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1 Introduction

The study of defects and of their properties may improve our understanding of quantum

field theories. Wilson loops represent a class of gauge-invariant line defects which is of

paramount relevance in gauge theories.

In general, Wilson loops receive perturbative and non-perturbative corrections and

their exact evaluation is a difficult task. It is therefore important to find classes of theories

and of Wilson loops for which it is possible to make progress in this direction. In this

perspective, much work has been devoted to the study of Wilson loops in supersymmetric

gauge theories, in theories which possess integrable sectors and in theories enjoying confor-

mal symmetry. Furthermore, a powerful angle of approach to the strong coupling behavior

is furnished by correspondences of the AdS/CFT type.

N = 4 super Yang-Mills (SYM) theory is maximally supersymmetric, it is conformal

and many sectors of its observables are integrable. Moreover, it is the theory for which
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the AdS/CFT correspondence was originally conjectured and for which it is best estab-

lished. In this theory important results, many of which are exact, have been obtained

regarding Wilson loop operators which preserve at least a fraction of the supersymmetry.

In particular the 1/2-BPS circular Wilson loop has been evaluated exactly in terms of a

Gaussian matrix model in [1–3]. Wilson loops preserving fewer supersymmetries [4], such

as the 1/4-BPS circular loop [5] and particular classes of 1/8-BPS loops [6–8], have been

classified and analyzed. Correlators among such Wilson loops, or between Wilson loops

and local operators have also been considered [9–11]; in particular, correlators of a 1/8-

BPS circular loop and chiral primaries in N = 4 SYM theory have been computed [12–16],

mapping them to multi-matrix models. Also correlators with local chiral operators and

Wilson loops in higher representations have been discussed [17, 18]. Often these results

have been successfully compared, at least in the large-N limit, with AdS/CFT [17–19] and

with the outcome of the integrability approach [20].

N = 4 SYM is a superconformal theory, and Wilson loops that preserve a sub-

group of the superconformal symmetry are instances [21] of a defect conformal field theory

(DCFT) [22–25]. The spectrum and the structure constants of operators defined on the

defect represent an extra important piece of conformal data; correlators of certain such

operators have been considered both directly [26, 27] and via integrability [28]. Also the

correlators of the Wilson loop defect with bulk operators, such as the chiral primaries, are

constrained by the residual symmetry.

Similar progress has been made also in N = 2 SYM theories, mainly thanks to local-

ization techniques [29, 30]. These techniques, relying on supersymmetry, yield exact results

for the field theory partition function in a deformed space-time geometry by localizing it

on a finite set of critical points and expressing it as a matrix model. This procedure was

extended by Pestun in a seminal paper [3] to compute the expectation value of a circu-

lar Wilson loop in a S4 sphere background, reducing the path integral computation to

a matrix model which is a simple modification of the one for the partition function. In

the N = 4 SYM case the matrix model is Gaussian, in agreement with the field theory

results [1, 2] mentioned above, while in the N = 2 theory it receives both one-loop and

instanton corrections.

Pestun’s results on circular Wilson loops have opened several directions in the study

of gauge theories and allowed us to deepen our knowledge about the AdS/CFT duality in

the N = 2 setting [31–33], as well as to provide exact results for some observables directly

related to the Wilson loop, such as the Bremsstrahlung function [34–38].

When the N = 2 theory is conformal, as it is the case for N = 2 SQCD with Nf = 2N ,

it has been shown that the matrix model for the partition function on S4 also contains

information about correlators of chiral operators on R4 [39–43], provided one disentangles

the operator mixing induced by the map from S4 to R4 [44–46]. In [47] this disentangling

of operators has been realized as a normal-ordering procedure and the relation between

field theory and matrix model correlators has been shown to hold also in non-conformal

situations for a very special class of operators.

It is natural to conjecture that, as it is the case in the N = 4 theory, also in supercon-

formal N = 2 theories the matrix model for the circular Wilson loop on S4 may contain
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information on correlators of chiral operators in the presence of a circular loop in R4. In

particular, from DCFT we know that the functional form of the one-point function in pres-

ence of a Wilson loop is completely fixed up to a coefficient depending on the coupling

constant g; this coefficient can be encoded in the Pestun matrix model.

In this paper, neglecting non-perturbative instanton contributions, we deal with the

determinant factor in the matrix model definition, which can be expanded in powers of g.

We work at finite and generic N . Following [47], we identify the matrix model counterparts

of chiral operators in the field theory through a normal-ordering prescription, and compute

the one-point functions of such operators in the matrix model. We then compare them

with the corresponding field theory one-point functions in presence of the Wilson loop

computed in standard perturbation theory up to two loops for finite N , and to all orders

in perturbation theory in planar limit for the ζ(3) dependent part. We heavily rely on

the N = 4 results in that we consider the diagrammatic difference between N = 4 and

N = 2 [48]; this procedure massively reduces the number of Feynman diagrams to be

computed. We find complete agreement between the matrix model and field theory results;

we believe that this represent compelling evidence for the conjecture.

The paper is structured as follows. We introduce our set-up in section 2. In sections 3

and 4 we perform the matrix model computation, reviewing first the N = 4 case and then

moving to the superconformal N = 2 theory. We also derive large-N results which are

exact in λ = gN2 for the N = 4 part of these one-point functions and for the extra part in

the N = 2 theory which has ζ(3) transcendentality. The diagrammatic evaluation of the

correlators in field theory is performed in section 5, up to two loops for finite N . We also

show how the large-N results derived in the matrix model approach arise diagrammatically.

Finally, section 6 contains our conclusions, while some more technical material is contained

in three appendices.

2 Wilson loop and its correlators with chiral operators

We consider a N = 2 SYM theory on R4 with gauge group SU(N) and Nf fundamental

flavours. As is well-known, when Nf = 2N this theory is superconformal invariant, even

at the quantum level. In the following we will restrict to this case.

We place a 1/2-BPS Wilson loop in a representation R along a circle C of radius R

inside R4. Such operator, which we denote WR(C), measures the holonomy of the gauge

field and the adjoint scalars around C and represents a (conformal) defect in the theory.

The explicit expression of WR(C) is

WR(C) =
1

N
TrR P exp

{
g

∮
C
dτ
[
iAµ(x) ẋµ(τ) +RθI(τ)φI(x)

]}
(2.1)

with I = 1, 2. Here g is the gauge coupling constant, Aµ is the gauge field and φI are the

two (real) scalar fields of the N = 2 vector multiplet, while P denotes the path-ordering

and TrR the trace in the representation R of SU(N). If we take θI(τ) = δI1, which

is the standard choice for the scalar coupling, and introduce the chiral and anti-chiral
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combinations

ϕ =
1√
2

(
φ1 + iφ2

)
, ϕ̄ =

1√
2

(
φ1 − iφ2

)
, (2.2)

the Wilson loop (2.1) becomes

WR(C) =
1

N
TrR P exp

{
g

∮
C
dτ

[
iAµ(x) ẋµ(τ) +

R√
2

(
ϕ(x) + ϕ̄(x)

)]}
. (2.3)

For definiteness, from now on we will take the representation R to be the fundamental of

SU(N) and denote the corresponding Wilson loop simply as W (C). Furthermore, we will

use the symbol “ tr ” for the trace in the fundamental representation.

We are interested in computing the correlators between the Wilson loop and the

chiral operators of the SYM theory. The latter are labeled by a vector of integers

~n = (n1, n2, · · · , n`) and take a multi-trace expression of the form

O~n(x) = trϕn1(x) trϕn2(x) · · · trϕn`(x) . (2.4)

In our model, these are protected chiral primary operators with a conformal dimension n

given by

n =
∑̀
k=1

nk , (2.5)

and obey chiral ring relations. Equivalently, by expanding ϕ(x) = ϕb(x)T b, where T b are

the generators of SU(N) in the fundamental representation normalized in such a way that

tr
(
T bT c

)
=

1

2
δbc , trT b = 0 with b, c = 1, · · · , N2 − 1 , (2.6)

we can write

O~n(x) = R b1...bn
~n ϕb1(x) . . . ϕbn(x) (2.7)

where R b1...bn
~n is a totally symmetric n-index tensor whose expression is encoded1 in (2.4).

The quantity of interest is the one-point function〈
W (C)O~n(x)

〉
. (2.8)

To evaluate it, we can proceed as follows. Firstly, without any loss of generality, we can

place the circle C in the plane (x1, x2) ⊂ R4. The points on the loop C can then be

parameterized as

xµ(τ) = R
(

cos τ, sin τ, 0, 0
)

(2.9)

with τ ∈ [ 0, 2π ]. Secondly, using the standard results of defect conformal field theory [24],

we can fix the functional dependence of the one-point function (2.8). Indeed, splitting the

coordinates xµ into parallel and transverse components, namely xµ → (xa;xi) with a = 1, 2

1Explicitly,

R b1...bn
~n = tr

(
T (b1 · · ·T bn1

)
tr
(
T bn1+1 · · ·T bn1+n2

)
. . . tr

(
T
bn1+...+n`−1+1 · · ·T bn))

where the indices are symmetrized with strength 1.
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Figure 1. The geometric set-up for the configuration we consider.

and i = 3, 4, and denoting xaxa = r2 and xixi = L2, so that x2 = r2 + L2 (see figure 1),

we see that

‖x‖C =

√
(R2 − x2)2 + 4L2R2

R
(2.10)

is the “distance” between x and C, which is invariant under the SO(1, 2)×SO(3) subgroup

of the conformal symmetry that is preserved by the Wilson loop (see appendix A for

details). When x→ 0, we have ‖x‖c → R.

