-lymphocyte infiltration was independent from age, 

BMI, HOMA-IR, transaminase release and the degree of steatosis. However, NAFLD/NASH patients 

with marked/high B-/T-cell infiltration had elevated anti-OSE IgG titers (Fig. 1E) as well as higher 

scores of lobular inflammation and fibrosis than the subjects with low/mild infiltration (Fig. 1F-G). 

The number and size of lymphocyte aggregates also positively correlated with circulating IFN-γ 

levels (Spearman r=0.45; 95% CI 0.005-0.048; p=0.02), lobular inflammation score (Spearman 

r=0.45; 95% CI 0.17-0.67; p=0.003 and r=0.39; 95% CI 0.10-0.62; p=0.01) and fibrosis staging 

(Spearman r=0.44; 95% CI 0.15-0.66; p=0.004 and r=0.41; 95% CI 0.11-0.63; p=0.008), suggesting a 

functional interplay between humoral and cellular immunity in the processes leading to NASH 

progression. 
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Changes in liver B-lymphocytes during the evolution of experimental NASH 

Based on these observations, we sought to dissect the actual role of liver B-cells in the processes 

involved in NASH evolution. As obesity has been shown to promote B-cell activation that, on its 

turn, influences insulin resistance and systemic inflammation [21], for these experiments we relied 

on obesity-independent models of steatohepatitis based on the administration of a 

methionine/choline deficient (MCD) or a choline-deficient and amino acid defined (CDAA) diets 

[26]. These models were also chosen because, according to previous studies [10,11], they 

reproduce liver lymphocyte responses associated to human NAFLD/NASH.  In mice receiving the 

MCD diet, flow cytometry analysis of liver myeloid cells revealed that the number of IgM+/B220+ 

hepatic B-lymphocytes significantly declined after one week of treatment (Fig. 2A) in parallel with 

the onset of steatohepatitis (Supplementary Fig. 1). Such an effect specifically involved the 

fraction of B220+/CD43-/CD23+ B2-lymphocytes, while the pool of B220+/CD43+/CD23- B1-cells was 

unmodified (Supplementary Fig. 2A-B). Liver B-cell lowering was accompanied by a concomitant 

up-regulation in the expression of the early lymphocyte activation marker CD69 among B220+ cells 

(Supplementary Fig. 2C) and by the expansion of B220+/CD138+ plasma blasts and B220-/CD138+ 

plasma cells (Fig. 2B). In the same animals, we also detected an increase in the titers of circulating 

anti-OSE IgG (Fig. 2C), without changes in IgM reactivity against the same antigens (Fig. 2D), 

indicating B2-cell maturation toward IgG-producing plasma cells. Similar changes in liver B-cell and 

plasma cell compartments were also observed in mice with steatohepatitis induced by 12 weeks 

feeding with the CDAA diet (Supplementary Fig. 3), which differently from the MCD diet does not 

cause weight loss [26].    B-cell responses in NASH were associated to the up-regulation in the liver 

expression of B-cell Activating Factor (BAFF; TNFSF13b), one of the cytokines regulating B-cell 

survival and maturation [27] (Supplementary Fig. 2D). No changes were instead observed for the 

other B-cell regulating cytokine A Proliferation Inducing Ligand (APRIL; TNFSF13) (Supplementary 

Fig. 2E). 

 

B2-lymphocyte deficiency interferes with the onset of immune response in NASH 

It is well known that B-lymphocytes can act as antigen presenting cells for CD4+ T-cells through the 

expression of class II Major Histocompatibility Complex (MHCII) and costimulatory molecules [30]. 

Time-course experiments revealed that an early up-regulation of MHCII among CD138+ plasma 
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blasts and plasma cells (Supplementary Fig. 2F-G). Furthermore, B-cell activation preceded the 

liver recruitment/activation of both CD4+ and CD8+ T-lymphocytes as well as the up-regulation of 

liver mRNAs for the Th-1 activation markers IFN-γ, T-bet and CD40 ligand (CD154) (Supplementary 

Fig. 4A & B). To investigate the possible role of B2-lymphocytes in modulating NASH-associated T-

cell responses, we took advantage of transgenic mice overexpressing a soluble form of the 

BAFF/APRIL receptor Transmembrane Activator and Cyclophilin Ligand Interactor (TACI; 

TNFRSF13B) fused with the Fc portion of human IgG1 (TACI-Ig mice) [23]. These mice are 

characterized by an impaired B-cell maturation in the periphery, leading to a severe depletion of 

marginal zone and follicular B2-lymphocytes, but not of peritoneal B1-cells [23]. In our hands, 

