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Collective adaptive systems are an emerging class of networked computational systems, particularly suited for

application domains such as smart cities, complex sensor networks, and the Internet of Things. These systems

tend to feature large scale, heterogeneity of communication model (including opportunistic peer-to-peer

wireless interaction), and require inherent self-adaptiveness properties to address unforeseen changes in

operating conditions. In this context, it is extremely difficult (if not seemingly intractable) to engineer reusable

pieces of distributed behaviour so as to make them provably correct and smoothly composable.

Building on the field calculus, a computational model (and associated toolchain) capturing the notion of

aggregate network-level computation, we address this problem with an engineering methodology coupling

formal theory and computer simulation. On the one hand, functional properties are addressed by identifying

the largest-to-date field calculus fragment generating self-stabilising behaviour, guaranteed to eventually

attain a correct and stable final state despite any transient perturbation in state or topology, and including

highly reusable building blocks for information spreading, aggregation, and time evolution. On the other hand,

dynamical properties are addressed by simulation, empirically evaluating the different performances that can

be obtained by switching between implementations of building blocks with provably equivalent functional

properties. Overall, our methodology sheds light on how to identify core building blocks of collective behaviour,

and how to select implementations that improve system performance while leaving overall system function

and resiliency properties unchanged.

CCS Concepts: • Theory of computation → Self-organization; • Software and its engineering →

Specification languages; Semantics; Software design engineering; Empirical software validation; •Computing
methodologies→ Model verification and validation;
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1 INTRODUCTION
Collective adaptive systems are an emerging class of networked computational systems situated

in the real-world, finding extensive application in domains such as smart cities, complex sensor

networks, and the Internet of Things. The pervasive nature of these systems can potentially fulfill the

vision of a fully integrated digital and physical world. With collective adaptive systems, in the near

future one may easily envision “enhanced” living and working environments, thanks to computing

devices connected to every physical object that provide increasingly powerful capabilities of

computing, storage of local data, communication with neighbours, physical sensing, and actuation.

Such environments pave the way towards implementing any non-trivial pervasive computing

service through the inherent distributed cooperation of a large set of devices, so as to address by

self-adaptation the unforeseen changes in working conditions that necessarily happen—much in

the same way adaptivity and resilience are addressed in complex natural systems at all levels, from

molecules and cells to animals, species, and entire ecosystems [59].

A long-standing aim in computer science has indeed been to find effective engineering meth-

ods for exploiting mechanisms for adaptation and resilience in complex, large-scale applications.

Practical adoption, however, poses serious challenges, since such mechanisms need to carefully

trade efficiency for resilience, and are often difficult to predictably compose to meet more complex

specifications. Despite much prior work, e.g., in macroprogramming, spatial computing, pattern lan-

guages, etc. (as surveyed in [8]), to date no such approach has provided a comprehensive workflow

for efficient engineering of complex self-organising systems.

Recently, however, among the many related works (see Section 2), two key ingredients have

been provided toward such an engineering workflow. First, the computational field calculus [21, 54]
provides a language for specifying large-scale distributed computations and, critically, a functional

programming model for their encapsulation and safely-scoped composition. This framework as-

sumes that the system is composed of a discrete set of devices deployed in a space equipped with a

notion of locality: each device works in asynchronous computational rounds producing a result data

that is sent to local neighbours
1
. Second, a set of sufficient conditions for “self-stabilisation” have

been identified [10, 19, 53], guaranteeing that a large class of programs are all self-adaptive systems

resilient to changes in their environment—more precisely, after some period without changes in

the computational environment, such a distributed computation reaches a stable state that only

depends on inputs and network topology (i.e., the converged state is independent of computational

history). As an example, such conditions reveal the non-resiliency of gossiping to find the minimum

of a given value across a network: since each node continuously compute the minimum of all values

received from neighbours, the system can’t recover from the temporary decrease of a value below

the minimum [19].

This paper combines these two advances with an approach to optimisation of self-organising

systems via substitution of equivalent coordination mechanisms, guaranteed to result in the same

functional behaviour thoughwith different performance characteristics. Together, they combine into

a workflow for efficient engineering of complex self-organising systems in which, once a distributed

system is framed as a computation over fields, then: (i) a minimal resilient implementation is created,

by composing building blocks from a library of reusable self-stabilising components or designed

ad-hoc; (ii) performance is optimised by selective substitution of building block instances with

alternate implementations, checking performance by simulation.

1
Hence, we do not specifically deal with continuous functions and with virtual nodes that do not host computation—though

they are mechanisms that might be mimicked: e.g., approximation of continuous functions can be developed along the lines

of [11, 12].
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This workflow is backed by pairing formal modelling and simulation of complex distributed

systems. On the one hand, functional properties are addressed by a formally proved language of

self-stabilising specifications, which also establishes functional equivalence of certain building

blocks. On the other hand, dynamical properties are addressed by simulation, empirically evaluating

performance differences when building blocks are selectively substituted by provably equivalent

implementations. In particular, empirical analysis of large-scale systems, even though it may

result in sub-optimality, is motivated by the fact that finding optimal combinations of alternative

implementations easily becomes a computationally hard problem [22], that—to the best of our

knowledge—has never been addressed.

The technical contributions of this paper with respect to previous work are: (i) building on

[51], we provide the largest to date provably self-stabilising fragment of field calculus, by showing

inevitable reachability of a unique stable state [19], including the self-organisation building blocks

defined in [10]; (ii) we provide alternative implementations of these building blocks (some new and

some consolidating existing algorithms), still in the self-stabilising fragment, and proved equivalent

to the original versions; (iii) we empirically evaluate and compare performance of the building

blocks and alternatives, characterising contexts in which a given implementation can be favoured.

The remainder of this paper is organised as follows: Section 2 reviews related work and discusses

background and motivation, presenting the methodological workflow in the context of the field cal-

culus; Section 3 formalises syntax, semantics and properties of the field calculus, providing building

block examples showcasing its expressiveness; Section 4 presents our self-stabilisation framework,

with formal definition and methodological implications; Section 5 provides the self-stabilising

fragment, proof of self-stabilisation, proof of membership for the building blocks, and several

motivating examples; Section 6 defines alternative building block implementations and empirically

evaluates their performance; Section 7 presents two case studies illustrating the methodology; and

Section 8 summarises and concludes.

2 RELATEDWORK, BACKGROUND ANDMOTIVATION
The approach we propose falls under the umbrella of aggregate computing [9], a framework for

designing resilient distributed systems based on abstracting away from individual device behaviour:

system design focusses instead on the aggregate behaviour of the collection of all (or a subset of)

devices. In other words, aggregate computing considers the whole set of devices seen as a single

“abstract computing machine.” Coupled with a formal computational model, this approach aims

at smooth composition of distributed behaviour, trading off expressiveness for control of system

outcomes.

2.1 Relationship to Prior Work
Our work builds on two well-developed areas of prior work: aggregate programming languages,

which address the challenges of programming collectives of devices, and self-stabilisation, which

formalises a useful class of resilient system behaviours.

Aggregate programming. Aggregate programming methods of many sorts have been developed

across a wide variety of applications and fields. A thorough review may be found in [8], which

identifies four main approaches. First, “bottom-up” methods simplify aggregate programming by

abstracting and simplifying programming of individual networked devices. These methods include

TOTA [39], Hood [56], the chemical models by [55], Butera’s “paintable computing” [13], and

Meld [2]. In the context of parallel computing, the Bulk Synchronous Parallel (BSP) model [50]

facilitates programming with barriers allowing multiple processors to synchronise, e.g., allowing
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system-wide computational rounds. Similarly, many cloud computing models (e.g., MapReduce [24])

provide bulk programming models that abstract away network structure.

Three families of “top-down” approaches complement these bottom-up methods. These higher-

level approaches specify tasks for aggregates, then translate (e.g., by a compiler) from aggregate

specifications into an implementation in terms of individual local actions. These approaches also

tend to build in notions of implicit resilience, though specifics vary wildly from approach to

approach. One such family focusses on spatial patterns, such as topological networks in Growing

Point Language [16], geometric patterns in Origami Shape Language [42], self-healing geometries

in [15] and [35], or universal patterns [57]. Another family instead aims at summarisation and

streaming of information over regions of space and time. Examples include sensor-network query

languages like TinyDB [38], Cougar [58], TinyLime [17], and Regiment [43].

The third family are general purpose space-time computing models. Some of these are spatial

parallel computing models, such as StarLisp [36] and systolic computing (e.g., the works by [28]

and [48]) that shift data in parallel on a structured network. Others, such as MGS [29, 30], are more

topological in nature. Because of their generality, this class of computing models can form the basis

of a layered approach to the construction of distributed adaptive systems, as in our previous work

on field calculus [20, 21] and the generalised framework of aggregate programming [9, 51].