Because of conformal invariance, the correlator (2.8) takes the form

〈
W (C)O~n(x)

〉
=

A~n(
2π‖x‖C

)n (2.11)

where A~n is a g-dependent constant which corresponds to the one-point function evaluated

in the origin:

A~n = (2πR)n
〈
W (C)O~n(0)

〉
. (2.12)

In the next sections we will compute this function in two different ways: one by using

the matrix model approach suggested by localization, and the other by using standard

perturbative field theory methods. As anticipated in the Introduction, these two approaches

lead to the same results.

3 The matrix model approach

The vacuum expectation value of the Wilson loop can be expressed and computed in terms

of a matrix model, as shown in [3] using localization methods. In the following we extend

this approach to compute also the correlators between the Wilson loop and the chiral

correlators in N = 2 superconformal theories, but before we briefly review the matrix

model and introduce our notations, relying mainly on [47].

The matrix model in question corresponds to putting the N = 2 SYM theory on a

sphere S4 and writing the corresponding partition function as follows:

ZS4 =

∫ N∏
u=1

dau ∆(a)
∣∣Z(ia)

∣∣2 δ( N∑
v=1

av

)
. (3.1)
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Here au are the eigenvalues of a traceless N × N matrix a which are integrated over the

real line; ∆(a) is the Vandermonde determinant and Z(ia) is the gauge theory partition

function on R4. The latter is computed using the localization techniques as in [49, 50], with

the assumption that the adjoint scalar ϕ(x) of the vector multiplet has a purely imaginary

vacuum expectation value given by 〈ϕ〉 = i a, and that the Ω-deformation parameters are

ε1 = ε2 = 1/R where R is the radius of S4 which from now on we take to be 1 for simplicity.

This partition function is a product of the classical, 1-loop and instanton contributions,

namely:

Z(ia) = Zclass(ia)Z1−loop(ia)Zinst(ia) . (3.2)

The classical part provides a Gaussian term in the matrix model:

∣∣Zclass(ia)
∣∣2 = e

− 8π2

g2
tr a2

, (3.3)

while the 1-loop contribution is

∣∣Z1−loop(ia)
∣∣2 =

N∏
u<v=1

H(iauv)
2

N∏
u=1

H(iau)−Nf (3.4)

where auv = au − av, and

H(x) = G(1 + x)G(1− x) (3.5)

with G(x) being the Barnes G-function. In the weak-coupling limit g � 1, where instantons

are exponentially suppressed, we can set∣∣Zinst(ia)
∣∣2 = 1 . (3.6)

Moreover, in this limit the integral (3.1) is dominated by the region of small au, and thus

we can expand the functions H appearing in (3.4) using

logH(x) = −(1 + γ)x2 −
∞∑
n=2

ζ(2n− 1)
x2n

n
(3.7)

where ζ(n) is the Riemann zeta-function and γ is the Euler-Mascheroni constant. In this

way the one-loop contribution can be viewed as an interaction term in a free matrix model:∣∣Z1−loop(ia)
∣∣2 = e−Sint(a) (3.8)

where Sint(a) is a sum of homogeneous polynomials Sn in a of order n. The first few are:

S2(a) = −(1 + γ) (2N −Nf ) tr a2 = 0 ,

S4(a) =
ζ(3)

2

[
(2N −Nf ) tr a4 + 6

(
tr a2

)2 ]
= 3 ζ(3)

(
tr a2

)2
,

S6(a) = −ζ(5)

3

[
(2N −Nf ) tr a6 + 30 tr a4 tr a2 − 20

(
tr a3

)2 ]
= −10 ζ(5)

3

[
3 tr a4 tr a2 − 2

(
tr a3

)2 ]
(3.9)
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where the last step in each line follow from the superconformal condition Nf = 2N . After

the rescaling

a→
(
g2

8π2

)1
2

a , (3.10)

the matrix model gets a canonically normalized Gaussian factor and the sphere partition

function becomes

ZS4 =

(
g2

8π2

)N2−1
2
∫ N∏

u=1

dau ∆(a) e−tr a2−Sint(a) δ

(
N∑
v=1

av

)
(3.11)

with

Sint(a) =
3 ζ(3) g4

(8π2)2

(
tr a2

)2 − 10 ζ(5) g6

3(8π2)3

[
3 tr a4 tr a2 − 2

(
tr a3

)2 ]
+ · · · . (3.12)

Exploiting the Vandermonde determinant ∆(a) and writing a = ab T b, we can alternatively

express the integral (3.11) using a flat integration measure da over all matrix components

ab as follows

ZS4 = cN

(
g2

8π2

)N2−1
2
∫
da e−tr a2−Sint(a) (3.13)

where cN is a g-independent constant and da ∝
∏
b dab. The overall factor cN and the

normalization of the flat measure da are clearly irrelevant for the computation of the

vacuum expectation value of any quantity f(a), which is defined as

〈
f(a)

〉
=

∫
da e−tr a2−Sint(a) f(a)∫
da e−tr a2−Sint(a)

=

〈
e−Sint(a) f(a)

〉
0〈

e−Sint(a)
〉

0

. (3.14)

Here we have denoted with a subscript 0 the expectation value in the Gaussian matrix

model, namely

〈
f(a)

〉
0

=

∫
da e−tr a2 f(a)∫
da e−tr a2

. (3.15)

This Gaussian model is the matrix model that is appropriate to describe the N = 4 SYM

theory. In this case, in fact, the field content of the theory is such that the 1-loop partition

function Z1−loop and the instanton partition function Zinst are both equal to 1, implying

that Sint = 0.

Notice that if we normalize the flat measure as

da =

N2−1∏
b=1

dab√
2π

, (3.16)

then the denominator of (3.15) becomes 1 and we simply have〈
f(a)

〉
0

=

∫
da e−tr a2 f(a) . (3.17)
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Using this, we can easily see that the basic Wick contraction in the Gaussian model is〈
ab ac

〉
0

= δbc . (3.18)

Introducing the notation

tn1,n2,··· =
〈

tr an1 tr an2 · · ·
〉

0
(3.19)

and using (2.6), we evidently have

t0 =
〈

tr 1
〉

0
= N , t1 =

〈
tr a

〉
0

= 0 , t2 =
〈

tr a2
〉

0
=
N2 − 1

2
. (3.20)

Higher order traces can be computed performing consecutive Wick contractions with (3.18)

and using the fusion/fission identities

tr
(
T bB T bC

)
=

1

2
trB trC − 1

2N
tr
(
BC

)
,

tr
(
T bC

)
tr
(
T bC

)
=

1

2
tr
(
BC

)
− 1

2N
trB trC ,

(3.21)

which hold for any two matrices B and C. In this way we can build recursion relations

and, for example, get:

tn =
1

2

n−2∑
m=0

(
tm,n−m−2 −

1

N
tn−2

)
,

tn,n1 =
1

2

n−2∑
m=0

(
tm,n−m−2,n1 −

1

N
tn−2,n1

)
+
n1

2

(
tn+n1−2 −

1

N
tn−1,n1−1

)
, (3.22)

tn,n1,n2 =
1

2

n−2∑
m=0

(
tm,n−m−2,n1,n2 −

1

N
tn−2,n1,n2

)
+
n1

2

(
tn+n1−2,n2 −

1

N
tn−1,n1−1,n2

)
+
n2

2

(
tn+n2−2,n1 −

1

N
tn−1,n1,n2−1

)
,

and so on. These relations, together with the initial conditions (3.20), give an efficient

way to obtain multi-trace vacuum expectation values in the Gaussian model and will be

the basic ingredients for the computations of the correlators in the N = 2 superconformal

theory.

3.1 Wilson loop and chiral operators in the matrix model

As shown in [3], in the matrix model the Wilson loop (2.3) in the fundamental representa-

tion and on a circle of radius R = 1 is given by the following operator

W(a) =
1

N
tr exp

(
g√
2
a

)
=

1

N

∞∑
k=0

gk

2
k
2 k!

tr ak . (3.23)

On the other hand, to any multi-trace chiral operator O~n(x) of the SYM theory defined

as in (2.4), it would seem natural to associate a matrix operator O~n(a) with precisely the

same expression but with the field ϕ(x) replaced by the matrix a, namely

O~n(a) = tr an1 tr an2 · · · tr an` = R b1...bn
~n ab1 ab2 · · · abn . (3.24)

– 8 –
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However, since the field theory propagator only connects ϕ with ϕ̄, all operators O~n(x)

have no self-contractions, whereas the operators O~n(a) defined above do not share this

property. This means that the dictionary between the SYM theory and the matrix model

is more subtle. Indeed, we have to subtract from O~n(a) all its self-contractions by making

it orthogonal to all the lower dimensional operators, or equivalently by making it normal-

ordered. As discussed in [47], given any operator O(a) we can define its normal-ordered

version O(a) as follows. Let be ∆ the dimension of O(a) and
{
Op(a)

}
a basis of in the

finite-dimensional space of matrix operators with dimension smaller than ∆. Denoting by

C∆ the (finite-dimensional) matrix of correlators(
C∆

)
pq

=
〈
Op(a)Oq(a)

〉
(3.25)

which are computed according to (3.14), we define the normal-ordered operator

O(a) = :O(a) :g = O(a)−
∑
p,q

〈
O(a)Op(a)

〉
(C−1

∆ )pq Oq(a) . (3.26)

As emphasized by the notation, the normal-ordered operators are g-dependent, since the

correlators in the right hand side of (3.26) are computed in the interacting N = 2 matrix

model using (3.12).