TACI-Ig mice showed a marked lowering of hepatic B-cells specifically involving the B220+/CD43-

/CD23+ B2-subset (Supplementary Fig. 5A). Conversely, no significant changes were appreciable in 

the fraction of B220+/CD43+/CD23- B1-cells (Supplementary Fig. 5B). Upon the induction of NASH, 

we observed that liver plasma cell maturation, as well as the production of anti-OSE IgG, were 

impaired in TACI-Ig mice as compared to wild-type littermates (Fig. 3A-B). In line with a role of B2-

cells in promoting T-cell responses, the liver recruitment of CD4+ and CD8+ T-lymphocytes, as well 

as their CD69 expression, were significantly reduced in TACI-Ig mice receiving the MCD diet (Fig. 

3C-D), in spite the expansion and activation of hepatic dendritic cells were not affected 

(Supplementary Fig. 5C). Moreover, the hepatic expression of Th-1 activation markers IFN-γ, 

CD154 and T-bet was also decreased in TACI-Ig mice (Fig. 3E). These effects were specific for liver 

immune responses associated with NASH, as no difference in the development of anti-OSE 

immunity were evident between wild-type and TACI-Ig mice following immunization with bovine 

serum albumin complexed with malonyl-dialdehyde (Supplementary Fig. 6). The lack of B2-cells in 

TACI-Ig mice also appreciably ameliorated lobular inflammation score (2.3±0.5 vs 1.6±0.5; p<0.05) 

and the prevalence of necrotic foci (7.3±3.31 vs 4.0±1.3; p<0.05) without affecting the extension of 

steatosis (2.8±0.4 vs 2.5±0.5; p=0.39). 

 

Effects of BAFF neutralization ameliorates the evolution of NASH 

Previous studies have shown that circulating levels of BAFF are higher in patients with NASH than 

in those with simple steatosis, and correlate with the severity of steatohepatitis and fibrosis [28].  

Thus, to investigate the effects of interfering with BAFF on the evolution of steatohepatitis, we 
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performed additional experiments taking advantage of the BAFF neutralizing monoclonal antibody 

Sandy-2 [24]. In preliminary tests we observed that treatment for one week with Sandy-2 (2 µg/g 

body weight) reduced by about 40% circulating and liver B-cells, specifically affecting the B2-

subset (Supplementary Fig. 7A-B). Accordingly, the administration of Sandy-2 prevented liver 

plasma cell maturation in mice fed with the MCD diet for 1 week (Supplementary Fig. 7C). In the 

animals receiving the MCD diet for 4 weeks, BAFF neutralization ameliorated histological scores 

for steatosis (2.8±0.4 vs 1.7±0.8; p<0.05) and lobular inflammation (2.7±0.5 vs 1.8±0.4; p<0.05) as 

well as ALT release and liver triglycerides (Fig. 4A-C). Differently from what observed in TACI-Ig 

mice, Sandy-2 treatment did not appreciably affect the prevalence of liver infiltrating CD4+ and 

CD8+ T-cells (not shown). Nonetheless, Th-1 activation of liver CD4+ T-lymphocytes, as evaluated 

by IFN-γ production, was significantly lowered by Sandy-2 treatment (Fig. 4D). BAFF blockage also 

decreased the hepatic expression of pro-inflammatory mediators such as TNF-α, IL-12 and CXCL10 

(Fig. 4E). 

 

Role of B-lymphocyte in NASH progression to fibrosis 

Besides the improvement of hepatic inflammation, MCD-fed mice receiving Sandy-2 showed a 

descending trend in the expression of pro-fibrotic markers α1-procollagen and α-smooth muscle 

actin (α-SMA) (Fig.4F), although the differences did not reach statistical significance. Based on 

these results, we investigated whether the lack of B2-lymphocytes would affect the fibrogenic 

evolution of NASH in TACI-Ig mice fed 24 weeks with CDAA diet. Such an experimental model 

allows, in fact to reproduce well defined hepatic fibrosis avoiding the severe malnutrition that 

characterizes advanced NASH in mice fed with the MCD diet [26].    In this setting, we observed 

that TACI-Ig mice had hepatic expression of α1-procollagen, α-SMA and Transforming Growth 

Factor-β1 (TGF-β1) significantly lower than wild-type littermates (Fig. 5A). Consistently, Sirius Red 

staining for collagen and the prevalence of α-SMA-positive activated hepatic stellate cells were 

also significantly reduced in TACI-Ig mice (Fig. 5B-D). The improvement of fibrosis observed in 

CDAA-fed TACI-Ig mice was associated with a lowering of transaminases release and lobular 

inflammation (Supplementary Fig. 8), supporting the importance of B-cells in the mechanisms 

leading to steatohepatitis progression. 
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Discussion 

Recent observations implicate B-lymphocytes as important players in supporting insulin resistance 

and systemic inflammation in obesity [20, 21].  In more detail, B-cells isolated from visceral fat of 

obese mice show an increased production of pro-inflammatory cytokines, while their 

accumulation in the adipose tissue associates with T-cell and macrophage activation [29, 30]. 