Self-stabilisation. This paper aims to find sufficient conditions identifying a large class of complex

network computations with predictable outcomes despite transient changes in their environment

or inputs, and to express this class by construction in terms of a language of resilient programs.

The notion we focus on requires a unique global state (reached in finite time) independent of initial

state, i.e., depending only on the environment (topology and sensors). We speak of this property

as self-stabilisation as it is contained within the notion of self-stabilisation to correct states for
distributed systems [26], defined in terms of a set C of correct states which the system enters in

finite time and then never escapes from: in our case, C is the single state corresponding to the

intended result obtained as a function from inputs and environment.

Several versions of self-stabilisation are found in literature, surveyed by [49], from works by [25]

to more abstract ones [1], depending largely on the system model under study—protocols, state

machines, and so on. In our case, self-stabilisation is studied for computational fields, considered as

data structures distributed over space. However, since previous work trying to identify general

conditions for self-stabilisation (e.g., by [32]) only considers very specific models (e.g., heap-like

data structures in a non-distributed settings), it is difficult to make a precise connection with those

prior results.

Some variations of the definition of self-stabilisation also deal with different levels of quality

(e.g., fairness, performance). For instance, the notion of superstabilisation [27] extends the standard

self-stabilisation definition by adding a requirement on a “passage predicate” that should hold while

a system recovers from a specific topological change. Our work does not address this particular

issue, since we completely equate treatment of topological changes and changes to inputs (e.g.,

sensors), and do not address specific performance requirements formally. Performance is also

affected by the fairness assumption adopted: we relied on a notion abstracting from more concrete

ones typically used [34]—these more concrete models could be applied with our work as well, but

would reduce the generality of our results. Instead, we address performance issues in a rather

different way: we allow for multiple different implementations of given building block functions,

trading off reactiveness to different kinds of changes in different ways, proved equivalent in their

final result, and selected based on empirical evaluation.

Concerning specific results on self-stabilisation, some approaches have achieved results that

more closely relate to ours. [26] introduced a computation of minimum distance in hops from a
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source node that is known to self-stabilise and used it as a preliminary step in creating a graph

spanning tree. Other authors attempt to devise general methodologies. [5] depict a compiler

turning any protocol into a self-stabilising one. Though technically unrelated to our solution, it

shares the philosophy of hiding details of how self-stabilisation is achieved under the hood of

the execution platform: in our case designers are intended to focus on macro-level specification,

trusting that components interact to achieve the global outcome in a self-stabilising way. Similarly,

[31] suggest that hierarchical composition of self-stabilising programs is self-stabilising—a key idea

for constructing our functional language of self-stabilising programs.

For this work’s specific technical result in the context of the field calculus: apart from [51], which

we extend here, the closest prior work appears to be [19] which, to the best of our knowledge, is

the first attempt at directly connecting self-stabilisation to engineering self-organisation. In that

work, self-stabilisation is proved for all fields inductively obtained by functional composition of

fixed fields (sensors, values) and a spanning-tree-inspired spreading process. Here, we consider a

more liberal programming language and also address dynamical properties by simulation. Finally,

[37] develops an alternative approach to self-stabilisation for computational fields, using a fix-point

semantics and currently including only structures based on spanning trees.

2.2 Computing with Fields
The basic data unit of aggregate computing is a dynamically changing computational field (or

field for short) of values held across many devices. More precisely, a field value ϕ is a function

ϕ : D → L mapping each device δ ∈ D to a local value ℓ ∈ L. Similarly, a field evolution is a

dynamically changing field value, and a field computation takes field evolutions as input (e.g.,

from sensors or user inputs) and produces a field evolution as output, from which field values are

(distributed) snapshots. For example, given a Boolean field input mapping certain devices to True,
a distanceTo computation of an output field of estimated distances to the nearest such device can

be constructed by iterative aggregation and spreading of information, with the output changing to

track input changes. Note that while the computational field model maps most intuitively onto

spatially-embedded systems, it can be used for any distributed computation (though it tends to be

best suited for sparse networks).

Critical to the approach, any field computation can be mapped to an equivalent single device

behaviour, to be iteratively executed by all devices in the network. Execution is in (per-device)

computation rounds: sense-eval-broadcast iterations, in which a device collects information coming

from neighbours and local sensors, the computation is evaluated against the device’s local state,

and a result of computation is broadcast to neighbours (which collect and use that state in their

own future computation rounds).

2.3 Proposed Workflow
Our proposed workflow is based on computational field calculus [21] (or field calculus for short), a

tiny functional language, in which any distributed computation can be expressed, encapsulated, and

safely composed. Field calculus is a general-purpose language in which it is possible to express both

resilient and non-resilient computations. For example, field calculus can express computing the

minimum value in a network by gossip or by directed aggregation: the gossip implementation is non-

resilient, because it cannot track a rising minimum, while the directed aggregation implementation

is resilient and can track both rising and falling minimum values. Field calculus can, however,

be restricted to a sub-language in which all programs are guaranteed resilient in the sense of

self-stabilisation, as discussed in the following.

The succinctness of field calculus that makes formal proofs tractable, however, is not well suited

for the practical engineering of self-organising systems, especially when one needs to scale to
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
�� v

�� let x = e in e
�� f(e) expression�� if(e){e}{e}

�� nbr{e}
�� rep(e){(x)=>e}

v ::= ℓ
�� ϕ value

ℓ ::= c(ℓ) local value

ϕ ::= δ 7→ ℓ neighbouring field value

f ::= d
�� b function name

Fig. 1. Syntax of field calculus.

complex designs. This can be mitigated by reusable “building block” operators capturing common

coordination patterns [10], thus raising the abstraction level and allowing programmers to work

with general-purpose functionalities or user-friendly APIs capturing common use patterns.

These building blocks, despite desirable resilience properties, may not be particularly efficient or

have desirable dynamical properties for a given application. We thus incorporate a new insight:

due to the functional composition model and modular proof used in establishing the self-stabilising

calculus, any coordination mechanism guaranteed to self-stabilise to the same result as a building

block can be substituted without affecting the overall result. This allows alternative implementations

in a “library of self-stabilising blocks,” functionally equivalent but trading off performance in

different ways or with more desirable dynamics (e.g., specialised for particular applications) [3, 4].

Together, these insights enable a two-stage engineering workflow that progressively treats

complex specification, resilience, and efficiency. The workflow starting point is specification of

the aggregate behaviour to be implemented. Following this: (i) the specification is expressed

as a composition of coordination patterns (e.g., information spreading, information collection,

state tracking) that can be mapped onto building block operators, forming a “minimal resilient

implementation” guaranteed self-stabilising but possibly far from optimal; (ii) each building block

is then considered for replacement with a mechanism from the substitution library expected to

provide better performance, confirming the improvement by analysis or simulation, then iterating,

until a satisfactory level of performance is achieved. Finally, the library of building blocks can be

naturally extended with new blocks and alternatives, as will likely be needed when addressing

some novel application scenarios.

3 FIELD CALCULUS
This section presents first-order field calculus [20] with a syntax inspired by recent DSL implemen-

tations [14] (in place of the prior Scheme-like formulation in [20, 54]), then uses it to specify the

key self-stabilising building blocks for this paper.

In our model, individual devices undergo computation in (local) asynchronous rounds: in each

round, a device sleeps for some time, wakes up, gathers information about messages received from

neighbours while sleeping, performs an evaluation of the program, and finally emits a message

to all neighbours with information about the outcome of computation before going back to sleep.

Our formulation assumes a denumerable set of device identifiers D, ranged over by δ , such that

each device has a distinguished identifier. In the rest of the paper each device is represented by its

identifier—our formalisation does not provide (and does not need) a syntax for devices.
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3.1 Syntax
Figure 1 presents the syntax of field calculus. Following [33], overbar notation denotes metavariables

over sequences and the empty sequence is •: e.g., for expressions, we let e range over sequences
of expressions e1, e2, . . . , en (n ≥ 0). Similarly, formulas with sequences are duplicated for each

element of the sequences (assumed to be the same length): e.g., f(e) = v is a shorthand for fi (e) = vi
for i = 1 . . . |v|.