Using these definitions, the correspondence between field theory and matrix model

operators takes the following simple form

O~n(x) → O~n(a) = :O~n(a) :g . (3.27)

Let us give some explicit examples by considering the first few low-dimensional operators.

At level n = 2 we have just one operator:

O(2)(a) = :tr a2 :g = tr a2 − N2 − 1

2
+

3 ζ(3) g4

(8π2)2

(N2 − 1)(N2 + 1)

2
+O(g6) . (3.28)

Similarly, at level n = 3 we have one operator, which in the SU(N) theory does not receive

any correction:

O(3)(a) = :tr a3 :g = tr a3 . (3.29)

At level n = 4, we have instead two independent operators corresponding to ~n = (4) and

~n = (2, 2). Their normal-ordered expressions are given, respectively, by

O(4)(a) = :tra4 :g

= tra4− 2N2−3

N
tra2+

(N2−1)(2N2−3)

4N
(3.30)

+
3ζ(3)g4

(8π2)2

[
(2N2−3)(N2+5)

N
tra2− 2(N2−1)(N2+4)(2N2−3)

4N

]
+O(g6) ,

and

O(2,2)(a) = :
(
tr a2

)2
:g

=
(
tr a2

)2 − (N2 − 1) tr a2 +
N4 − 1

4
(3.31)

+
3 ζ(3) g4

(8π2))2

[
(N2 − 1)(N2 + 5) tr a2 − (N4 − 1)(N2 + 4)

2

]
+O(g6) .
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Up to the order g6 we have considered, it is easy to check that these operators satisfy〈
O~n(a)

〉
= 0 ,〈

O~n(a)O~m(a)
〉

= 0 ,
(3.32)

for n 6= m. Normal-ordered operators of higher dimension can be constructed without any

problem along these same lines.

We observe that the g-independent parts of the above expressions correspond to the

normal-ordered operators in the Gaussian model, i.e. in the N = 4 theory. Since we will

often compare our N = 2 results with those of the N = 4 theory, we find convenient to

introduce a specific notation for the g → 0 limit of the normal ordering and write

Ô~n(a) ≡ lim
g→0
O~n(a) = :O~n(a) : , (3.33)

so that most of the formulas will look simpler.

In the following section we will explicitly compute the one-point functions between the

Wilson loop and the chiral operators in the N = 2 matrix model, namely

A~n =
〈
W(a)O~n(a)

〉
(3.34)

which will later compare with the field theory amplitudes defined in (2.12).

4 Matrix model correlators in presence of a Wilson loop

Our main goal here is the computation of A~n in the interacting matrix model described

above. As a warming-up, but also for later applications, we begin by presenting the results

in the Gaussian matrix model, i.e. in the N = 4 theory.

4.1 The N = 4 theory

In this case we should consider the operators Ô~n(a) defined in (3.33) and compute

Â~n =
〈
W(a) Ô~n(a)

〉
0

(4.1)

using the definition (3.17).

The simplest example is the amplitude with the identity (~n = (0)), which yields the

vacuum expectation value of the Wilson loop operator (3.23):

Â(0) =
〈
W(a)

〉
0

=
1

N

∞∑
k=0

gk

2
k
2 k!

tk (4.2)

with tk defined in (3.19). Using the explicit expressions given in (3.20) and (3.22), we find

Â(0) = 1 + g2 N
2 − 1

8N
+ g4 (N2 − 1)(2N2 − 3)

384N2
+ g6 (N2 − 1)(N4 − 3N2 + 3)

9216N3
+ · · · (4.3)

This perturbative series can be resummed into

Â(0) =
1

N
L1
N−1

(
−g

2

4

)
exp

[
g2

8

(
1− 1

N

)]
(4.4)
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where Lmn is the generalized Laguerre polynomial of degree n. This is the SU(N) version

of the well-known result of [2], originally derived for U(N).

Next we consider the amplitude between the Wilson loop and the operator Ô(2)(a) at

level 2. This is given by

Â(2) =
〈
W(a) : tr a2 :

〉
0

=
1

N

∞∑
k=0

gk

2
k
2 k!

(
tk,2 −

N2 − 1

2
tk

)
. (4.5)

The recursion relations (3.22) imply

tk,2 =

(
k

2
+
N2 − 1

2

)
tk , (4.6)

and thus the amplitude (4.5) becomes

Â(2) =
1

N

∞∑
k=0

k

2

gk

2
k
2 k!

tk =
g

2
∂gÂ(0) . (4.7)

Expanding for small g, we get

Â(2) = g2 N
2 − 1

8N
+ g4 (N2 − 1)(2N2 − 3)

192N2
+ g6 (N2 − 1)(N4 − 3N2 + 3)

3072N3
+ · · · . (4.8)

This same procedure can be used to compute the amplitudes Â~n for any ~n. The remarkable

fact is that, thanks to the recursion relations (3.22), it is always possible to obtain compact

expressions in terms of Â(0) and its derivatives that are exact, i.e. valid for any N and any

g. For example, at level n = 3 we find

Â(3) =
g√
2
∂2
g Â(0) −

g2

4
√

2N
∂gÂ(0) −

g(N2 − 1)

4
√

2N
Â(0) , (4.9)

while at level n = 4 we have

Â(4) = g ∂3
g Â(0) +

g2

4N
∂2
g Â(0) +

g3 − 4gN(2N2 − 3)

16N2
∂gÂ(0) +

g2(N2 − 1)

16N2
Â(0) , (4.10)

and

Â(2,2) =
g2

4
∂2
g Â(0) −

g

4
∂gÂ(0) . (4.11)

We have performed similar calculations for higher dimensional operators, but we do not

report the results since they would not add much to what we have already exhibited.

Instead, we point out that the lowest order term in the small g expansion of Â~n, which we

call “tree-level term”, can be compactly written as

Â~n
∣∣∣
tree−level

=
gn

N 2
n
2 n!

R b1...bn
~n

〈
tr an :ab1 . . . abn :

〉
0

=
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

) (4.12)

where R b1...bn
~n is the symmetric tensor associated to the operator O~n(a) according to (3.24).

For later convenience, in table 1 we collect the explicit expressions of Â~n
∣∣
tree−level

for all

operators up to level n = 4.
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~n Â~n
∣∣
tree−level

(2) g2N2−1

8N

(3) g3 (N2−1)(N2−4)

32
√

2N2

(4) g4 (N2−1)(N4−6N2+18)

384N3

(2, 2) g4 (N2−1)(2N2−3)

192N2

Table 1. The tree-level contribution to Â~n for operators up to order n = 4.

4.2 The N = 2 superconformal theory

Let us now return to our main goal, namely the computation of the one-point amplitudes in

the interacting matrix model that describes the N = 2 superconformal theory. Comparing

A~n with the N = 4 amplitudes Â~n, we see two main differences:

1. the normal-ordered operators O~n explicitly contain g-dependent terms;

2. the vacuum expectation value is computed in a g-dependent matrix model.

Both effects arise from the interaction terms of Sint(a) given in (3.12); thus we can write

A~n = Â~n + δA~n (4.13)

with

δA~n =
3 ζ(3) g4

(8π2)2
X~n −

10 ζ(5) g6

3(8π2)3
Y~n + · · · (4.14)

where the ellipses stand for terms of higher transcendentality, proportional to ζ(7), ζ(3)2

and so on. The quantities X~n, Y~n and the analogous ones at higher transcendentality

depend on the coupling constant g and can be expressed using vacuum expectation values

in the Gaussian model and, eventually, Â(0) and its derivatives in a compact way. Since

δA~n starts at order g4, i.e. at two loops, we clearly have

δA~n
∣∣∣
tree−level

= 0 and δA~n
∣∣∣
1−loop

= 0 (4.15)

for any ~n. In the following we will restrict our analysis to the first correction X~n for which

we will provide explicit formulas in several examples.

Let us start with the Wilson loop, i.e. with the identity operator (n = 0). In this

case there is no normal-ordering to do and thus the only contribution to X(0) comes from

the interactions in the matrix model. Focusing on the ζ(3)-term which is proportional to(
tr a2

)2
, after some straightforward algebra we get

X(0) = −
〈
W(a)

(
tr a2

)2 〉
0

+
〈
W(a)

〉
0

〈 (
tr a2

)2 〉
0
. (4.16)
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Evaluating the vacuum expectation values by means of the recursion relations (3.22) and

expressing the results in terms of the N = 4 Wilson loop, we can rewrite the above

expression as

X(0) = −g
2

4
∂2
g Â(0) −

g(2N2 + 1)

4
∂gÂ(0) . (4.17)

Using (4.4) and expanding for small g, we easily get

X(0) = −g2 (N2 − 1)(N2 + 1)

8N
− g4 (N2 − 1)(2N2 − 3)(N2 + 2)

192N2

− g6 (N2 − 1)(N4 − 3N2 + 3)(N2 + 3)

8N
+ · · · .

(4.18)

Therefore, in the difference δA(0) the leading term, which is a 2-loop effect induced by the

g4-part of Sint(a) proportional to ζ(3), turns out to be

δA(0)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

3(N2 − 1)(N2 + 1)

8N
. (4.19)

This expression has been successfully checked in [48] against an explicit perturbative 2-loop

calculation in field theory.

