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Abstract 

Precision viticulture has been assumed as an essential approach to optimise crop-managing practices and to improve 
the quality of food products. To deploy proper site-specific management, addressing the intrinsic variability within a 
vineyard or a parcel, reliable methods for features extraction and mapping of crops must be developed. The introduction 
in agriculture of Unmanned Aerial Vehicle (UAV), equipped with sensors able to acquire fields planar images at several 
wavelengths, makes available huge amount of data with high-resolution, in terms of both spatial and temporal 
dimension. Recently, in addition to well-known 2D mosaicked images, innovative features leaded by modern 
photogrammetry allowed accurate three-dimensional models of crops (ex. 3D point cloud datasets) to be generated. 

The approach presented in this work is aimed at defining enhanced crop descriptors by exploiting information 
provided by both 2D and 3D crop models. Crucial phases of the procedure are the proper management of data provided 
by several sources, in order to achieve high consistency of the obtained huge dataset. In addition, the detection of vine 
rows, discriminating them from all the other elements of rural areas, plays a crucial role. The proposed methodology 
does not require the straightness of vine rows and it can be profitably applied to models of vineyards with curvilinear 
rows, also on steep terrains. Specific computing optimisation have been defined in order to reduce big data complexity. 

A set of 24 portion of vine rows, each made by 4 plants, has been used to validate the effectiveness of the evaluated 
crop canopy descriptors. The 2D maps and 3D point-cloud models have been generated by using aerial images acquired 
during UAV flights at 35 meters high, in a study vineyard located in Serralunga d’Alba (Piedmont, Northwest of Italy). 
The integration of 2D-3D information allowed to obtain good performance also in the presence of dense inter-row 
grassing which, usually, slightly differs from vine canopies in terms of reflectance.  

Keywords: crop canopy 3D models, point-cloud processing method, crop descriptors, remote sensing, precision 
viticulture. 

 
1. Introduction 

Precision viticulture has been assumed as an essential approach to optimise crop-managing practices and to improve 
the quality of food products, reducing in the meanwhile the environmental impact, such as the waste of fertilisers, 
pesticides, fresh water and energy (Zhang et al., 2002; Gimenez et al., 2015; Lee and Ehsani, 2015; Srbinovska et al., 
2015; Reina et al., 2017).  

A reliable crop monitoring procedure is the base for an effective management of precision viticulture processes. For 
this task, remote sensing represents a powerful technology providing huge amount of data, from which valuable 
information can be derived. Indeed, several interesting works discussed the evaluation of plant vigour level, radiometric 
indices, water stresses, grapevine size and missing plants (Meggio et al., 2010; Primicerio et al., 2015; García-Tejero et 
al., 2016; Tang et al., 2016; Khanal et al., 2017; Primicerio et al., 2017; Terribile et al., 2017).  

A fundamental requirement for providing useful remote sensing products in agriculture is the capacity to combine 
high spatial resolution and quick turnaround times. In this context, an additional push in agricultural remote sensing 
arise from the introduction of light Unmanned Aerial Vehicle (UAV), equipped with sensors able to acquire fields 
planar images at several wavelengths with high and very-high resolution, in terms of both spatial and temporal 
dimension.  

Recently, in addition to well-known 2D mosaicked images (Comba et al., 2015), innovative features leaded by 
modern photogrammetry allowed accurate three-dimensional models of crops (e.g. 3D point cloud datasets) to be 
generated. A point-cloud is a large dataset of points, referred to a geodetic reference frame, representing spots of the 
external surface of visible objects, where light is reflected. Data for 3D crop modelling can be directly provided by laser 
scanner (such as light detection and ranging systems - LiDAR) (Koening et al., 2015; Bietresato et al., 2016; Mack et 
al., 2017) or derived from multispectral and thermal imagery (Zarco-Tejada et al., 2014; Herrero-Huerta et al., 2015; 
Weiss and Baret, 2017) by photogrammetry and computer vision algorithms, such as Structure from Motion (SfM).   

Several published researches proved the information potentiality of this new type of crops models for monitoring 
and tasks assessment in biosciences, by developing reliable algorithms to exploit 3D data in agricultural (Bendig et al., 
2015; Chang et al., 2017; Malambo et al, 2018), livestock (Mortensen et al., 2016; Guo et al., 2017) and food 
applications (Sture et al., 2016; Su et al., 2017).  