A program P consists of a sequence of function declarations and a main expression e. A function

declaration F defines a (possibly recursive) function, with d the function name, x the parameters

and e the body. Expressions e model a whole field (i.e., e evaluates to a value on every device in the

network, thus producing a computational field). As usual, the set of free variables in an expression

e is denoted by FV(e), and we say an expression e is closed iff FV(e) is empty. An expression can

be:

• a variable x, either a function formal parameter or local to a let- or rep-expression;

• a value, either a local value (associating each device to a computational value—e.g., numbers,

literals—defined through data constructors c) or a neighbouring field value ϕ (associating each

device to a map from neighbours to local values—note that such values appear in intermediate

computations but not in source programs);

• a let-expression let x = e0 in e, which is evaluated by first computing the value v0 of e0
and then yelding as result the value of the expression obtained from e by replacing all the

occurrences of the variable x with the value v0;

• a function call f(e), where f can be either a declared function d or a built-in function b (such

as accessing sensors, mathematical and logical operators, or data structure operations—see

Electronic Appendix Afor examples);

• a conditional if(e1){e2}{e3}, splitting computation into two isolated sub-networks: devices

evaluating e1 to True compute expression e2; the rest compute e3;

• a nbr-expression nbr{e}, modelling neighbourhood interaction and producing a neighbour-

ing field value ϕ that represents an “observation map” of neighbour’s values for expression e,
namely, associating each device to a map from neighbours to their latest evaluation of e;

• or a rep-expression rep(e1){(x)=>e2}, evolving a local state through time by evaluating an

expression e2, substituting variable x with the value calculated for the rep-expression at

the previous computational round (in the first round x is substituted with the value of e1).
Although the calculus does not model anonymous functions, (x)=>e2 can be understood as

an anonymous function with parameter x and body e2.

Values associated to data constructors c of arity zero are written by omitting the empty parentheses,

i.e., we write c instead of c(). We assume a constructor for each literal value (e.g., False, True,
0, 1, −1,...) and a built-in function bc for every data constructor c of arity n ≥ 1, i.e., such that

bc(e1, ..., en) evaluates to c(ℓ1, ..., ℓn) where each ℓi is the value of ei . In case b is a binary built-

in operator, we allow infix notation to enhance readability: i.e., we shall sometimes write 1 + 2

for +(1, 2). To simplify notation (and following features present in concrete implementations of

field calculus [52], [47]), we shall also overload each (user-defined or built-in) function with local

arguments to accept any combination of local and neighbouring field values: the intended meaning

is then to apply the given function pointwise to its arguments. For example, letϕ be the neighbouring

field δ1 7→ 1,δ2 7→ 2,δ3 7→ 3 and ψ be δ1 7→ 10,δ2 7→ 20,δ3 7→ 30, we shall use ϕ + ψ for the
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pointwise sum of the two numerical fields giving the neighbouring field δ1 7→ 11,δ2 7→ 22,δ3 7→ 33,

or 1 + ϕ for the field obtained incrementing by 1 each value in ϕ, namely, δ1 7→ 2,δ2 7→ 3,δ3 7→ 4.

In the following we assume that the calculus is equipped with the type system defined by [20],

which is variant of the Hindley-Milner type system [18] that has two kinds of types: local types (for

local values) and field types (for neighbouring field values). This system associates to each local

value a type L, and type field(L) to a neighbouring field of elements of type L, and correspondingly
a type T to any expression.

As described in detail in Electronic Appendix B, to express more general and reusable functions,

we add syntactic sugar to admit functional parameters in function definitions, written def d(x)(z){e}

and called as follows d(e)(f), where the arguments f can be either names of plain (i.e., non-extended)
functions or functional parameters—names of extended functions are not allowed to be passed as

arguments, and by convention, we omit the second parentheses whenever no functional parameters

are present.

Example 3.1. As an example showcasing all classes of construct at work, consider the following

definition of a distanceToWithObs function, mapping each device to an estimated distance to a

source area (a numerical indicator field, holding 0 in the area and ∞ outside), computed as length

of a minimum path that circumvents an obstacle area (a boolean indicator field):

def distanceTo(source)(metric) {
rep (source) { (x) => min( source, minHood(nbr{x} + metric()) ) } }

def distanceToWithObs(source, obstacle)(metric) {
if (obstacle) { infinity } { distanceTo(source)(metric) } }

In the body of function distanceToWithObs, construct if divides the space in two regions,

where obstacle is True and where it is False: in the former the output is infinity, in the latter

we compute—isolated from the devices in the former area, hence “circumventing it”—distance

estimation by calling function distanceTo.
In the body of function distanceTo, we give 0 on sources through operator min on the indicator

field source. On other devices, we compute the estimated distance as being infinity at the

beginning, then evolving by taking the minimum value (minHood(field) is a built-in which

returns the minimum value in field or ∞ if the field is empty) across neighbour estimates added

pointwise to the estimated distance to each neighbor (obtained by functional parameter metric, to
which built-in nbrRange can be passed that models a local range sensor).

3.2 Semantics
Operational semantics is formalized (in Electronic Appendix C): (i) for computation within a single

device, by judgement “δ ;Θ ⊢ emain ⇓ θ”, to be read “expression emain evaluates to θ on device δ
with respect to environment Θ” (or “device δ fires”), where θ is an ordered tree of values tracking

the results of all evaluated subexpressions of emain, and Θ is a map from each neighbour device δi
(including δ itself) to the θi produced in its last firing; (ii) for network evolution, by a transition

system

act
−−→ on network configurations N = ⟨Env;Ψ⟩, where: Env models the environmental

conditions (i.e., network topology and inputs of sensors on each device), Ψmodels the overall status

of the devices in the network at a given time (as a map from device identifiers to environments Θ),
and actions act can either be firings of a device (δ ) or network configuration changes (env).

3.3 Implementation of Building Blocks
We are now able to express the main “building blocks” used in field calculus (as reported in [10]),

a set of highly general and guaranteed composable operators for the construction of resilient

coordination applications. Each of these building blocks captures a family of frequently used
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strategies for achieving flexible and resilient decentralised behaviour, hiding the complexity of

using the low-level constructs of field calculus. Despite their small number, these operators are so

general as to cover, individually or in combination, a large number of the common coordination

patterns used in design of resilient systems. The three building blocks, whose behaviour will be

thoroughly evaluated in next section along that of alternative implementations, are defined as

follows.

3.3.1 Block G. G(source,initial)(metric,accumulate) is a “spreading” operation general-

ising distance measurement, broadcast, and projection, which takes two fields and two functions

as inputs: source (a float indicator field, which is 0 for sources and ∞ for other devices), initial
(initial values for the output field), metric (a function providing a map from each neighbour to a

distance), and accumulate (a commutative and associative two-input function over values). It may

be thought of as executing two tasks: (i) computing a field of shortest-path distances from the source

region according to the supplied function metric; and (ii) propagating values up the gradient of

the distance field away from source, beginning with value initial and accumulating along the

gradient with accumulate. This is accomplished through built-in minHoodLoc(ϕ, ℓ), which selects

the minimum of the neighbours’ values in ϕ and the local value ℓ according to the lexicographical

order on pairs.

def G(source, initial)(metric, accumulate) {
rep ( pair(source, initial) ) { (x) =>
minHoodLoc(pair(nbr{1st(x)}+metric(), accumulate(nbr{2nd(x)})), pair(source, initial))

} }

As an example, G_distanceTo function (equivalent to the function distanceTo shown in Sec-

tion 3.1 with metric equal to nbrRange), and a G_broadcast function to spread values from a

source, can be simply implemented with G as:

def addRange(x) { x + nbrRange() }
def identity(x) { x }
def G_distanceTo(source) { 2nd( G(source, 0)(nbrRange, addRange)) }
def G_broadcast(source, value) { 2nd( G(source, value)(nbrRange, identity)) }

3.3.2 Block C. C(potential,local,null)(accumulate) is an operation that is complemen-

tary to G: it accumulates information down the gradient of a supplied potential field. This operator

takes three fields and a function as inputs: potential (a numerical field), local (values to be

accumulated), null (an idempotent value for accumulate) and accumulate (a commutative and

associative two-input function over values). At each device, the idempotent null is combined with

the local value and any values from neighbours with higher values of the potential field, using

function accumulate to produce a cumulative value at each device. For instance, if potential is
a distance gradient computing with G in a given region R, accumulate is addition, and null is 0,
then C collects the sum of values of local in region R.

def C(potential, local, null)(accumulate) {
rep ( pair(local, uid()) ) { (x) =>
pair(accumulate(

mux(nbr{potential} < potential && nbr{2nd(x)} = uid(), nbr{1st(x)}, null),
local ),

2nd(maxHood+(nbr{pair(potential, uid())})) ) } }

As an example, a C_sum function summing all the values of a field down a potential, and a C_any
function checking if any value of a boolean field is true and reporting the result down a potential,

can be simply implemented with C as:
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def sum_aux(field, local) { sumhood(field) + local }
def C_sum(potential, value) { 1st( C(potential, value, 0)(sum_aux)) }
def or_aux(field, local) { anyhood(field) || local }
def C_any(potential, value) { 1st( C(potential, value, false)(or_aux)) }