Let us now consider the operator O(2) at level n = 2. In this case we have

X(2) = −
〈
W(a) Ô(2)(a)

(
tr a2

)2 〉
0

+
〈
W(a) Ô(2)(a)

〉
0

〈(
tr a2

)2 〉
0

+
(N2 − 1)(N2 + 1)

2

〈
W(a)

〉
0

(4.20)

where the last term is due to the normal-ordering procedure in the interacting theory which

indeed yields a part proportional to (N2−1)(N2+1)/2 (see (3.28)). Evaluating the vacuum

expectation values, this expression becomes

X(2) = −g
3

8
∂3
g Â(0) −

g2(2N2 + 7)

8
∂2
g Â(0) −

5g(2N2 + 1)

8
∂gÂ(0) , (4.21)

while its perturbative expansion is

X(2) = −g2 3(N2 − 1)(N2 + 1)

8N
− g4 (N2 − 1)(2N2 − 3)(N2 + 2)

48N2

− g6 5(N2 − 1)(N4 − 3N2 + 3)(N2 + 3)

3072N3
+ · · · .

(4.22)

The leading term tells us that the 2-loop correction to the N = 2 amplitude A(2) is

δA(2)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

9(N2 − 1)(N2 + 1)

8N
. (4.23)

This procedure can be easily applied to operators of higher dimensions. For example,

skipping the intermediate steps, at level n = 3 we find

X(3) = − g3 3(N2 − 1)(N2 − 4)(N2 + 3)

32
√

2N2
− g5 (N2 − 1)(N2 − 4)(N4 + 2N2 − 8)

128
√

2N3

− g7 (N2 − 1)(N2 − 4)(3N6 + 5N4 − 35N2 + 75)

12288
√

2N4
+ · · · ,

(4.24)
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~n δA~n
∣∣
2−loop

(2) −g6 ζ(3)

(8π2)2

9(N2−1)(N2+1)

8N

(3) −g7 ζ(3)

(8π2)2

9(N2−1)(N2−4)(N2+3)

32
√

2N2

(4) −g8 ζ(3)

(8π2)2

(N2−1)(N6+2N4−18N2+81)

32N3

(2, 2) −g8 ζ(3)

(8π2)2

3(N2−1)(2N2−3)(N2+3)

32N2

Table 2. The 2-loop contribution to the difference δA~n between the N = 2 and the N = 4

amplitudes for operators up to order n = 4.

while at level n = 4 we get

X(4) = − g4 (N2 − 1)(N6 + 2N4 − 18N2 + 81)

96N3

− g6 (N2 − 1)(2N8 + 5N6 − 41N4 + 270N2 − 486)

3072N4

− g8 (N2 − 1)(2N10 + 9N8 − 53N6 + 270N4 − 960N2 + 1710)

122880N5
+ · · · ,

(4.25)

and

X(2,2) = − g4 (N2 − 1)(2N2 − 3)(N2 + 3)

32N2
− g6 (N2 − 1)(7N2 + 27)(N4 − 3N2 + 3)

1536N3

− g8 (N2 − 1)(4N2 + 19)(2N6 − 8N4 + 15N2 − 15)

61440N4
+ · · · . (4.26)

Multiplying the leading terms in these expansions by 3 ζ(3) g4

(8π2)2
, we obtain the 2-loop cor-

rections to the amplitudes A~n, whose explicit expressions are collected in table 2 for all

operators up to dimension n = 4.

It should be clear by now that this procedure can be used to find X~n for any ~n, and

also that it can be straightforwardly generalized to obtain the exact expressions of the

corrections with higher transcendentality, like for example Y~n in (4.14). Of course, the

resulting formulas become longer and longer when one goes higher and higher in n or

in transcendentality; however this approach, which is essentially based on the use of the

recursion relations (3.22), provides a systematic way to obtain exact expressions to any

desired order.

4.3 The large-N limit

We now study the behavior of the matrix model amplitudes in the planar limit N → ∞
with the ’t Hooft coupling

λ = g2N (4.27)

kept fixed. We begin with the N = 4 theory and later turn to the superconformal N = 2

model.
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~n
Expansion of Exact expression of

gn−2` Â~n
∣∣
planar

gn−2` Â~n
∣∣
planar

(2) λ
8 + λ2

96 + λ3

3072 + · · · I2

(√
λ
)

(3) λ2

32
√

2
+ λ3

512
√

2
+ λ4

20480
√

2
+ · · · 3

√
λ

2
√

2
I3

(√
λ
)

(4) λ3

384 + λ4

7680 + λ5

368640 + · · · λ I4

(√
λ
)

(2, 2) λ2

96 + λ3

1536 + λ4

61440 + · · ·
√
λ

2 I3

(√
λ
)

Table 3. Results for the N = 4 matrix model in the planar limit. As explained in the text, n is

the sum of the components of ~n while ` is the number of these components.

The N = 4 theory. Taking the planar limit of the expectation value of the Wilson

loop, from (4.3) we get

Â(0)

∣∣∣
planar

= 1 +
λ

8
+

λ2

192
+

λ3

9216
+ · · · = 2√

λ
I1

(√
λ
)

(4.28)

where In is the modified Bessel function of the first kind. This is a well-known and estab-

lished result [1].

Next, let us consider the amplitude between the Wilson loop and the operator at level

n = 2 given in (4.8). In the planar limit it becomes

Â(2)

∣∣∣
planar

=
λ

8
+
λ2

96
+

λ3

3072
+ · · · = I2

(√
λ
)
. (4.29)

Also this is a known result [9].

Proceeding systematically in this way and using the explicit results in the Gaussian

matrix model, it is not difficult to find the weak-coupling expansion of the amplitude Â~n in

the planar limit for a generic operator, and also to obtain its exact resummation in terms

of Bessel functions. Indeed, for a generic vector ~n one can show that

gn−2` Â~n
∣∣∣
planar

=

(√
λ
)n−`−1

2
n
2

+`−1
In−`+1

(√
λ
) ∏̀
i=1

ni (4.30)

where n is, as usual, the sum of the components of ~n (see (2.5)), while ` is the number of

these components, namely the number of traces that appear in the corresponding operator.

We have verified the validity of this formula by explicitly computing the planar limit of the

amplitudes between the Wilson loop and all operators up to dimension n = 7. In table 3

we collect our results up to level n = 4. We point out that for ` = 1, i.e. for the single

trace operators, our formula (4.30) agrees with the findings of [9].
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~n
Expansion of the ζ(3)-term of Exact expression of the ζ(3)-term of

gn−2` δA~n
∣∣
planar

gn−2` δA~n
∣∣
planar

(2) −3 ζ(3)λ2

(8π2)2

(
3λ
8 + 4λ2

96 + 5λ3

3072 + · · ·
)

−3 ζ(3) (
√
λ)5

2(8π2)2

(
I1

(√
λ
)

+ 2√
λ
I2

(√
λ
))

(3) −3 ζ(3)λ2

(8π2)2

(
3λ2

32
√

2
+ 4λ3

512
√

2
+ 5λ4

20480
√

2
+ · · ·

)
− 9 ζ(3)λ3

4
√

2(8π2)2
I2

(√
λ
)

(4) −3 ζ(3)λ2

(8π2)2

(
4λ3

384 + 5λ4

7680 + 6λ5

368640 + · · ·
)

−3 ζ(3) (
√
λ)7

2(8π2)2
I3

(√
λ
)

(2, 2) −3 ζ(3)λ2

(8π2)2

(
6λ2

96 + 7λ3

1536 + 8λ4

61440 + · · ·
)

− 3 ζ(3)λ3

4(8π2)2

(
I2

(√
λ
)

+ 6√
λ
I3

(√
λ
))

Table 4. Results for the N = 2 superconformal matrix model in the planar limit. As before, n is

the sum of the components of ~n while ` is their number.

The N = 2 superconformal theory. Multiplying (4.16) by 3 ζ(3) g4

(8π2)2
and then taking

the large N limit, it is straightforward to obtain2

δA(0)

∣∣∣
planar

=−3ζ(3)λ2

(8π2)2

(
λ

8
+

2λ2

192
+

3λ3

9216
+· · ·

)
+· · ·=−3ζ(3)λ2

(8π2)2
I2

(√
λ
)
+· · · (4.31)

where the last ellipses stand for terms of higher transcendentality.

In a similar way, from (4.22) we easily get

δA(2)

∣∣∣
planar

= −3 ζ(3)λ2

(8π2)2

(
3λ

8
+

4λ2

96
+

5λ3

3072
+ · · ·

)
+ · · · . (4.32)

It is interesting to observe that if one compares this expression with the expansion of the

planar limit of the N = 4 amplitude Â(2) given in (4.29), one sees that each term of the

latter proportional to λk gets multiplied by

− 3 ζ(3)λ2

(8π2)2
(k + 2) . (4.33)

As we will see in section 5, this fact has a simple and nice diagrammatic interpretation.

The expansion (4.32) can be resummed in terms of modified Bessel functions as follows

δA(2)

∣∣∣
planar

= −3 ζ(3) (
√
λ)5

2(8π2)2

(
I1

(√
λ
)

+
2√
λ
I2

(√
λ
))

+ · · · . (4.34)

Taking into account the different normalization of the operator O(2)(a) we have used, our

result agrees with [46].

Proceeding in this way and using (4.24)–(4.26), it is not difficult to obtain the weak-

coupling expansions of δA(3), δA(4) and δA(2,2) in the planar limit, and eventually their

exact expressions. In table 4 we have collected our findings for the terms proportional to

ζ(3) in δA~n for all operators up to dimension n = 4.

2See also [51].

– 16 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
3

From these explicit results it is possible to infer the following general formula

gn−2` δA~n
∣∣∣
planar

= − 3 ζ(3)

(8π2)2

(√
λ
)n−`+4

2
n
2

+`

{[
In−`

(√
λ
)

+
2(`− 1)√

λ
In−`+1

(√
λ
)] ∏̀

k=1

nk

+

(∑̀
i=1

δni,2

)
2√
λ
In−`+1

(√
λ
) ∏̀
k=1

nk

}
+ · · · (4.35)

which we have verified in all cases up to n = 7. We observe that there is a contribution,

represented by the second line above, which occurs only when the operator O~n(a) contains

at least a factor of the type tr a2. This fact has a precise diagrammatic counterpart, as we

will see in the next section.