Moreover, fat inflammation and insulin resistance are lowered in mice lacking B-cells or following 

B-cell depletion using anti-CD20 antibodies [30].  Recently, Zhang and co-workers have reported 

that feeding a high fat diet to mice leads to the liver recruitment of cells from B lineage (B220+) 

producing pro-inflammatory cytokines [31]. However, this work did not investigate the actual role 

of B-cells in the pathogenesis of steatohepatitis.  Our present data address this aspect by showing 

that B-cell activation is an early event in the evolution of experimental NASH and, even in the 

absence of obesity, contributes in supporting immune responses associated with the progression 

of steatohepatitis.  

B-cells represent about 50% of intrahepatic lymphocytes. However, so far conflicting results have 

been obtained in studies investigating their role in liver diseases [32-34]. In mice, the pool of liver 

B-lymphocytes mainly consists of bone marrow-derived mature B220+/IgM+/CD23+/CD43- B2-cells 

resembling spleen follicular B-cells [32]. We have observed that B-cell changes in NASH specifically 

involve the B2 compartment and are characterized by their maturation to plasma cells. The 

circulating levels of IgG targeting OSE also increase at the onset of experimental NASH, suggesting 

that oxidative damage associated with the development of steatohepatitis leads to the generation 

of antigens recognized by B-cells that then undergo maturation to IgG-producing plasma cells.   

The actual relevance of B-cell responses in the pathogenesis of NASH is supported by experiments 

using B2-cell-deficient TACI-Ig mice or by using the BAFF neutralizing antibody Sandy-2.  In these 

settings, B2-cell depletion or the interference with BAFF-mediated survival and maturation of B2- 

cells ameliorates both parenchymal damage and lobular inflammation and reduces the 

development of fibrosis.  Interestingly B-cell maturation to plasma cells has been recently shown 

to foster HCC development in mice with steatohepatitis [35].  The beneficial effects connected 

with the interference with B-cell survival/maturation likely depend upon the reduction in the 

production of pro-inflammatory mediator by B-lymphocytes [36] as well as the impairment of their 
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antigen presenting capabilities [37]. On this latter respect, we have observed that B-cell activation 

in NASH associates with the up-regulation in MHCII molecules in plasma blasts and precedes the 

liver recruitment of CD4+ and CD8+ T-lymphocytes, while interfering with B2-cells reduces Th-1 

activation of CD4+ T cells without affecting the maturation of dendritic cell. Altogether these 

results suggest that B2-lymphocytes can have a role in promoting OSE presentation to T-cells that, 

in turn, support NASH progression [10,11]. Indeed, B-cells express a variety of receptors that can 

recognize OSE [38], while Béland and co-workers [34] have reported that B-cell depletion with 

anti-CD20 antibodies ameliorates experimental autoimmune hepatitis by preventing autoantigen 

presentation to CD4+ and CD8+ T-cells.   

It is noteworthy that the above mechanisms have several analogies with that observed in 

atherosclerosis, where B2-lymphocytes activation by OSE represents a key mechanism in plaque 

evolution. In fact, elevated circulating titers of anti-OSE IgG associate with an enhanced risk of 

atherosclerosis complications in humans [39], whereas the interference with B2-cells or BAFF-

mediated signals reduces experimental atherosclerosis [39,40]. Although NAFLD/NASH is 

increasingly recognized as an independent risk factor for cardiovascular diseases [3], it is still 

unclear whether such association might be related to the common involvement of OSE-mediated 

immune responses. The studies on atherosclerosis have also outlined a dual role of B-cells in the 

disease evolution. In one hand, in fact, B2-cells promote plaque evolution by supporting humoral 

and cellular anti-OSE immunity, while the activation of the B1 subset exerts a protective action 

mainly through the production of natural antibodies capable of scavenging pro-atherogenic 

oxidized low density lipoproteins (LDL) [39,40]. Natural antibodies are pre-existing germline 

encoded antibodies belonging to the IgM class with a broad specificity to pathogens, but also able 

to cross-react with endogenous antigens, such as OSE in oxidized LDL [39]. In line with these 

notions, studies by Binder’s group have shown that B1-lymphocytes can affect the severity of 

steatohepatitis in LDL receptor-deficient mice fed with high fat/cholesterol diet [41,42]. Such 

effects have been ascribed to the capacity of B1-lymphocytes to produce IgM cross-reacting with 