3.3.3 Block T. T(initial,zero)(decay) deals with time, whereas G and C deal with space.

Since time is one-dimensional, however, there is no distinction between spreading and collecting,

and thus only a single operator. This operator takes two fields and a function as inputs: initial
(initial values for the resulting field), zero (corresponding final values), and decay (a one-input

strictly decreasing function over values). Starting with initial at each node, that value gets

decreased by function decay until eventually reaching the zero value, thus implementing a flexible

count-down, where the rate of the count-down may change over time. For instance, if initial is a

pair of a value v and a timeout t , zero is a pair of the blank value null and 0, and decay takes a
pair, removing the elapsed time since previous computation from the second component of the pair

and turning the first component to null if the second reached 0, then T implements a limited-time

memory of v.

def T(initial, zero)(decay) {
rep ( initial ) { (x) => min(max(decay(x), zero), initial) } }

As an example, a T_track function simply tracking an input value over time, and a T_memory
function holding a value for a given amount of time (and then showing a null value), can be simply

implemented with T as:

def T_track(value) { T(value, value)(identity) }
def memory_evolve(x) {

if ( 1st(x) < sns_interval() ) { pair(0,null) } { pair(1st(x)-sns_interval(), 2nd(x)) } }
def T_memory(value, time, null) { 2nd(T(pair(time,value), pair(0,null))(memory_evolve)) }

with the built-in operator (sensor) sns_interval returning the time elapsed since the last execution

round.

4 SELF-STABILISATION AND EVENTUAL BEHAVIOUR
In the dynamic environments typically considered by self-organising systems, a key resilience

property is self-stabilisation: the ability of a system to recover from arbitrary changes in state. In

particular, of the various notions of self-stabilisation (see the survey in [49]), we use the definition

from [26] as further restricted by [19]: a self-stabilising computation is one that, from any initial

state, after some period without changes in the computational environment, reaches a single

“correct” final configuration, intended as the output of computation.

Self-stabilisation (formalised in Section 4.1) focusses on a computation’s eventual behaviour

(formalised in Section 4.2), rather than its transient behaviour, which also enables optimisation

by substitution of alternate coordination mechanisms (cf. Section 2.3). As we will see, this defini-

tion covers a broad and useful class of self-organisation mechanisms, though some are excluded,

such as continuously changing fields like self-synchronising pulse-coupled oscillators [40] and

computations that converge only in the limit like Laplacian-based approximate consensus [44].

Incorporating such mechanisms into a framework such as we present here will require bounding

the dynamical behaviours of computations (e.g., by identification of an appropriate Lyapunov

function [23]). Preliminary investigations in this area have produced positive results (e.g., [23, 41]),

but integration with the framework presented in this paper is a major project that remains as future

work.
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4.1 Self-Stabilisation
Our notion of self-stabilisation considers resilience to changes in the computational system’s state

or external environment. Hence, assume a program P and fixed environmental conditions Env (i.e.,
fixed network topology and inputs of sensors). According to the operational semantics outlined in

Section 3.2, for each network configuration N with environment Env that is reachable from the

empty network configuration, we can define a transition system ⟨S,
act
−−→⟩ where:

• the only possible action labels act are device identifiers δ representing firings of an individual

device of the network; and

• the set of the states S is the smallest set of the network configurations such that: (1) N ∈ S,

and (2) for each N ′ ∈ S and δ in the network there is an N ′′ ∈ S such that N ′ δ
−→ N ′′

.

We say that a configuration N is stable iff it is not changed by firings, i.e., N
δ
−→ N for each δ .

Let N0

δ0
−→ N1

δ1
−→ . . . be an infinite sequence of transitions in S. We say that the sequence is fair

iff each configuration Nt is followed by firings of every possible device, i.e., for each t ≥ 0 and δ
there exists a t ′ > t such that δt ′ = δ . We say that the sequence stabilises to state N iff Ni = N for

each i after a certain t ≥ 0.

Given a program P and fixed environmental conditions, a transition system like the one considered

above can be defined for any closed expression e that may call the user-defined functions defined in

P: just consider e as the main expression of P. In the following, for convenience of the presentation,

we focus on computations associated to such an expression e.

Definition 1 (Stabilisation and Self-Stabilisation). A closed expression e is: (i) stabilising
iff every fair sequence stabilises given fixed environmental conditions Env; (ii) self-stabilising to state
N iff every fair sequence stabilises to the same state N given fixed environmental conditions Env.

A function f(x) is self-stabilising iff given any self-stabilising expressions e of the type of the inputs
of f the expression f(e) is self-stabilising.

Note that if an expression e self-stabilises, then it does so to a state that is unequivocally

determined by the environmental conditions Env (i.e., it does not depend on the initial configuration
N0) and can hence be interpreted as the output of a computation on Env. Furthermore, this final

state N must be stable. Note that this definition implies that field computations recover from any

change on environmental conditions, since they react to them by forgetting their current state and

reaching the stable state implied by such a change. Complementarily, computation can generally

reach a stable state only when environmental changes are transitory.

4.2 Eventual Behaviour
An environment Env is a pair ⟨τ , Σ⟩, where: τ models network topology as a map from device

identifiers to set of identifiers (representing a directed neighbouring graph); and Σ models sensor
(distributed) state as a map from device identifiers to (local) sensors (i.e., sensor name/value maps

denoted as σ ). Define a computational field Φ as a map δ 7→ v,2 such that if v have field type their

domains are coherent with the environment Env = ⟨τ , Σ⟩, that is, dom(Φ(δ )) = τ (δ ) ∩ dom(Φ). Let
VJTK be the set of values of type T and T JTK = D 7→ VJTK be3 the set of all computational fields

Φ of the same type. Each such Φ is computable by at least one self-stabilising expression e (defined

2
Even though the definition resembles that of a neighbouring field value, it differs both in purpose and in content, since v is

allowed to be a neighbouring field value itself, and δ spans the whole network and not just a device’s neighbourhood.

3
By A 7→ B we denote the set of all partial functions from A to B .
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by cases, and executed in the restricted environment corresponding to dom(Φ))—we say that e is a

self-stabilising expression for Φ.
Note that a network status Ψ (see Section 3.2) induces uniquely a computational field Φ by

defining Φ(δ ) as the root of the tree of values Ψ(δ )(δ ), while conversely each Φ is coherent with

multiple network statuses Ψ. Thus a computational field is not sufficient to capture the whole

status of a computation of a program P. However, for self-stabilising programs P and self-stabilising

functions f, it suffices to define the eventual output of a computation: given computational fields Φ,

let N0

δ0
−→ N1

δ1
−→ . . . be any fair evolution of a network computing f(e) where e are self-stabilising

expressions for Φ. Since f is self-stabilising, the fair evolution eventually stabilises to a uniquely

determined state N = ⟨Env;Ψ⟩, independently from the chosen evolution and initial state. This

final status field Ψ in turn determines a unique computational field Φ, which we can think of as the

eventual output of the computation.
4

Definition 2 (Eventual behaviour). Let e be a self-stabilising closed expression. We write JeK
for the computational field Φ eventually produced by the computation of e. Let f be a self-stabilising
function of type T → T′, where T = T1 × · · · × Tn (n ≥ 0). We write JfK for the mathematical function
in (T JT1K×· · ·×T JTnK) → T JT′K,5 such that JfK(Φ) = Jf(e)Kwhere e are self-stabilising expressions
for Φ.

Eventual behaviour provides a convenient viewpoint for compositional programming since, as

shown by the next proposition (proved in Electronic Appendix D) it is preserved under substitutions.

Proposition 1 (Eventual behaviour preserving eqivalences). (1) Let e1, e2 be self-stabilising
expressions with the same eventual behaviour. Then given a self-stabilising expression e, swapping e1
for e2 in e does not change the eventual outcome of its computation. (2) Let f1, f2 be self-stabilising
functions with the same eventual behaviour. Then given a self-stabilising expression e, swapping f1 for
f2 in e does not change the eventual outcome of its computation. (3) Let e be a self-stabilising expression
calling a user-defined self-stabilising function d such that in body(f) no x ∈ args(f) occurs in the
branch of an if. Let e′ be the expression obtained from e by substituting each function application
of the kind f(e) with body(f) [args(f) := e]. Then e′ is self-stabilising and has the same eventual
behaviour as e (i.e. JeK = Je′K).