In this work, an enhanced 2D map and 3D point-cloud processing method for reliably describe the canopy status in 
row-layout vineyard is presented. 
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2. Materials and Methods  

The effectiveness of the proposed approach in defining proper canopy descriptors has been evaluated on a set of 24 
test areas, which are sections of vine rows made by about four plants each. The whole region where the study have been 
conducted covers a surface of about 1 hectares located in Diano d’Alba (Piedmont, Northwest of Italy). The region, 
which includes one entire vineyard parcel and part of other plots, whose latitude and longitude positions in the World 
Geodetic System 1984 (WGS84) range between [44.6238° 44.6242°] and [7.9988° 8.0003°] respectively (Figure 1), is 
characterised by a sloped land conformation, with an elevation ranging from 340 to 380 meters above sea level and a 
predominantly southwest orientation.  

The flights paths have been planned to maintain the UAV height close to 35 meters with respect to the terrain, 
obtaining aerial images with a ground sample distance (GSD) of 5	cm ∙ pixelZQ. The acquisition campaign has been 
performed close to the noon on 2017, June the 29th, using an airborne 4-bands multispectral camera (Parrot Sequoia®). 
In order to georeference the point-clouds in a geodetic coordinates frame, a set of 3 ground markers has been placed on 
selected vine trellis poles within the monitored area and their position has been accurately determined with a differential 
GNSS system. This methodology presented in this study uses both 2D high-resolution multispectral map and 3D point-
cloud model of the crops. 

 

2.1 Canopy descriptor from 3D point-cloud models 

The vineyard 3D point-cloud model has been generated processing a set of about 400 aerial multispectral images, 
using Agisoft PhotoScan® software. The obtained raw 3D point-cloud model is characterised by a mean density of 
about 1,450 units per meter square of map surface (Figure 1).  

 

Figure 1. Point-cloud map v{xyz{|} of the monitored vineyard plot (June 29th 2017). 

A point-cloud map is here formally defined as a set v{WGS84} of points represented by array Li = Éφi, λi, 	,iÜ
T
, with 

i = 1,… , cardãv{xyz{|}å, where φi, λi and ,i are the WGS84 latitude, longitude and elevation coordinates of point pi 
respectively. 

Each considered section of vine row çé ⊂ v, with j=1,…,24, has been represented in a local Cartesian reference 
frame {Loc}é in order to facilitate the subsequent processing phases, as 

çé
{Loc}é

= í	Li = É-i, /i, ìiÜ
T
∈ ℝ3; 	i = 1, … , cardòçéô	ö (1) 

where -i,	/õ and ìi are the spatial coordinates of each point of the cloud map in meters (Figure 2a). The reference 
frame {Loc}é has been defined with the x-axis aligned with the local tangent to the vine row, the z-axis with the vertical 
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and the y-axis accordingly to complete the frame. These local vine row information and the terrain model parameters, 
essential to obtain the relative height of each point of the model with respect to the local terrain surface, have been 
derived by the method described in Comba et. al. (2018). The origin ú of {Loc}é has been located at the soil level, 
aligned with a vineyard trellis close to the considered group of four vines çé. 

 

Figure 2. Portion of point-cloud çQù
{ûü†}°¢  (green dots). Points belonging to subset aQ[,|(_), with _ = 0.25 meters, are highlighted 

in red. Values of matrix &Qù are graphically represented in the background (images on the x-z plane), properly aligned with x and z 
coordinates ranges used to compute )A,H values. 

 
The 3D model of the crop canopy is here processed in order to obtain a reliable descriptor, able to represent with a 

single number the complex spatial distribution of the leaves along the canopy wall. Considering the point-cloud 
section	çé, points coordinates of which are within the ranges 0 ≤ - ≤ -§•¶, 0 ≤ / ≤ /§•¶ and 0 ≤ ì ≤ ì§•¶, an 
analysis of the point density variability is conducted defining a subset ar,s of points within a parallelepiped with high 
and width equal to _, as 

ar,s(_) = ®L4 ∈ Rj	|	(* − 1) ∙ _ ≤ -4 < * ∙ _	,			(6 − 1) ∙ _ ≤ ì4 < 6 ∙ _	≠ (2) 

with r ∈ í1,2,… , ÆIØ∞±
X
≤ö  and s ∈ í1,2,… , Æ≥Ø∞±

X
≤ö . In Figure 2b, a sample subset a*,6 is highlighted in red, obtained 

processing section 	ç22 with _ equal to 0.1 meters. Indeed, considering the amount of point constituting the subset 
ar,s(_), a two-dimensional map &é can be derived as  