OSE that prevent oxidized LDL accumulation within liver macrophages and their pro-inflammatory 

activation due to cholesterol engulfment [41]. In our hands, liver B1-cells, as well as circulating 

IgM, are not modified during NASH evolution, while TACI over-expression or Sandy-2 treatment do 

not affect the B1-compartment. Nonetheless, the combination of our present data and those by 

Binder’s group suggests the possibility that B1- and B2-cells might have antagonist activities also in 
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the pathogenesis of NAFLD/NASH, with B2-lymphocytes being involved in promoting pro-

inflammatory mechanisms and the B1 subset possibly exerting a protective action. Opposite B1/B2 

actions have also recently documented in relation to B-lymphocytes involvement in promoting 

obesity-associated adipose tissue inflammation and insulin resistance [43,44]. Such a duality will 

need to be considered in future studies addressing the role of B-cells in NAFLD, also in relation to 

the fact that both subsets can give rise to regulatory B-lymphocytes [45].   

Although the interference with cytotoxic and inflammatory mechanisms might account for the 

improvement in liver fibrosis observed in B2-cell-deficient TACI-Ig mice with NASH, we cannot 

exclude that additional mechanisms might also be involved. In fact, previous studies indicate that 

B-cells can directly contribute to liver fibrogenesis [32,46] through the production of pro-

inflammatory mediators that stimulate hepatic stellate cell (HCS) and liver macrophage activation 

[46].  On the other hand, Thapa and co-workers have reported that during chronic liver injury 

activated HSCs can support liver B-cell survival and maturation to plasma cells by secreting retinoic 

acid [46], thus suggesting a complex interplay between B-cells and other non-parenchymal cells in 

the evolution of chronic liver diseases.  

The capacity of B-cells to stimulate inflammation and fibrogenesis through multiple interactions 

with T-lymphocytes and HSCs accounts for our clinical observations, showing that the prevalence 

of B-/T-lymphocyte aggregates in liver biopsies of NAFLD/NASH patients correlates with more 

severe lobular inflammation and enhanced fibrosis. In these subjects, intra-hepatic B/T-cell 

aggregates are also associated with elevated titers of anti-OSE IgG and high IFN-γ circulating levels, 

further supporting the clinical relevance of the interplay between B- and T-cells in the processes 

leading to NAFLD/NASH progression. 

 

Conclusions 

Altogether these data indicate that B2-lymphocyte activation in response to OSE is an early event 

in NASH evolution and contributes to sustain hepatic inflammation through the interaction with T-

cells.  These observations, along with previous data indicating anti-OSE IgG as an independent risk 

factor for NASH progression to advanced fibrosis [18], suggest that the measure of circulating anti-

OSE IgG can identify a sub-set of NAFLD/NASH patients in whom adaptive immunity triggered by 
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oxidative stress might have a relevant role in promoting steatohepatitis and the disease evolution 

toward fibrosis.   If confirmed in prospective studies, IgG reactivity toward OSE might become a 

useful non-invasive marker for the identification of this sub-set of NAFLD patients who might 

benefit from already available treatments that interfere with B-cell functions.     
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Figure legends 

 

Figure 1:  B- and T-lymphocyte responses associates with the evolution of human NAFLD/NASH. 

(A-C) IgG reactivity toward OSE was measured in 41 NAFLD/NASH patients by in house ELISA assay 

using as antigen malonyl-dialdehyde (MDA) adducts with human serum albumin. Circulating 

interferon-γ (IFN-γ) was measured in 34 of the patients. For comparison 32 and 18 age/gender 

matched healthy subjects were used as controls.  (D) Immuno-histochemical detection of cell 

aggregates containing CD20+ B-lymphocytes and CD3+ T-lymphocytes in serial sections from liver 

biopsies of two different representative NAFLD/NASH patients (Magnification 400x). (D-F) The 

prevalence of B/T-cells aggregates was associated with anti-OSE IgG titers as well as with the 

severity of lobular inflammation and hepatic fibrosis as estimated according to Kleiner et al. (22). 

Lymphocyte infiltration was evaluated semi-quantitatively taking into account the number and 

size of lymphocyte aggregates.  

  

Figure 2:  B-cell responses during the evolution of experimental NASH. 