5 SELF-STABILISING FRAGMENT
By exploiting the definition of self-stabilisation given in previous section, and its implication in

considering eventual behaviour as a valid characterisation of the functional property of a field

computation, it is possible to identify sufficient conditions for self-stabilisation in terms of a

fragment of the field calculus, inductively defined by: (i) identifying a “base” fragment of the field

calculus that contains only self-stabilising programs; (ii) identifying a set of eventual behaviours
preserving equivalences (cf. Proposition 1); and (iii) relying on the fact that the least fragment

of the field calculus that contains the base fragment and is closed under the eventual behaviour

preserving equivalences is self-stabilising.

Accordingly, in this section we first present some motivating examples of non self-stabilising

field calculus programs (in Section 5.1), then present the syntax of the identified “base” self-

stabilising fragment (in Section 5.2), then state the self-stabilisation result for the fragment along

4
Note this eventual state is reached independently of the fair sequence of firing that occurs; hence, it would be the same

also with firings following fully-synchronous concurrency models like BSP [50].

5
Here we assume that all input computational fields share the same domain, which is to be intended as the domain of the

overall computation.
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s ::= x
�� v

�� let x = s in s
�� f(s)

�� if(s){s}{s}
�� nbr{s} self-stabilising expression�� rep(e){(x)=>fC(nbr{x}, nbr{s}, e)}�� rep(e){(x)=>f(mux(nbrlt(s), nbr{x}, s), s)}�� rep(e){(x)=>fR(minHoodLoc(fMP(nbr{x}, s), s), x, e)}

Fig. 2. Syntax of a self-stabilising fragment of field calculus expressions, where self-stabilising expressions s
occurring inside a rep statement cannot contain free occurrences of the rep-bound variable x.

with equivalence results further extending the fragment (in Section 5.3), and finally discuss its

expressiveness (in Section 5.4). The following examples will be discussed throughout this section:

def fcWrong(v) { rep (v) { (x) => v-x } }

def faWrong(v) { rep (v) { (x) => max(maxHood+(nbr{x}), v) } }

def fmWrong(v) { rep (v) { (x) => min(minHood(nbr{x}) - 1, v) } }

def fc(v) { rep (v) { (x) => (v+x)/2 } }

def fa(v, p) { rep (v) { (x) => max(maxHood+(mux(nbrlt(p), nbr{x}, 0), v) } }

def fm(v) { rep (v) { (x) => min(minHood(nbr{x}) + 1, v) } }

5.1 Examples of non Self-stabilising Programs
Let us begin by considering some examples of field calculus programs that are not self-stabilising,

illustrating key classes of program behavior that need to be excluded from our self-stabilising

fragment—namely, oscillation, state preservation, and divergence.

Example 5.1. First, consider function fcWrong, it does not self-stabilise, since given a fixed input

v its output loops through a series of different values. For example, if v is constantly equal to 1 the

outputs are 0, 1, 0, 1, . . . Thus in this case self-stabilisation is prevented by an oscillating behaviour.

Second, consider function faWrong (a classical gossip implementation): it does not self-stabilise,

since its output depends on the whole history of values v given to it in the network. For example,

if at some point a highest value k was given in some device, the eventual output of the function

upon a fixed input v < k is k , thus it is not a function of the constant input v. Thus, in this case

self-stabilisation is prevented by an indefinite “state preservation”.

Finally, consider function fmWrong, with input v of an unbounded integer type (big integer):

it does not self-stabilise, since given any fixed input v and at least one neighbour, its output

keeps decreasing without a bound. Thus, in this case self-stabilisation is prevented by a divergent
behaviour.

5.2 Syntax
The “base” self-stabilising fragment of field calculus is obtained by replacing each occurrence of the

expression token e in the first two lines of Figure 1 (i.e., in the productions for P and F) with the

self-stabilising expression token s, defined in Figure 2. This fragment includes: (i) all expressions
not containing a rep construct, hence comprising built-in functions, which are therefore assumed to

be self-stabilising; (ii) three special forms of rep-constructs, defined with a specific syntax coupled

with semantic restrictions on relevant functional parameters.

5.2.1 The C,M,P,R function properties. The properties that these functional parameters are

required to satisfy are among the following, visually annotated in the figure through superscripts

on function names. Notice that properties M, P, and R require some of their argument types to be

equipped with a partial order relation, while property C requires its argument types to be equipped
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with a metric. In order to obtain the self-stabilisation property for the fragment, we shall also need

some further assumptions, discussed later in the description of each pattern.

C (Converging). A function f(ϕ,ψ , v) is said converging iff, for every device δ , its return value is

closer toψ (δ ) than the maximal distance of ϕ toψ . To be precise, given any environment Θ, device
δ ∈ dom(Θ), values ϕ,ψ , v coherent with the domain of Θ, and assuming that δ ;Θ ⊢ f(ϕ,ψ , v) ⇓

ℓ⟨θ⟩:

dist (ℓ,ψ (δ )) = 0 or dist (ℓ,ψ (δ )) < max {dist(ϕ(δ ′),ψ (δ ′)) : δ ′ ∈ dom(Θ)}

where dist is any metric.

Example 5.2. Function f1(ϕ,ψ ) = pickHood(ψ − ϕ) = (ψ − ϕ)(δ ) is not converging, for example

when ϕ,ψ are constant fields equal to 2, 3 respectively so that ℓ = 1 (pickHood selects the value on

the current device from a field). On the other hand, functions f2(ϕ,ψ ) = pickHood((ψ + ϕ)/2) and
f3(ϕ,ψ ) = pickHood(ψ ) + meanHood(ϕ −ψ )/2 are converging.

M (Monotonic non-decreasing). A stateless
6
function f(x, x) with arguments of local type is

monotonic non-decreasing in its first argument iff whenever ℓ1 ≤ ℓ2, also f(ℓ1, ℓ) ≤ f(ℓ2, ℓ).

Example 5.3. Function f1(ℓ) = ℓ − 1 is monotonic non-decreasing, while function f2(ℓ) = ℓ
2
is

not.

P (Progressive). A stateless function f(x, x) with local arguments is progressive in its first argu-

ment iff f(ℓ, ℓ) > ℓ or f(ℓ, ℓ) = ⊤ (where ⊤ denotes the unique maximal element of the relevant

type).

Example 5.4. Function f1(ℓ) = ℓ + 1 is progressive, while functions f2(ℓ) = ℓ − 1, f3(ℓ) = ℓ
2
are

not.

R (Raising). A function f(ℓ1, ℓ2, v) is raising with respect to partial orders <,▹ iff: (i) f(ℓ, ℓ, v) = ℓ;
(ii) f(ℓ1, ℓ2, v) ≥ min(ℓ1, ℓ2); (iii) either f(ℓ1, ℓ2, v) ◃ ℓ2 or f(ℓ1, ℓ2, v) = ℓ1.

Example 5.5. Function f1(ℓ1, ℓ2) = ℓ1 is raising with respect to any partial orders. Function

f2(ℓ1, ℓ2) = ℓ1 − ℓ2 is not raising since it violates both the first two clauses. Function f3(ℓ1, ℓ2) =
(ℓ1 + ℓ2)/2 respects the first two clauses for ▹=<, but it violates the last one whenever ℓ2 > ℓ1.

5.2.2 The three rep patterns. We are now able to analyse the three rep patterns.

Converging rep. In this pattern, variable x is repeatedly updated through function fC and a

self-stabilising value s. The function fC may also have additional (not necessarily self-stabilising)

inputs e. If the range of the metric granting convergence is a well-founded set
7
of real numbers,

the pattern self-stabilises since it gradually approaches the value given by s.

Example 5.6. Function fcWrong does not respect the converging rep pattern, as shown in Example

5.2. However, if we change fcWrong to fc and assume that its input and output are finite-precision

numeric values (e.g., Java’s double), we obtain a low-pass filter that is self-stabilising and complies

with the converging rep pattern.

6
A function f(x) is stateless iff given fixed inputs v always produces the same output, independently from the environment

or specific firing event. In other words, its behaviour corresponds to that of a mathematical function.

7
An ordered set is well-founded iff it does not contain any infinite descending chain.
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Acyclic rep. In this pattern, the neighbourhood’s values for x are first filtered through a self-

stabilising partially ordered “potential”, keeping only values held in devices with lower potential

(thus in particular discarding the device’s own value of x). This is accomplished by the built-in

function nbrlt, which returns a field of booleans selecting the neighbours with lower argument

values, and could be defined as def nbrlt(x) {nbr{x} < x}.
The filtered values are then combined by a function f (possibly together with other values

obtained from self-stabilising expressions) to form the new value for x. No semantic restrictions

are posed in this pattern, and intuitively it self-stabilises since there are no cyclic dependencies

between devices.