Comparing the two exact expressions (4.35) and (4.30) and using the properties of the

modified Bessel functions, it is not difficult to realize that

gn−2` δA~n
∣∣∣
planar

= −3 ζ(3)λ2

(8π2)2

(
λ
∂

∂λ
+ `+

∑̀
i=1

δni,2

)(
gn−2` Â~n

∣∣∣
planar

)
+ · · · (4.36)

where, as usual, the ellipses stand for terms of higher transcendentality. Such a relation im-

plies that if we multiply each term λk in the weak-coupling expansion of gn−2` Â~n
∣∣
planar

by

− 3 ζ(3)λ2

(8π2)2

(
k + `+

∑̀
i=1

δni,2

)
, (4.37)

then we obtain the expansion of the ζ(3)-correction of the corresponding N = 2 planar am-

plitude gn−2` δA~n
∣∣
planar

. Also this formula, which generalizes (4.33) to any ~n, has a simple

and nice interpretation in terms of field theory diagrams, as we will see in the next section.

5 Perturbative checks in field theory

We now consider the direct field theory computation of the expectation values of chiral

operators with a circular BPS Wilson loop in a superconformal N = 2 theory defined on R4.

As explained in section 2, conformal invariance implies that all information about these

expectation values is contained in the amplitudes A~n defined in (2.12). The conjecture we

want to test is that these amplitudes match the corresponding ones A~n in the matrix model

that we introduced in (3.34), namely we want to show that

A~n = A~n . (5.1)

The diagrammatic evaluation in field theory of the correlators A~n beyond tree-level is

in general quite complicated. However, it becomes tractable if one only computes the

difference between the N = 2 result and the one we would have in the N = 4 theory. This

is the same strategy utilized in [48] to check the matrix model expression (4.19) for the

N = 2 Wilson loop itself, as well as in [47] to compute chiral-antichiral two-point functions

in absence of Wilson loops. We now briefly recall the main steps of this approach.
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We first split the N = 2 action as:

S
(Nf )
N=2 = Sgauge + SQ , (5.2)

separating the pure gauge term, Sgauge, with the N = 2 vector multiplet from the matter

term, SQ, which contains Nf hypermultiplets Q in the fundamental representation of the

gauge group. Then, we view the N = 4 vector multiplet as a combination of a N = 2

vector with an adjoint N = 2 hypermultiplet H; in this way the N = 4 SYM action can

be written as:

SN=4 = Sgauge + SH , (5.3)

so that

S
(Nf )
N=2 = SN=4 + SQ − SH . (5.4)

All terms in the right hand side of (5.4) have a well-established N = 1 superfield formula-

tion, which allows us to easily write down the Feynman rules in configuration space. For

this we refer to section 3.1 of [47], whose notations and conventions we consistently use in

the following.

From (5.4) we deduce that any correlator A~n of the N = 2 theory can be written as:

A~n = Â~n +A~n,Q −A~n,H (5.5)

where Â~n is the correlator in the N = 4 theory, while A~n,H and A~n,Q are the contributions

from diagrams in which the adjoint hypermultiplet H and the fundamental hypermultiplets

Q run in the internal lines. Therefore the difference between the N = 2 and the N = 4

amplitudes is

δA~n = A~n − Â~n = A~n,Q −A~n,H . (5.6)

Performing this diagrammatic difference in the perturbative field theory computations leads

to remarkable simplifications, since all diagrams without Q or H internal lines do not need

to be considered.

Starting from this set up, what we shall check, up to two loops, is in fact the following

equality:

δA~n = δA~n , (5.7)

where δA~n is the difference between the N = 2 and N = 4 matrix model results introduced

in (4.13).

5.1 Tree-level

At the lowest order in g the N = 2 and N = 4 amplitudes coincide:

A~n

∣∣∣
tree−level

= Â~n

∣∣∣
tree−level

; (5.8)

in other words,

δA~n

∣∣∣
tree−level

= 0 . (5.9)

Also in the matrix model this difference vanishes at the lowest order, see (4.15). Thus, the

equality (5.7) is satisfied at tree level.
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Figure 2. At the lowest perturbative order, the operator O~n(x) is connected to the Wilson loop

by n scalar propagators. Exploiting conformal invariance, we can place the operator in the origin,

i.e. in the center of the Wilson loop. Nevertheless, in this and in the following pictures we will

continue to place it outside the loop to avoid graphical clutter.

Actually, in this case it is easy (and also convenient for later purposes) to check directly

the validity of (5.1). Performing this check is helpful also to establish some facts that will

be useful at higher orders; in particular, the way the path-ordered integration over the

Wilson loop simplifies in the tree-level case will be exploited also in the two-loop order

computations. Thus, for later convenience we briefly show some details. At the lowest

order in g, the n chiral fields ϕ appearing in the operator O~n must be contracted with

the n antichiral fields present in the term of order n in the expansion on the Wilson loop

operator (2.3). This is represented by the diagram in figure 2.

Thus, we have

〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gn

n!

〈
P tr

(
n∏
i=1

∮
C
dτi

R√
2
ϕ̄(xi)

)
O~n(0)

〉
(5.10)

where we have denoted by xi = x(τi) the positions along the Wilson loop C. Using (2.7),

we rewrite this expression as

〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gnRn

2
n
2 n!
P

n∏
i=1

∮
C
dτi tr

(
T a1 · · ·T an

)
Rb1...bn~n

×
〈
ϕ̄a1(x1) · · · ϕ̄an(xn)ϕb1(0) · · ·ϕbn(0)

〉
. (5.11)

The vacuum expectation value in the second line above is computed using the free scalar

propagator 〈
ϕ̄a(xi)ϕ

b(0)
〉

=
δab

4π2 x2
i

=
δab

4π2R2
(5.12)

where we have exploited the fact that xi = x(τi) belongs to the circle C of radius R and

thus can be parameterized as in (2.9). In view of this, when we apply Wick’s theorem

in (5.11) we obtain an integrand that does not depend on the variables τi. The path

ordering becomes therefore irrelevant and, from the integration over τi, we simply get a

factor of (2π)n. Moreover the n! different contraction patterns all yield the same expression,
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Figure 3. Diagrams which do not contain interaction vertices including H or Q hypermultiplets

and which therefore vanish in the difference between the N = 2 and the N = 4 theory. Here there

are some examples of diagrams which appear at order g2 with respect to the tree-level amplitude

A~n, but vanish in the difference δA~n.

due to the symmetry of the tensor R~n. Taking all this into account, we get〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gn

2
n
2

1

(2πR)n
R b1...bn
~n tr

(
Tb1 . . . T

bn
)
, (5.13)

which implies that

A~n

∣∣∣
tree−level

= Â~n

∣∣∣
tree−level

=
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)
, (5.14)

in full agreement with the matrix model result (4.12).

5.2 Loop corrections

At higher orders in g we concentrate on the difference δA~n. As we already pointed out, the

number of diagrams which contribute to this difference is massively reduced. For example,

all diagrams represented in figure 3 yield a g2 correction with respect to the tree-level

amplitude A~n but they should not be considered in the computation of δA~n since they do

not contain internal lines with H or Q hypermultiplets.

One loop. It is easy to see that in the N = 2 superconformal theory there are no

corrections of order g2 with respect to the tree-level result. In fact, at this order the only

possible diagrams containing H and Q hypermultiplets arise from the one-loop correction

of the external scalar propagators as shown in figure 4. This one-loop correction is due to

the two diagrams represented in figure 5. Using the Feynman rules and conventions spelled

out in detail in [47], one can easily see that the sum of these two diagrams is proportional to

Nf tr
(
T bT a

)
−
(
i f bcd

) (
i fadc

)
=

(
Nf

2
−N

)
δab , (5.15)

– 20 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
3

O~n(x)

W (C)

1

Figure 4. The only diagrams that yield a g2 correction to the tree-level amplitude A~n and contain

Q and H hypermultiplets arise from the one-loop correction of the external scalar propagators.

1 =

−

b a b a

b a

Figure 5. The one-loop correction to the scalar propagator. The first diagram on the right

hand side is the Q-contribution due the fundamental hypermultiplets; the second diagram is the

H-contribution due the adjoint hypermultiplet and so it comes with a minus sign.

which vanishes for Nf = 2N . Therefore, in the superconformal N = 2 theory we have

δA~n

∣∣∣
1−loop

= 0 , (5.16)

in full agreement with the matrix model result (see (4.15)).