&é = ¥)*,6 = cardòa*,6ô 	 ∨ * ∈ í1,2, … , Æ
-max
_
≤ö , 6 ∈ í1,2, … , Æ

ìmax
_
≤ö∂ (3) 

which represent the density distribution of the points of section çé along the plane x-z. As an example, the matrix 
&13 obtained processing section 	ç13 with _ equal to 0.25 meters and * ∈ {1,2,… ,13}  and 6 ∈ {1,2,… ,6} is graphically 
represented in Figure 2b. The obtained matrix &é is deeply affected by the parameter _ value, which is related to the 
specific degree of detail of the 2D canopy density distribution map. Indeed, small values of _ can lead to matrix &é 
better describing the canopy inhomogeneities. However, a too small value of _ generates a matrix &é with a lot of 
empty elements, drastically limiting the canopy wall map effectiveness. Several metrics and statistic can be defined, 
aimed at properly describing values of matrix &é: in this preliminary investigation, the descriptor ∏1 has been defined 

as the product between the average value of &é elements and the canopy high related value Æìmax
_
≤, as  



 

 

52 

∏1(_) = Æ
-max
_
≤
−1
∙ 	 K K )*,6

Æìmax_ ≤

6=1

Æ-max_ ≤

*=1

 (4) 

 
 

2.2 Canopy descriptor from 2D map and 3D model integration 

In this section, the definition of a new crop descriptor derived from the fusion of 2D and 3D information of the 
canopy, considering both the spatial and the spectral content, is presented. The 2D multispectral map of the region has 
been generated with Pix4D® software, with Near Infrared, Red Edge, Red and Green spectral bands. In Figure 3a, the 
portion of 2D map, named π13, representing the test area 13 has been plotted in the plane x-y using false colours (NIR, 
R, G bands), together with the section of point-clouds ç13. From digital number _a,b of the test portion πj of the map, 
with j=1,…,24, defined as _a,b = [_ºπç	_çΩ	_ç	_æ]',1, the well know NDVI index has been computed as "a,b =
É(_ºπç − _ç) ∙ (_ºπç + _ç)−1Ü',1. Indexes ' and 1 point the digital number position in the image matrix, with ' ∈
{1,2,… , ¿}, 1 ∈ {1,2,… ,B} and ¿ and B that are the number of rows and columns of πj. For portion π13, ' and 1 range 
from 1 to 80 and from 1 to 64 respectively.  

 

Figure 3. Portion πQù of the 2D multispectral map (plane x-y) of the vineyard, representing the sample area 13, with false colours 
(NIR, R, G bands), together with the section of point-clouds çQù(a). Points belonging to subset ¡Q[(_), with _ = 0.25 meters, are 
highlighted in red. Selected set of NDVI values !r representing vines canopy, with * ∈ {1,2,… ,13}, are plotted in the lower x-y 
plane (b), while values of array ¬Qù are graphically represented in the upper the x-y plane (b). 

The canopy structure and variability are evaluated selecting only pixels representing the canopy from πj, by defining 
a subset  

¡r(_) = ®L4 ∈ Rj	|	(* − 1) ∙ _ ≤ -4 < * ∙ _	,			0.5 ≤ ì4 < ìmax	≠ (5) 

In Figure 3a, points belonging to ¡10, with _ = 0.25 meters, are highlighted in dark red, while their projection to 
the plane x-y are light red coloured. The region of the soil (x-y plane) occupied by the canopy is here approximated 
with the rectangular polygon containing the projection of all points L4 ∈ ¡r, which is defined by -r,min ≤ -4 < -r,max 

and /r,min ≤ /4 < /r,max, with -r,min = min ãí-4: É-i, /i, ìiÜ
T
∈ ¡r(_)	öå, -r,max = max ãí-4: É-i, /i, ìiÜ

T
∈

¡r(_)	öå, /r,min = min ãí/4: É-i, /i, ìiÜ
T
∈ ¡r(_)	öå and /r,max = maxãí/4: É-i, /i, ìiÜ