Example 5.7. Function faWrong does not respect the acyclic rep pattern, since it aggregates

all neighbours without any “acyclic filtering”. However, if we change faWrong to fa we obtain a

particular usage of the C block, which is self-stabilising and complies with the acyclic rep pattern.

Minimising rep. In this pattern, the neighbourhood’s values for x are first increased by a mono-

tonic progressive function fMP
(possibly depending also on other self-stabilising inputs). As specified

above, fMP
needs to operate on local values: in this pattern it is therefore implicitly promoted to

operate (pointwise) on fields.

Afterwards, the minimum among those values and a local self-stabilising value is then selected

by function minHoodLoc(ϕ, ℓ) (which selects the “minimum” in ϕ[δ 7→ ℓ]). In order to be able to

define such a minimum, we thus require the partial order ≤ to constitute a lower semilattice.8

Finally, this minimum is fed to the raising function fR together with the old value for x (and

possibly any other inputs e), obtaining a result that is higher than at least one of the two parameters.

We assume that the second partial order ▹ is noetherian,9 so that the raising function is required to

eventually conform to the given minimum.

Intuitively, this pattern self-stabilises since it computes the minimum among the local values ℓ
after being increased by fMP

along every possible path (and the effect of the raising function can

be proved to be negligible).

Example 5.8. Function fmWrong does not respect the minimising rep pattern, since its internal
function is monotonic (see Example 5.3) but not progressive (see Example 5.4). However, if we

change fmWrong to fm we obtain a hop-count distance, a particular instance of the G block which is

self-stabilising and complies with the minimising rep pattern.

Note that the well-foundedness and noetherianity properties are trivially verified whenever the

underlying data set is finite.

5.3 Self-Stabilisation and Equivalence
Under reasonable conditions, we are able to prove that the proposed fragment is indeed self-

stabilising. The proofs of all the results in this section are given in the Electronic Appendix E, while

here we only report the full statements.

Theorem 1 (Fragment Stabilisation). Let s be a closed expression in the self-stabilising fragment,
and assume that every built-in operator is self-stabilising.10 Then s is self-stabilising.

8
A lower semilattice is a partial order such that greatest lower bounds are defined for any finite set of values in the partial

order. In the examples used in this paper we shall treat greatest lower bounds as minima, since the only examples of such

partial orders we consider are in fact total orders.

9
A partial order is noetherian iff it does not contain any infinite ascending chains.

10
Most built-in operators are stateless, thus trivially self-stabilising in one round.
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Since the fragment is closed under function application, the result is immediately extended to

whole programs.

In Section 4.2 we introduced a notion of equivalence for self-stabilising programs. Therefore,

although the rep patterns are defined through functions with certain properties, we are allowed to

inline them (which is a transformation preserving self-stabilisation, as shown in Proposition 1).

Moreover, a few noteworthy equivalence properties hold for the given patterns, as shown by the

following theorem.

Theorem 2 (Substitutability). The following three equivalences hold: (i) each rep in a self-
stabilising fragment self-stabilises to the same value under arbitrary substitution of the initial condition;
(ii) the converging rep pattern self-stabilises to the same value as the single expression s occurring in
it; (iii) the minimising rep pattern self-stabilises to the same value as the analogous pattern where fR

is the identity on its first argument.

In other words, the function fR does not influence the eventual behaviour of a function, and can

instead be used to fine-tune the transient behaviour of an algorithm. The same holds for the initial

conditions of all patterns and function fC in the converging rep pattern (which in fact is only

meant to fine-tune the transient behaviour of the given expression s). No relevant equivalences
can be stated for the acyclic rep pattern, since it is parametrised by a single aggregating function

which in general heavily influences the final outcome of the computation.

5.4 Expressiveness
5.4.1 Programs captured by the fragment. Even though at a first glance the fragment could seem

rather specific, it encompasses (equivalent versions of) many relevant algorithms. In particular, all

of the three building blocks introduced in Section 3.3 are easily shown to belong to the fragment.

This effectively constitutes a new and simpler proof of self-stabilisation for them.

Operator G is the following instance of the minimising rep pattern:

def fr(new, old) { new }
def fmp(field, dist)(accumulate) {

pair(1st(field) + dist, accumulate(2nd(field))) }
def G(source, initial)(metric, accumulate) {

rep(pair(source, initial)){ (x) =>
fr(minHoodLoc(fmp(nbr{x}, metric())(accumulate), pair(source, initial)), x) } }

Function fr is trivially raising (with respect to any pair of partial orders), and function fmp is

monotonic progressive provided that pairs are ordered lexicographically (since dist is a positive
field).

Operator C is the following instance of the acyclic rep pattern:

def f(field, local, null, potential)(accumulate) {
pair(accumulate(mux(2nd(field) = uid(), 1st(field), null), local),
2nd(maxHood+(nbr{pair(potential, uid())})) ) }

def C(potential, local, null)(accumulate) {
rep(pair(local, uid())){ (x) =>
f(mux(nbrlt(potential), nbr{x}, null), local, null, potential)(accumulate) } }

Operator T is the following instance of the converging rep pattern:

def fc(cur, lim, initial)(decay) {
min(max(decay(pickHood(cur)), pickHood(lim)), initial) }

def T(initial, zero)(decay) {
rep(initial){ (x) => fc(nbr{x}, nbr{zero}, initial)(decay) } }
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Function fc is converging since decay(pickHood(cur)) is granted to be closer to zero than its

argument, hence:

|fc(ϕ, nbr{zero}, v) − zero| < |ϕ(δ ) − zero| ≤ max(|ϕ − nbr{zero}|)

Furthermore, the present fragment strictly includes the one defined in [51]. Both fragments

include all expressions without the rep construct. The first and third rep pattern in [51] are special

cases of converging rep (the first converges to v0 in the bounded condition and the third to ℓ in the

double bounded condition). The second pattern is almost exactly equivalent to the acyclic rep.
In the following Section 6 we shall show further examples of algorithms still belonging to the

fragment, which are alternative implementations of G, C and T.

5.4.2 Programs not captured by the fragment. Unfortunately, many self-stabilising programs are

not captured by the fragment. In most cases this is due to syntactical reasons, so that the critical

program P can in fact be rewritten into an equivalent program P ′
, which instead belongs to the

fragment. An example of this issue is given by the three building blocks G, C and T , which we

needed to rewrite in order to make them fit inside the self-stabilising fragment (see Section 5.4.1).

Furthermore, self-stabilising programs exist which cannot be rewritten to fit inside the fragment.

As an example, one such program is the replicated gossip [45] algorithm, which does not fit inside

the fragment. In particular, replicated gossip is “self-stabilising” provided that a certain parameter p
(refresh period) is set to a large enough value with respect to certain network characteristics—and

as such, it would require a slight modification of our definition of self-stabilisation as well.

6 ALTERNATIVE BUILDING BLOCKS
Even though the G, C, and T building blocks define a useful and versatile base of operators, in

practice better performing alternatives are often preferred in some specific conditions (see for

example the work in [51]). We can also use the fragment itself to get inspiration for new alternatives

or interesting variations of existing ones. Importantly, the self-stabilisation framework allows

alternatives to be assessed on empirical grounds even when the dynamics of their operation are

imperfectly understood, allowing engineering decisions to be made even when analytical solutions

are not available.

In the exploration to follow, we compare the performance of each operator and an alternative via

simulation. We evaluate each proposed alternative by simulating a network of 100 devices placed

uniformly randomly in a 200m × 20m rectangular arena, with a 30m communication radius. The

dynamics of self-stabilisation are studied by introducing perturbations in “space” or “time”. In the

space perturbation experiments, devices run asynchronously at 1 Hz frequency, moving at 1 m/s in

a direction randomly chosen at every round. We shall consider “small spatial perturbation” where

this is the entirety of the perturbation, and “large spatial perturbation” where the source for the

spreading / aggregation of the information also switches from the original device to an alternate

device every 200 seconds. On the other hand, in the “time perturbation”, devices remain still, but

their operating frequency is randomly chosen between 0.9 Hz and 1.1 Hz (small perturbation) or

0.5 Hz and 2 Hz (large perturbation). We performed 200 simulations per configuration, letting both

the control and alternate building blocks run at the same time. Experiments are performed using

the Alchemist simulator [46].
11

11
For the sake of reproducibility, the actual experiments are made available at: https://bitbucket.org/danysk/

experiment-2017-tomacs
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6.1 Alternative G
The G operator can be understood as the computation of a distance measure w.r.t. a given metric,

while also propagating values according to an accumulating function. However, naive computation

of distance suffers from the rising value problem: the rising rate of distance values is bounded by the

shortest distance in the network, possibly enforcing a very slow convergence rate. Some algorithms

avoiding this problem have been developed, such as the CRF-gradient algorithm [7]. It is possible

to rewrite a CRF-gradient distance calculuation to fit the present fragment, as in the following

(adapted from the code implemented in the Protelis library [47]):

def raise(new, old, speed, dist) {

let constraint = minHood(nbr{1st(old)} + dist + (nbrLag()+sns_interval())*2nd(old)) in
if (new = old || 1st(new) = 0 || constraint <= 1st(old)) { new } {

pair(1st(old)+speed, speed/sns_interval()) } }

def combine(x, dist) { pair(1st(x) + dist, 0) }

def CRF(source, speed)(metric) {

rep ( pair(source, 0) ) { (x) =>

raise(minHoodLoc(combine(nbr{x}, metric()), pair(source, 0)), x, speed) } }

where nbrLag returns a field of communication lags from neighbours.