Two loops. Let us now consider the two-loop corrections, i.e. those at order g4 with

respect to the tree-level amplitudes, and focus on the difference δA~n. The H or Q diagrams

which contribute at this order can be divided into two classes. The first one is formed by

those diagrams which contain a sub-diagram with the one-loop correction to the scalar

propagator, or to the gluon propagator or to the 3-point vertex. Some examples of such

diagrams are shown in figure 6. All these diagrams vanish in the N = 2 superconformal

theory. Indeed, both the one-loop correction to the gluon propagator and the one-loop

correction to the 3-point vertex are proportional to (Nf − 2N), just like the one-loop

correction to the scalar propagator as we have seen in (5.15)

The second class of diagrams that can contribute to δA~n at two loops in the supercon-

formal theory are those of the type displayed in figure 7. They contain either the irreducible

two-loop correction of the scalar propagator represented in figure 8, or the two-loop effective

vertex represented in figure 9. Thus, we can write

δA~n

∣∣∣
2−loop

= I~n + J~n (5.17)

where I~n and J~n correspond, respectively, to the diagrams of type (i) and (j).
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O~n(x)

W (C) (a)

1

W (C) (b)

1

O~n(x)

W (C) (d)

1

O~n(x)

W (C) (c)

1

O~n(x)

O~n(x)

W (C) (e)

O~n(x)

W (C) (f)

1

1
1

1

Figure 6. Some examples of diagrams contributing to δA~n at two loops. Diagrams (a) and

(c) contain the one-loop correction of the gluon propagator, diagram (d) contains the one-loop

correction to the 3-point vertex, while diagrams (b), (e) and (f) contain the one-loop correction

to the scalar propagator. All these diagrams vanish in the superconformal theory since they are

proportional to (Nf −2N). Beside these, one should also consider the one-loop diagrams of figure 3

in which one of the external scalar propagators is corrected at one loop. Also such diagrams vanish

in the superconformal theory.

O~n(x)

W (C) (i)

2

O~n(x)

W (C)

2

(j)

Figure 7. Diagrams that contribute to δA~n at two loops in the N = 2 superconformal theory. Dia-

gram (i) on the left contains the irreducible two-loop correction of the scalar propagator represented

in figure 8, while diagram (j) on the right contains the two-loop effective vertex depicted in figure 9.

Let us first consider the irreducible two-loop correction3 of the scalar propagator drawn

in figure 8. In configuration space this correction has been computed in [47] to which we

refer for details, and the result is4

− 8 g4Cba2 W2(x1, x2) (5.18)

3Notice that in the superconformal theory the only diagrams that contribute to the scalar propagator at

two loops are those represented in figure 8. Indeed, all other two-loop diagrams that correct the propagators

are proportional to (Nf − 2N).
4See eq. (3.24) of [47].
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2 =

−

b a b a

b a

Figure 8. The irreducible two-loop correction to the scalar propagator in the N = 2 superconformal

theory. The first diagram on the right hand side is the Q-contribution involving the fundamental

hypermultiplets, while the second diagram is the H-contribution due to the adjoint hypermultiplet

which therefore comes with a minus sign.

b1 a1

b2 a2
2 =

b1 a1

b2 a2

−
b1 a1

b2 a2

Figure 9. The two-loop effective vertex that can contribute to the amplitude A~n in the N = 2

superconformal theory. The first diagram on the right hand side is the Q-contribution involving the

fundamental hypermultiplets, while the second diagram is the H-contribution due to the adjoint

hypermultiplet and thus comes with a minus sign.

where the colour factor is

Cba2 = Nf tr
(
T bT cT aT c

)
− f bd4d1 f cd1d2 fad2d3 f cd3d4

= −
(Nf

2N
+N2

)
tr
(
T bT a

)
= −N

2 + 1

2
δab ,

(5.19)

while the superspace integral yields

W2(x1, x2) = − 3 ζ(3)

(16π2)2

1

4π2(x1 − x2)2
. (5.20)

Putting everything together, we find that the two-loop correction of the scalar propagator is

− g4 3 ζ(3)

(8π2)2

[
δab

4π2(x1 − x2)2

]
(N2 + 1) (5.21)

where the expression in square brackets is the tree-level propagator. Therefore, when we

compute the amplitude I~n corresponding to the diagram (i) of figure 7, we simply obtain

an expression which is proportional to the tree-level result (5.14). Indeed we get

I~n = −n g4 3 ζ(3)

(8π2)2

[
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)]
(N2 + 1) (5.22)
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where the overall factor of n is due to the fact that the two-loop correction (5.21) can be

inserted in any of the n external propagators.

Let us now consider the two-loop diagram (j) of figure 7. To compute the corresponding

amplitude J~n, we have to perform all contractions as in the tree-level diagram but with two

scalar propagators replaced by the sub-structure corresponding to the two-loop effective

vertex of figure 9. The latter has been analyzed in [47] to which we refer again for details.

Considering that the two external legs with colour indices b1 and b2 are inserted at the

point x where the operator O~n is located, and the other two external legs with indices

a1 and a2 are inserted at two points x1 and x2 on the circular Wilson loop, the relevant

expression is5

2 g4C b1b2a1a2
4 W4(x, x;x1, x2) (5.23)

where the colour factor is

C b1b2a1a2
4 = Nf tr

(
T b1T a1T b2T a2

)
− f b1d4d1 fa1d1d2 f b2d2d3 fa2d3d4

= −1

2

(
δb1a1 δb2a2 + δb1b2 δa1a2 + δb1a2 δb2a1

)
,

(5.24)

while the superspace integral leads to

W4(x, x;x1, x2) =
6 ζ(3)

(16π2)2

[
1

4π2(x− x1)2

1

4π2(x− x2)2

]
. (5.25)

As is clear from the expression in square brackets, we still recover the same space depen-

dence of two scalar propagators as in the tree-level computation, even if the colour structure

of the C4 tensor is different. Exploiting conformal invariance to set x = 0 and recalling

the parametrization (2.9) for points on a circle, the above square brackets simply becomes

1/(2πR)4; thus the path-ordering and the integration over the Wilson loop become trivial

to perform, just as they were in the tree-level amplitude. Putting everything together and

replacing any pair of external scalar propagators with this effective two-loop vertex in all

possible ways, we obtain

J~n = g4 3 ζ(3)

(8π2)2

[
gn

N 2
n
2

R b1...bn
~n tr

(
T a1 . . . T an

)]
× 2

∑
p∈Sn−1

C
b1b2ap(1)ap(2)
4 δb3ap(3) . . . δbn−1ap(n−1) δbnan

(5.26)

where p ∈ Sn−1 are the permutations of (n−1) elements. We observe that the 1/n! coming

from the expansion of the Wilson loop operator at order gn is compensated by a factor of

n! that arises when we take into account the complete symmetry of the tensor R~n and the

cyclic symmetry of the trace factor in the square bracket. Furthermore the factor of 2 in

the last line of (5.26) is a combinatorial factor due to the multiplicity of the two-loop box

diagram of figure 9.

5See eq. (3.33) of [47].
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Summing I~n and J~n, we get

δA~n

∣∣∣
2−loop

=−g4 3ζ(3)

(8π2)2

[
gn

N 2
n
2

Rb1...bn
~n tr

(
T a1 . . .T an

)]
(5.27)

×

[
n(N2+1)δb1a1 . . . δbnan−2

∑
p∈Sn−1

C
b1b2ap(1)ap(2)
4 δb3ap(3) . . . δbn−1ap(n−1) δbnan

]
.

This is the final result of our diagrammatic computation of the two-loop correction to the

amplitude A~n in the N = 2 superconformal theory.

As an example, we work out the explicit expression for the lowest dimensional operator

O(2). In this case, we simply have

Rb1b2(2) = tr
(
T b1T b2

)
=

1

2
δb1b2 . (5.28)

Thus, the contribution from the diagram (i) is (see (5.22)):

I(2) = −2 g4 3 ζ(3)

(8π2)2

[
g2

2N

(N2 − 1)

4

]
(N2 + 1) , (5.29)

while from the diagram (j) we get (see (5.26)):

J(2) = −g4 3 ζ(3)

(8π2)2

[
g2

2N

(N2 − 1)

4

]
(N2 + 1) . (5.30)

Note that in this case both diagrams (i) and (j) provide colour contributions with the

same leading power of N . This is a specific feature of this operator and it does not hold for

higher dimensional operators unless they contain a factor of tr φ2 (see appendix B where

we discuss the cases corresponding to ~n = (4) and ~n = (2, 2) in which this property is

clearly exhibited). This fact will have important consequences for the planar limit as we

will see in the following subsection. Summing (5.29) and (5.30), we finally get

δA(2)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

9(N2 − 1)(N2 + 1)

8N
, (5.31)

in perfect agreement with the matrix model result (4.23).

We have explicitly performed similar checks for many operators of higher dimension

and always found a precise match between the field theory expression (5.27) and the matrix

model results summarized in table 2, thus confirming the validity of (5.7) up to two loops.

The details of the calculation in the cases ~n = (4) and ~n = (2, 2) are given in appendix B.

5.3 Planar limit

All the above checks are easily extended in the planar limit by keeping the highest power

of N and performing the substitution g2N = λ. In this limit the number of diagrams

which contribute to the correlator is drastically reduced, and thus such checks can be

pushed to higher orders in perturbation theory without much effort. Let us first review

the well-known N = 4 case [9–11].
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O~n(x)

W (C) (r) W (C) (s)

O~n(x)

Figure 10. In the planar limit of the N = 4 theory, the tree-level expression encoded in figure 2

gets corrected only by the so-called “rainbow” diagrams, the first two of which are represented here.

We have used a double line to denote the sum of the gluon and the scalar propagator, which always

occur together when attached to the Wilson loop and yield the simple expression given in (5.35).

The N = 4 theory. At leading order, using the tree-level result (5.14) that corresponds

to the diagram of figure 2, one easily finds

gn−2` Â~n

∣∣∣
tree−level,planar

= lim
N→∞

g2n−2`

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)
= c~n,0 λ

n−` (5.32)

where c~n,0 are numerical coefficients which can be deduced from table 1. In particular

we have:

c(2),0 =
1

8
, c(3),0 =

1

32
√

2
, c(4),0 =

1

384
, c(2,2),0 =

1

96
. (5.33)

In [9] it was argued that all diagrams with internal vertices cancel at the next order and

it was conjectured that analogous cancellations should occur at all orders in perturbation

theory. Thus, only the “rainbow” diagrams of the type represented in figure 10 contribute

to the amplitude Â~n in the planar limit.