Wild type mice were fed with the MCD diet for either 1 or 4 weeks. The intrahepatic distribution of 

B-lymphocytes, plasma blasts and plasma cells were evaluated by flow cytometry in parallel with 

the production of IgG targeting OSE and the liver expression of BAFF. (A) Changes in the liver 

distribution of total IgM+/B220+ B-lymphocytes at different stages of NASH evolution. (B) Changes 

in the liver distribution of B220+/CD138+ plasma blasts and B220-/CD138+ plasma cells at different 

stages of NASH evolution. The values are means ± SD of three different experiments with 3-4 

animals per group. (C-D) changes in anti-OSE antibody titres, as measured by IgG and IgM 

targeting malonyl-dialdehyde (MDA) adducts in the sera of mice with NASH. The values in panels C 

and D are means ± SD of 8-10 animals per group and the boxes include the values within 25th and 

75th percentile, while the horizontal bars represent the median. The extremities of the vertical 

bars (10th-90th percentile) include 80% of the values.   

 

Figure 3: B2-lymphocyte deficiency interferes with the onset of immune responses in NASH. 

B2-cell deficient TACI-Ig and wild type mice were fed with control or MCD diet for 4 weeks. The 

intrahepatic distribution of T-lymphocytes and plasma cells was evaluated by flow cytometry in 

parallel with the production of IgG targeting OSE and the liver expression of Th-1 activation 

markers. (A) Effect of B2-cell depletion on the liver expansion of B220-/CD138+ plasma cells and (B) 

the increase of circulating anti-OSE antibody titres, as measured by IgG targeting malonyl-

dialdehyde (MDA) adducts. (C) The liver distribution of CD4+ and CD8+ T-lymphocytes and (D) their 

expression of the activation marker CD69 in TACI-Ig and wild-type mice with NASH. The values in 

panels A-C are means ± SD of three different experiments with 3-4 animals for each group. (E) 

Down-modulation in the expression of Th-1 activation markers interferon-γ (IFN-γ), T-bet and 

CD40 ligand (CD154) in the liver of TACI-Ig mice. The values of RT-PCR analysis are expressed as 

fold increase over their relative controls and are means ± SD of 8-10 animals per group. The boxes 

in panels B and E include the values within 25th and 75th percentile, while the horizontal bars 
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represent the median. The extremities of the vertical bars (10th-90th percentile) include 80% of the 

values. 

 

Figure 4: Mice treatment with the BAFF-neutralizing antibody Sandy-2 ameliorates steatohepatitis. 

Wild type mice were injected with Sandy-2 mAb (2 µg/g body weight) or isotype-matched IgG at 

the start and after 2 weeks of MCD diet. (A) Haematoxylin/eosin staining of liver sections 

(Magnification 200x). (B) Alanine aminotransferase (ALT) release and (C) liver triglyceride content. 

(D) Flow cytometry evaluation of interferon-γ (IFN-γ) production by CD3+/CD4+ helper T-

lymphocytes. The values are means ±SD of three different experiments with 4 animals per group. 

The hepatic mRNA levels of (E) pro-inflammatory mediators TNF-α, IL-12p40 and CXCL10 and (D) 

fibrosis markers α1-procollagen and α-smooth muscle actin (α-SMA). RT-PCR values are expressed 

as fold increase over control values after normalization to the β-actin gene. The values in the 

panels B, C, E and F refer to 6-7 animals per group and the boxes include the values within 25th and 

75th percentile, while the horizontal bars represent the median. The extremities of the vertical 

bars (10th-90th percentile) include 80% of the values. 

 

Figure 5: B2-lymphocyte deficiency reduces NASH evolution to fibrosis. 

TACI-Ig and wild type (WT) mice were fed with either control or CDAA diets for 24 weeks. (A) 

Hepatic expression of fibrogenesis markers α1-procollagen, α-smooth muscle actin (α-SMA) and 

Transforming Growth Factor-β1 (TGF-β1). RT-PCR values are expressed as fold increase over 

control values after normalization to the β-actin gene. (B) Collagen deposition as detected by 

Sirius Red staining in representative liver sections from 24-week CDAA diet in WT and TACI-Ig mice 

(Magnification 200x). (C) Immuno-histochemical staining for α-SMA-positive hepatic stellate cells 

(HSCs) liver sections from 24-week CDAA diet in WT and TACI-Ig mice (Magnification 200x). (D) 

Histo-morphometric analysis of Sirius Red and α-SMA positive areas. The values refer to 5-7 

animals per group and the boxes include the values within 25th and 75th percentile, while the 

horizontal bars represent the median. The extremities of the vertical bars (10th-90th percentile) 

include 80% of the values. 
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