It is easy to see that raise is raising with respect to the two identical partial orders ≤, ≤ (the

output either increases the old value or conforms to the new value). Notice that this rewriting

effectively constitutes an alternative proof of self-stabilisation for the algorithm.

If it is acceptable to lose some degree of accuracy, another possibility for avoiding the rising

value problem is to introduce a distortion into the metric. This is the approach chosen by the

Flex-Gradient algorithm [6] (which we will abbreviate FLEX). This algorithm allows for a better

response to transitory changes while reducing the amount of communication needed between

devices. In this case also, we can equivalently rewrite the algorithm in order to make it fit into the

self-stabilising fragment.

def raise(new, old, dist, eps, freq, rad) {

let slopeinfo = maxHood(triple((1st(old) - nbr{1st(old)})/dist, nbr{1st(old)}, dist)) in
if (new = old || 1st(new) = 0 || 2nd(old) = freq || 1st(old) > max(2*1st(new), rad)) { new } {

if (1st(slopeinfo) > 1+eps) { pair(2nd(slopeinfo) + (1+eps)*3rd(slopeinfo), 2nd(old)+1) } {

if (1st(slopeinfo) < 1-eps)) { pair(2nd(slopeinfo) + (1-eps)*3rd(slopeinfo), 2nd(old)+1) } {

pair(1st(old), 2nd(old)+1) } } } }

def combine(x, dist) { pair(1st(x) + dist, 0) }

def FLEX(source, epsilon, frequency, distortion, radius)(metric) {

rep ( pair(source, 0) ) { (x) =>

let dist = max(metric(), distortion*radius) in
raise(minHoodLoc(combine(nbr{x}, dist), pair(source, 0)), x, dist, epsilon, frequency, radius) } }

In this case, raise is raising with respect to the two partial orders ≤1 (ordering w.r.t. the first

component of the pair) and ≤2 (ordering w.r.t. the second component).

We evaluate these new building blocks when applied to distance estimation, using the two

following variations of G_distance (parameter r in the body of G’_flex_distance stands for the
communication radius of devices):

def G'_crf_distance(source) { CRF(source, 1/12)(nbrRange) }
def G'_flex_distance(source) { FLEX(source, 0.3, 10, 0.2, r)(nbrRange) }

Figure 3 shows the evaluation of G and its proposed replacements: FLEX has a good performance

all-around, while CRF suffers poor performance with small spatial disruptions and G suffers poor

performance with large spatial disruptions.
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Fig. 3. Evaluation of G building blocks: plain G (blue), CRF (green) and FLEX (red). We measure the average
error across all devices (first and last row) and the stability of the value, namely, the average value change
between subsequent rounds (middle row). With small spatial perturbations, G provides the lowest average
error, while FLEX provides the highest local value stability. With large spatial changes, CRF is the quickest to
adapt, but stabilises with a higher error than FLEX. The classic G suffers from the rising value problem. All
the algorithms stabilise in time with little sensitivity to device asynchrony.

6.2 Alternative C
The C operator aggregates a computational field of local values with the function accumulate
towards the device with highest potential, each device feeding its value to the neighbour with

highest potential. This process, however, is fragile since the “neighbour with highest potential”

changes often and abruptly over time. In order to overcome this shortcomings, it is sometimes

possible to use a multipath C.
Assume that the aggregating operator defines an abelian monoid

12
on its domain. Assume in

addition that each ℓ in the domain has an n-th root ℓn , that is, an element which aggregated with

itself n times produces the original value ℓ. Then the value computed by a device can be “split” and

sent to every neighbour device with higher potential than the current device, by taking its n-th
root where n is the number of devices with higher potential.

def extract(val, num)(root) { pair(val, root(val, num)) }
def aggregate(field, local, potential)(accumulate, root) {

extract( accumulate(foldHood(2nd(field), accumulate), local),
counthood(nbr{potential} > potential) )(root) }

12
A structure ⟨X , ◦⟩ is an abelian monoid if ◦ is an associative and commutative operator with identity.
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Fig. 4. Evaluation of C building blocks: classic C (blue), and multi-path alternative (green). Expected values
are depicted in red. We measure the aggregated value in the source node (first row) and the error (last two
rows). With small spatial perturbations, the multipath alternative outperforms the spanning-tree-building
default implementation; however, it may provide worse estimations at the beginning of transients that require
a large reconfiguration. Both algorithms stabilise regardless of devices’ asynchrony.

def C'(potential, local, null)(accumulate, root) {
rep ( pair(local,local) ) { (x) =>
aggregate(mux(nbr{potential} < potential, nbr{x}, null),

local, potential)(accumulate, root) } }
// C'_sum application
def C'_sum(potential, field) { 1st( C'(potential, value, 0)(+, /)) }

We evaluate the multi-path alternative of C when used to sum values of a field, using the C’_sum
variation of C_sum:13 Specifically, we compare C_sum and C’_sum used to aggregate the summation

of “1” along the gradient of a distance estimate produced by the FLEX algorithm. As a consequence,

we expect to get the count of devices participating to the system in the source of the distance

estimate. Since the source switches in case of large perturbation, the counting device switches

as well. Figure 4 shows the evaluation of C and its proposed replacement: the multi-path version

performs better with small spatial changes, but may return higher errors during transients that

require a whole network reconfiguration.

13
Operator / is used as root for C’ since a value gets equally divided by n and spread in the n neighbour nodes ascending

potential.
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6.3 Alternative T
Both the T operator and the whole converging rep pattern are meant to smooth out the outcome of

another computation, which at the limit is returned unaltered. However, it is sometimes useful to

introduce a spatial coordination among different devices, in order to smooth out the converging

process also spatially. This can be accomplished by the following alternative building block, which

decays towards a value with a speed obtained by averaging on how close each neighbour is to its

goal value.

def follow(cur, lim)(average, decay) { pickHood(lim) + decay(average(cur - lim)) }
def T'(initial, value)(average, decay) {

rep ( initial ) { (x) => follow(nbr{x}, nbr{value})(average, decay) } }
// T'_track application
def T'_track(value) { T'(value,value)(meanHood, x => a*x)}

We evaluate the use of T’ in tracking a noisy signal, using T’_track variation of T_track where
meanHood computes the mean value of the provided field, and a is the smoothing parameter. In

the comparison of T_track and T’_track, every device perceives the original signal (either a sine

or a square wave) summed with a locally generated noise in [−1, 1]10 (s). In particular, T’_track
provides a sort of spatial low-pass filter, that trades a delay in tracking the signal for a smoother

response. Figure 5 aggregates the results. T’ takes advantage of the spatial smoothing, and performs

better overall in case of noisy input. This comes, however, at the price of lower reactivity to changes,

which becomes evident with large enough values of the smoothing parameter.

7 APPLICATION EXAMPLES
We now illustrate, with two application examples, how distributed applications can be implemented

on top of the proposed building blocks (hiding the low-level coordination mechanisms rep and
nbr), and then quickly adjusted and optimised toward specific performance goals by switching

the specific building block implementation that is used, using the variants presented in previous

section. Both of the scenarios that we consider are in a pervasive computing environment, and

focus on a network of personal devices (e.g., phones, smart watches) spread through an urban

environment. In these scenarios, devices move with the person carrying them along the walkable

areas of the city, and can only indirectly influence movement (e.g., by presenting a message to their

user).