The evaluation of these “rainbow” diagrams is particularly simple in the case of a

circular Wilson loop. Indeed, if we denote by wa(x) the combination of gluons and scalars

that appears inside the path-ordered exponential in (2.3), namely

wa(x) = iAaµ(x) ẋµ +
R√
2

(
ϕa(x) + ϕ̄a(x)

)
(5.34)

with x being a point on the circle C, then we have〈
wa(x1)wb(x2)

〉
=
δab

4π2

1− ẋ1 · ẋ2

(x1 − x2)2
=

δab

8π2R2
(5.35)

where in the last step we have used the parameterization (2.9). Thus, the contribution of

the internal propagators, represented by double lines in figure 10, is constant and similar to

the one of the external scalar propagators (see (5.12)) so that only combinatorial coefficients

have to be computed. For example, the diagram (r) yields a contribution of the form

c~n,1 λ
n−`+1 (5.36)

with

c(2),1 =
1

96
, c(3),1 =

1

512
√

2
, c(4),1 =

1

7680
, c(2,2),1 =

1

1536
. (5.37)
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Similarly, the diagram (s) leads to

c~n,2 λ
n−`+2 (5.38)

with

c(2),2 =
1

3072
, c(3),2 =

1

24480
√

2
, c(4),2 =

1

368640
, c(2,2),2 =

1

61440
. (5.39)

From these results it is possible to infer the following resummed expression

gn−2` Â~n

∣∣∣
planar

=
∞∑
j=0

c~n,j λ
n−`+j =

(√
λ
)n−`−1

2
n
2

+`−1
In−`+1

(√
λ
) ∏̀
i=1

ni (5.40)

which agrees with the matrix model result (4.30).

The N = 2 theory. In this case we focus on the planar limit of the difference δA~n and

in particular on the terms proportional to ζ(3). To obtain the result at the lowest order,

one simply has to take the two-loop result (5.27) and evaluate it in the large-N limit. As

we have seen in the previous subsection, there are two types of terms: one corresponding

to the diagram (i) of figure 7 and one corresponding to the diagram (j), which arise from

the two-loop contributions depicted, respectively, in figure 8 and 9. The correction to the

scalar propagator gives rise to a contribution that always survives in the planar; in fact

in (5.21) it was proved to be proportional to g4(N2 + 1), which in the planar limit reduces

to λ2. On the other hand, the two-loop effective vertex does not always contribute in the

planar limit, since it is leading for N →∞ only when it is attached to trϕ2. This can be

realized by noticing that in this case such a diagram, because of (5.24), always produces

the structure

tr
(
T b1T b2

)
δb1b2 δa1a2 =

1

2
(N2 − 1)δa1a2 , (5.41)

with the N2 factor making the contribution leading. Thus, the diagrams of type (i) always

contribute in the planar limit, while the diagrams of type (j) are sub-leading unless some

of the components of the vector ~n are equal to 2. This fact can be checked in the explicit

computations for O(2) (see (5.29) and (5.30)) and for O(4) and O(2,2) reported in appendix B.

These simple considerations give a nice field theory interpretation to some of the matrix

model results presented in section 4.3.

Building on the idea that all diagrams with internal vertices cancel at all orders in per-

turbation theory, like in the N = 4 model [9], one can construct a class of ζ(3)-proportional

diagrams, starting from the N = 4 “rainbow” diagrams and performing on them one of

the aforementioned planar two-loop corrections. This can be done either by correcting one

of the external scalar propagators, or by correcting one of the internal double-line propa-

gators6 or by including the two-loop effective vertex if O~n contains at least a factor trϕ2.

The result of performing any of these corrections is always equal to the original N = 4

“rainbow” diagram multiplied by −3 ζ(3)λ2

(8π2)2
. This analysis tells us how to get the N = 2

correction proportional to ζ(3) in the planar limit starting from the N = 4 amplitude. In

6Since these internal propagators and the scalar propagators are proportional to each other (see (5.35)

and (5.12)), also their planar two-loop corrections are proportional.
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fact, expanding (5.40) for small λ, the term of order k corresponds to a sum over “rainbow”

diagrams with (k − n + `) internal propagators and n external ones. Using the method

we just described, any such diagram can be corrected once for every internal propagator,

once for every external propagator and once for every factor trϕ2 appearing in O~n, giving

a total of

(k − n+ `) + n+
∑̀
i=1

δni,2 = k + `+
∑̀
i=1

δni,2 (5.42)

corrections proportional to −3 ζ(3)λ2

(8π2)2
. This result precisely matches the matrix model ex-

pression (4.37) and suggests that this class of diagrams reconstructs the full ζ(3)-term of

the N = 2 correlator at all orders in perturbation theory, just like the “rainbow” diagrams

make up the full N = 4 correlator.

6 Conclusions

We have verified up to two loops in the N = 2 superconformal theory that the one-point

amplitude A~n of a chiral operator in presence of a circular Wilson loop computed using

the matrix model exactly matches the amplitude A~n computed using standard field theory

methods with (super) Feynman diagrams. We have also discussed the planar limit of the

amplitudes and found a perfect agreement between the two approaches also in this case.

We have performed our checks in many examples with operators of dimensions up to n = 7,

even if here we have explicitly reported our results only for the low-dimensional operators

up to n = 4 for brevity.

We would like to remark that in order to obtain this agreement, an essential ingredi-

ent on the matrix model side is the g-dependent normal ordering of the chiral operators

introduced in [47]. This normal ordering prescription is equivalent to the Gram-Schmidt

orthogonalization algorithm discussed in [44] and later in [43, 45, 46, 52] in both N = 4

and N = 2 cases. In the N = 4 theory, however, this procedure actually does not intro-

duce any g-dependence, while in the N = 2 examples considered so far in the literature,

the g-dependent terms of the normal-ordered operators could not be really tested since

they affect only higher-loop subleading terms which have not been computed. This is the

case, for instance, of the two-point functions of chiral operators investigated in [44] for

the superconformal theory, or in [47] for the superconformal theory and for a special class

of operators in the non-conformal case. On the contrary, for the one-point functions in

presence of a Wilson loop that we have studied in this paper, such g-dependence already

shows up at two loops, and thus its crucial role for the agreement with the field theory

results could be tested in our two-loop calculations.

Several extensions and generalizations are possible. For example, one could compute

the one-point functions of chiral operators in presence of Wilson loops that are more gen-

eral than the circular one we have considered and that preserve a smaller amount of su-

persymmetry. Another interesting possibility would be to study the two-point functions in

presence of a Wilson loop (as in [53]) and see what kind of information could be extracted

from the matrix model in this case. An even more challenging development would be to
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consider non-conformal N = 2 theories [54] and check whether also in this case the matrix

model can be used to obtain the field theory amplitudes. As is clear from our discussion

in section 3, there is no obstruction to define and compute amplitudes in non-conformal

N = 2 theories. One simply has to take into account the fact that several cancellations do

not occur any longer when Nf 6= 2N and thus more terms have to be considered. On the

field theory side, instead, one has deal with delicate issues related to the renormalization

of the coupling constant, of the wave-function and of the composite operators, and also to

the appearance of a dynamically generated scale at the quantum level. We believe that

making some progress in this direction would be very interesting since the matrix model

approach is technically much more amenable than the diagrammatic one and allows one to

obtain results at high perturbative orders in a more efficient way.
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A One-point functions from defect conformal field theory

In a conformal field theory, the functional form of the one-point function of a conformal

operator O(x) in presence of a circular defect W (C) of radius R is completely determined.

One way to obtain this form is to use the embedding formalism, in which a point x ∈ R4 is

associated in a projective way to a null section P in the embedding space M1,5 of the form

P =

(
R2 + x2

2R
,
R2 − x2

2R
, xµ
)
, (A.1)

which satisfies P 2 ≡ P T η P = 0 with η = diag(−1, 1, 1, 1, 1, 1). Scalar operators O(x) of

dimension ∆ are associated to operators Ô(P ) which are homogeneous of degree ∆, namely

such that Ô(λP ) = λ−∆ Ô(P ).

In absence of defects, the conformal group SO(1, 5) is the isometry group of the em-

bedding space and acts linearly on P . In presence of the Wilson loop, we can split the

spacetime coordinates into “parallel” and “transverse” ones: xµ → (xa, xi), where a = 1, 2

and i = 3, 4. We will denote xaxa = r2 and xixi = L2, so that x2 = r2 +L2. The symmetry

is reduced according to the pattern

SO(1, 5)→ SO(1, 2)× SO(3) , (A.2)

with SO(1, 2) and SO(3) linearly acting, respectively, on

P‖ =

(
R2 + x2

2R
, xa
)

and P⊥ =

(
R2 − x2

2R
, xi
)
. (A.3)
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There are two scalar products invariant with respect to the two symmetry factors, which

we denote as

P •P ≡ P T‖ η P‖ with η = diag(−1, 1, 1) and P ◦P ≡ P T⊥ P⊥ . (A.4)

They are not independent, since P •P + P ◦P = P 2 = 0. Therefore, we can take as the

single independent invariant the quantity

‖x‖C ≡ 2
√
P ◦P =

√
(R2 − x2)2 − 4R2L2

R
. (A.5)

The one-point function
〈
W (C)O(x)

〉
=
〈
W (C) Ô(P )

〉
must depend on ‖x‖C , and

must be homogeneous of degree ∆ in it; thus it must necessarily be of the form〈
W (C) Ô(P )

〉
=

AO
(2π‖x‖C)∆

. (A.6)

The 2π factor is inserted for convenience and the constant AO is related to the value of the

correlator at x = 0, i.e. at P = P0 = (R2 ,
R
2 ,
~0) where ‖x‖C → R, so that

〈
W (C) Ô(P0)

〉
=

AO
(2πR)∆

. (A.7)

B Calculation of δA(4) and δA(2,2) at two loops

We provide some details for the calculation of the color factor in the amplitude δA(4) and

δA(2,2) at two loops.

δA(4) at two loops. When ~n = (4), the tensor R(4) associated to the chiral opera-

tor O(4) can be written as a normalized sum over all permutations of the generators in

tr
(
T b1T b2T b3T b4

)
, up to cyclic rearrangements, namely (see also footnote 1)

R b1b2b3b4
(4) =

1

4!
4
∑
p∈S3

tr
(
T bp(1)T bp(2)T bp(3)T b4

)
. (B.1)

Using this, we can easily compute the tree-level amplitude A(4)

∣∣
tree−level

given in (5.14):

A(4)

∣∣∣
tree−level

=
g4

4N
tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(4) . (B.2)

Using the explicit form (B.1), one can realize that tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(4) contains six

terms that have three different structures. The first one is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b1T b2T b3T b4

)
=

1

6

[
1

8

(
db1b2e + if b1b2e

)(
db3b4e + if b3b4e

)
+

1

4N
δb1b2δb3b4

]2

=
(N2 − 1)(N2 + 3)

96N2

(B.3)
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where the last equality follows from the group theory identities in appendix C. The second

type of structure is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b2T b1T b3T b4

)
=

1

6

[
(N2 − 1)(N2 + 3)

16N2
+ if b2b1c tr

(
T cT b3T b4

)
tr
(
T b1T b2T b3T b4

)]
= −(N2 − 1)(N2 − 3)

96N2
.

(B.4)

Up to relabeling of the indices, we have four such terms. Finally, the third structure is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b3T b2T b1T b4

)
=

1

6

[
− (N2 − 1)(N2 − 3)

16N2
+ if b4b3c tr

(
T cT b2T b1

)
tr
(
T b1T b2T b3T b4

)]
=

(N2 − 1)(N4 − 3N2 + 3)

96N2
. (B.5)

Summing these contributions and plugging the result in (B.2), we get

A(4)

∣∣∣
tree−level

= g4 (N2 − 1)(N4 − 6N2 + 18)

384N3
, (B.6)

which precisely matches the matrix model expression reported in the last-but-one row of

table 1.

Now let us consider the two-loop correction δA(4)

∣∣
2−loop

. From (5.27), we have

δA(4)

∣∣∣
2−loop

=−g4 3ζ(3)

(8π2)2

[ g4

4N
Rb1b2b3b4

(4) tr
(
T a1T a2T a3T a4

)]
(B.7)

×

[
4(N2+1)δb1a1 δb2a2 δb3a3 δb4a4−2

∑
p∈S3

C
b1b2ap(1)ap(2)
4 δb3ap(3) δb4a4

]
.

The first term in the square brackets, which corresponds to the sub-amplitude I(4) asso-

ciated to the diagram (i) of figure 7, is proportional to the tree-level result (B.6) and is

given by

I(4) = −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 1)(N4 − 6N2 + 18)

32N3

]
. (B.8)

The second term in the square brackets of (B.7), corresponding to the sub-amplitude J(4)

associated to the diagram (j) of figure 7, is a bit lengthy to compute, since it is no more

proportional to the tree-level expression (B.6). However, looking at the explicit form of

the tensor C4 which we rewrite here for convenience

C b1b2a1a2
4 = −1

2

(
δb1a1 δb2a2 + δb1a2 δb2a1 + δb1b2 δa1a2

)
, (B.9)

we can realize that

g4

4N
R b1b2b3b4

(4) tr
(
T a1T a2T a3T a4

)
δb1ap(1) δb2ap(2) δb3ap(3)δb4a4 = A(4)

∣∣∣
tree−level

(B.10)
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for any permutation p ∈ S3, thanks to the symmetry of R(4). Thus, the first two terms of

C4 produce color structures that are proportional to the tree-level one for each permutation

p. We can therefore write

J(4) = −g4 3 ζ(3)

(8π2)2

[
12A(4)

∣∣∣
tree−level

+
g4

4N
R b1b2b3b4

(4) tr
(
T a1T a2T a3T a4

) ∑
p∈S3

δb1b2 δap(1)ap(2) δb3ap(3) δb4a4

]
.

(B.11)

The last term must be computed explicitly. To do so we use the fact that

R aabc
(4) =

2N2 − 3

12N
δbc , (B.12)

so that

J(4) = −g4 3 ζ(3)

(8π2)2

[
12A(4)

∣∣∣
tree−level

+
g4

4N

2N2 − 3

12N

(
4 tr

(
T aT aT bT b

)
+ 2tr

(
T aT bT aT b

))]
= −g8 3 ζ(3)

(8π2)2

1

4N

[
(N2 − 1)(N4 − 6N2 + 18)

8N2
+

(N2 − 1)(2N2 − 3)2

24N2

]
= −g8 ζ(3)

(8π2)2

(N2 − 1)(7N4 − 30N2 + 63)

32N3
.

(B.13)

Notice that in the large-N limit, J(4) is subleading with respect to I(4). Summing the two

contributions, we find that the total amplitude δA(4)

∣∣
2−loops

is

δA(4)

∣∣∣
2−loops

= I(4) + J(4) = −g8 ζ(3)

(8π2)2

(N2 − 1)(N6 + 2N4 − 18N2 + 81)

32N3
(B.14)

which exactly matches the matrix model expression reported in the last-but-one row of

table 2.

δA(2,2) at two loops. In a similar way we perform the computation for the other 4-

dimensional operator, namely O(2,2), defined by the tensor

R b1b2b3b4
(2,2) =

1

4!
4
∑
p∈S3

tr
(
T bp(1)T bp(2)

)
tr
(
T bp(3)T b4

)
=

1

12

(
δb1b2δb3b4 + δb1b3δb2b4 + δb2b3δb1b4

)
.

(B.15)

Then, from (5.14) the tree-level amplitude:

A(2,2)

∣∣∣
tree−level

=
g4

4N
tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(2,2)

=
g4

4N

1

12

[
2 tr

(
T aT aT bT b

)
+ tr

(
T aT bT aT b

)]
=

g4

4N

(N2 − 1)(2N2 − 3)

48N
.

(B.16)
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We can see that this matches the matrix model expression reported in the last row of

table 1.

Let us then consider the two-loop correction δA(2,2)

∣∣
2−loop

. According to (5.27):

δA(2,2)

∣∣∣
2−loop

= −g4 3 ζ(3)

(8π2)2

[
g4

4N
R b1b2b3b4

(2,2) tr
(
T a1T a2T a3T a4

)]
(B.17)

×

[
4 (N2 + 1) δb1a1 δb2a2 δb3a3 δb4a4 − 2

∑
p∈S3

C
b1b2ap(1)ap(2)
4 δb3ap(3) δb4a4

]
.

The first term in the square brackets of the last line, which corresponds to the diagram of

type (i) in figure 7, is manifestly proportional to the tree-level result (B.16) and is given by

I(2,2) = −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 1)(2N2 − 3)

16N2

]
. (B.18)

The second term of the last line of (B.17) corresponds to the sub-amplitude J(2,2) associ-

ated to the diagram of type (j) in figure 7. Exploiting the symmetry properties of C4 and

R(2,2), we can immediately write it as

J(2,2) = −g4 3 ζ(3)

(8π2)2

[
12A(2,2)

∣∣∣
tree−level

+
g4

4N
R b1b2b3b4

(2,2) tr
(
T a1T a2T a3T a4

) ∑
p∈S3

δb1b2 δap(1)ap(2) δb3ap(3) δb4a4

]
.

(B.19)

Differently from J(4), the form of

R aabc
(2,2) =

N2 + 1

12
δbc (B.20)

implies that also J(2,2) is proportional to the tree-level amplitude. Indeed,

J(2,2) = −g4 3 ζ(3)

(8π2)2

[
12 + 2 (N2 + 1)

]
A(2,2)

∣∣∣
tree−level

= −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 7)(2N2 − 3)

32N2

]
.

(B.21)

We explicitly notice that in this case both I(2,2) and J(2,2) contribute to the leading order

in the large-N limit. In total we get:

δA(2,2)

∣∣∣
2−loops

= I(2,2) + J(2,2) = −g8 ζ(3)

(8π2)2

3 (N2 − 1)(2N2 − 3)(N2 + 3)

32N2
(B.22)

which matches the matrix model expression reported in the last row of table 2.
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C Group theory identities

Here we collect some group theory formulas that are useful to perform explicit calcula-

tions and check our results. We take the generators T a of SU(N) to be Hermitean and

normalized as

tr
(
T aT b

)
=

1

2
δab , (C.1)

and define the structure constants fabc by[
T a , T b

]
= i fabc T c , (C.2)

and the dabc-symbols by {
T a , T b

}
=

1

N
δab + dabc T c . (C.3)

Then one has

tr
(
T aT bT c

)
=

1

4

(
dabc + i fabc

)
, (C.4)

tr
(
T aT bT cT d

)
=

1

8

(
dabe + i fabe

)(
dcde + i f cde

)
+

1

4N
δab δcd , (C.5)

and

fabe f cde =
2

N

(
δac δbd + δad δbc

)
+ dace dbde − dade dbce , (C.6)

dabc dabd =
N2 − 4

N
δdc , (C.7)

fabc fabd = N δdc , (C.8)

fabc dabd = 0 . (C.9)
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