For the first scenario, we consider a community festival, with acts performing in various venues,

and wish to track the number of people watching each act over time. Here, we will consider a

person to be watching an act if they are part of a continuous region of crowd that is closer to that

act than to any other act. This computation can be implemented by using G to partition the space

into zones of influence, by means of a potential field of which each act is a source (as in function

distanceTo). We then use C to sum a field counting the number of people closely surrounded by

others, and thus forming a crowd (as in function summarise). Finally, T is used for smoothing both

the crowd estimates and the results over time. The resulting code, expressed using the functions

described in previous section, is as follows:

def crowdSize(acts, crowd) { T_track(C_sum(G_distanceTo(acts), T_track(crowd))) }

To test this example application in simulation, we distributed a network of 300 devices randomly

distributed across the city centre of the Italian city of Cesena. In this simulation, pedestrians walk at

1.4 meters per second from their initial position towards an act randomly chosen between the two

located in distinct large spaces of the city (Piazza del Popolo and Giardini Savelli), as depicted in

Figure 6. Devices run asynchronously, performing a round of computation and communication every

five seconds, and communicating by broadcast within a radius of 150 metres (ignoring buildings
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Fig. 5. Evaluation of T (blue) and T’ building blocks with different smoothing parameter values (a = 0.02 in
green, and a = 0.5 in red). The driver signal (plotted in black for reference) is locally summed with a random
noise in [−1, 1]10 and fed to the algorithm for tracking. We measure the root mean squared error in the
devices’ response for small (left column) or large (right column) perturbations in either space (first and third
row) or time (second and last row). T’ outperforms T in every scenario but the square wave transient: the
smoothing with the neighbouring devices, in fact, greatly mitigates the local introduction of noise at the price
of a lower reactivity to signal changes. The smoothing parameter can be interpreted as controlling a trade-off
between such reactivity and the smoothness of the response. In our testbed, T’ shows minimal sensibility to
any kind of perturbation.

and other physical obstacles). Our implementation is realised in Protelis [47] and simulations

were performed using Alchemist [46]. We note that Alchemist is a generalised GIS framework for

multi-agent simulations, not a specialised crowd simulator, but higher-fidelity crowd simulations

are not necessary for studying the adaptation dynamics of the information system.
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Fig. 6. Screenshots from simulation of crowd size estimation scenario: acts are indicated as red dots, pedestri-
ans are black, and pedestrians who are part of a contiguous crowd are orange. From their initial position,
people walk towards an act of interest following the pedestrian roads, becoming counted as part of a crowd
once they have clumped up close to an act.
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(a) G’ improves over G
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(b) C’ fails, but is mitigated by G’

Fig. 7. Key results for the crowd size estimation scenario: a) Use of G’ slightly improves performance over
G, while T performs slightly better than T’. b) The C’ algorithm fails badly due to the network being both
sparse and volatile, mandating preference of C in this case. The problems with C’ can be largely mitigated by
substitution of G’ instead of G, though the choice of T versus T’ does not have any significant effect.

In this scenario, we execute eight variants of the crowdSize algorithm, all combinations of the

building blocks and alternates developed in the previous section: G or G’ (FLEX), C or C’ (multipath),

and T or T’. We measure the error for each combination as the absolute value of the difference

between estimated and true counts for people watching each act, namely,

1

|A|

∑
a∈A

|P̂a − Pa |

where A is the set of acts a, |A| is the number of acts, P̂a is the estimated count of people watching

act a as computed by the algorithm, and Pa is the true count of people watching an act.

Figure 7 presents key results, averaged over 51 simulation runs. In these simulations, adopting

G’ instead of G produces a slight improvement in performance. On the other hand, it turns out that

C’ fails badly, always making the results much worse, likely due to the combination of both the

high volatility of the network and the sparsity induced by city streets. This failure, however, can be

mitigated by applying G’, which produces a potential function that is much more stable in response

to large perturbations. The choice of T versus T’ has much less impact: T’ performs slightly worse

than T in combination with C’ and does not mitigate the failure of C’.

The second example considers signaling an evacuation alert signal to a pre-defined zone, along

with the proposal of a suggested evacuation path. This is implemented using T to track whether
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Fig. 8. Screenshots from simulation of evacuation alert scenario: devices are initially randomly scattered
through the city centre (black dots). After alert (translucent red circle) is enabled, and devices in the evacuation
zone are signaled (orange) by the action of the coordinator (blue) and begin trying to leave the zone.

any device in the zone is currently alerted (using G to create a potential field to a static device

selected as coordinator, and C to perform a logical or as in function any), then using G to broadcast

that value from the coordinator throughout the zone and again to compute paths to the non-alerted

areas outside of the zone. Finally, the mux operator is used to differentiate computations on devices

inside and outside of the alert zone.

def evacuationAlert(zone, coordinator, alert) {
G_distanceTo( mux(zone, false,

G_broadcast(coordinator, T_track(C_any(G_distance(coordinator), alert))))) }

Simulations for this experiment used the same environment of 300 devices spread through

the center of Cesena, with the same model of asynchronous execution and communication, the

only difference being that devices perform a round of computation and communication every two

seconds rather than every five seconds. In this simulation, devices are initially stationary, and

the alert signal is enabled starting at time t = 20 seconds of simulated time from the start of the

simulation. Since devices are unable to directly affect the movement of the people holding them,

however, we simulate the people acting on the alert not by following the direction provided by any

of the simulated algorithms, but walking toward the closest waypoint outside of the evacuation

zone. Such behaviour is depicted in Figure 8.

As before, we execute eight variants, covering all combinations of the three building blocks and

their alternates. We measure the error for each algorithm as the mean of the minimum mean square

error between the angles of the suggested evacuation vector and the optimal one for each node,

normalised in [0, 1], with the special rule that devices that are in alert zone when they shouldn’t be

or not in the alert zone when they should be get the maximum error, namely:

error =

1

N

∑
d ∈D


0 not in zone and not alerted

(
min( |αd− ˆαd |,2π−|αd− ˆαd |)

π )2 in zone and alerted

1 otherwise (alert/zone mis-match)

where N is the number of devices initially inside the zone, D is the collection of all devices, α̂d
is the computed direction (angle) for device d , and αd is its actual ideal direction. The minimum

function is used in order to always pick the smallest angle between the two separating the optimal

vector and the suggested one (namely, the difference of the two and 2π minus that value). This

outputs an error in the [0,π ] range, that we normalise linearly into [0, 1].
In this scenario, we find that two of the proposed alternative implementations of the self-

stabilising building blocks significantly improve performance. Figure 9 shows the results, averaged
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Fig. 9. Evacuation alert scenario results: G’ and C’ each improve performance significantly over G and C,
respectively, and using both improves it incrementally further. Choice of T versus T’ has no significant effect.

over 51 simulation runs. G’, in particular, performs from equivalently to much better than G along

the whole simulated time span. The behaviour of C’ is more complex: it has a longer reaction time

as compared to C, as it is more sensitive to large perturbations. As soon as the initial transient

phase is over, however, C’ provides a consistent improvement over the performance of the original

C implementation. Using C’ and G’ together provides a further (though smaller) performance

increment. The choice of T’ versus T, however, has no significant impact on performance.

Together, these results illustrate how our approach enables fast, lightweight implementation

and optimisation of distributed applications. Different applications are best served by different

combinations and tradeoffs in the dynamics of building block implementations: for example, G’

improved over G in both scenarios, while C’ help the second but not the first, and neither had noisy

enough changes for T’ to significantly improve on T. The approach we have implemented allows

such combinations to be rapidly and safely explored, enabling optimisation of distributed systems

without their re-design.

8 CONCLUSIONS
Using computational field calculus as “lingua franca” for an abstract, uniform description of self-

organising computations, we have identified a large class of self-stabilising distributed algorithms,

including general “building block” operators that simplify the specification of programs within

this class. The class is formalised as a fragment of the field calculus, closed under composition,

and flexible enough to also include various alternative building block implementations, allowing

dynamical performance optimisation with guaranteed convergence to the same values. This self-

stabilising fragment is at the core of a methodology for efficient engineering of self-organising

systems, rooted in modelling and simulation: (i) a system specification is constructed using formally-

proved self-stabilising building blocks, and (ii) alternative implementations of building blocks

are switched in selected points of the specification to improve performance, with performance

improvement detected by empirical means such as simulations.

An important future direction is more detailed characterisation for the dynamic trade-space, to

enable more systematic optimisation via mechanism substitution. In addition to making human

engineering easier, this may also enable automated optimisation, both during engineering and dy-

namically at run-time. Alternative definitions of self-stabilisationmay allow capture and description

of wider classes of resilient program behaviours (e.g., replicated gossip [45]) or better modeling

of important aspects of spatial computations (e.g., space-time information), as well as integration

with dynamical response models such as those in [23, 41]. Other potential improvements include

expansion of the library of building blocks (including to non-spatial systems), identification of more

substitution relationships between building blocks and high-performance resilient coordination

mechanisms, and development and deployment of applications based on this approach.
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ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library
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