T
∈ ¡r(_)	öå. The limits 

of this region, in the map πj, are located in pixel with indexes  'r,min = ≈	/r,min ∙ $−1∆, 'r,max = «	/r,max ∙ $−1»,  
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1r,min = ≈	-r,min ∙ $−1∆ and 1r,max = «	-r,max ∙ $−1», where $ is the pixel spatial resolution of the 2D map. Set of pixels 
"a,b, defined as 

!r = ®"a,b ∈ 	 πj		|		' ∈ {	'min, 	'min + 1, … , 	'max}r,			1 ∈ {	1min, 	1min + 1, … , 	1max}r	≠ (6) 

are thus selected and the average NDVI value 

ºr = …	'r,max − 	'r,min…
−1
∙ …	1r,max − 	1r,min…

−1
∙ 	 K K "a,b

	1r,max

1=	1r,min

	'r,max

'=	'r,min

 (7) 

 computed. All values of ºr, with r ∈ í1,2,… , ÆIØ∞±

X
≤ö, for the section πj are then organised in the array ¬é. In Figure 

3b, the selected group of pixels !*, with * = 1,… ,13, and the graphical representation of array ¬é are plotted, as an 
example. Several metrics and statistic can be also defined for the output of this second approach: in this preliminary 
investigation, the descriptor ∏2 has been defined as  

∏2(_) = Æ
-max
_
≤
−1

∙ 	 K ºr ∙ …	/r,max − 	/r,min…

Æ
-max
_ ≤

*=1

 (8) 

where …/max − 	/min…* is the local canopy width.  

 
3. Results and Discussion 

The goodness of the two vine canopy descriptors ∏1(_) and ∏2(_) from 2D aerial map and 3D point-cloud model, 
described in section 2, have been evaluated on 24 test areas. The set of samples have been divided in three classes on 
the base of the vigour and canopy density, from ‘A’ (lower vigour) to ‘C’ (higher vigour), by expert in-field visual 
assessment. During the manual classification, the presence of weak plants and portion of canopy wall with low leaf 
density and/or holes has been properly considered.  

Table 1. Results of ANOVA analysis of canopy descriptor ∏Q(_), with several values of _ parameter 

 Source Sum of 
squares 

Degrees of 
freedom 

Mean 
squared error F-statistic p-value 

(Prob>F) 

d=
0.

05
 Groups 1022,05151 2 511,0258 11,8743 0,00035492 

Error 903,764478 21 43,0364 
 

 
Total 1925,81598 23      

d=
0.

10
 Groups 3634,25501 2 1817,1275 10,1404 0,00082785 

Error 3763,14287 21 179,1973 
 

 
Total 7397,39787 23      

d=
0.

15
 Groups 6387,88586 2 3193,9429 14,1629 0,00012765 

Error 4735,81761 21 225,5151 
 

 
Total 11123,7035 23      

d=
0.

20
 Groups 13119,9772 2 6559,9886 10,0490 0,00086734 

Error 13708,8268 21 652,8013 
 

 
Total 26828,8039 23      

d=
0.

25
 Groups 19375,3739 2 9687,6869 9,0992 0,00142558 

Error 22358,2314 21 1064,6777 
 

 
Total 41733,6053 23    

 
Descriptors ∏1(_), with _ ∈ {0.05, 0.10, 0.15, 0.20, 0.25}, being derived with the same approach, are not 

independent and their ability in describing the canopy variability has been investigated individually by ANOVA 
analysis. Results of the investigation are summarised in Table 1. All descriptors ∏1(_) prove to achieve good results, 
with significant differences between classes means. Descriptor ∏1(0.15) results to be the most performing one, 
obtaining the lowest p-value. For the sake of completeness, boxplots of the 24 samples of ∏1(0.15), divided in classes 
‘A’,’B’ and ‘C’, are shown in Figure 4a. 
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Figure 4. Boxplots of descriptor ∏Q(_) (a), with d=0.15 meters, and of descriptor ∏S(_) (b), with d=0.20 meters. 

The same analysis has been conducted for descriptors ∏2(_), with _ ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. Results of this 
second investigation are summarised in Table 2. All descriptors ∏2(_) prove to achieve good results, with significant 
differences between classes means. In this case, the best descriptor has been found to be ∏2(0.20), as shown by 
boxplots in Figure 4b, with the 24 samples of ∏2(0.20) grouped in classes ‘A’,’B’ and ‘C’.  

Table 2. Results of ANOVA analysis of canopy descriptor ∏S(_), with several values of _ parameter 

 Source Sum of 
squares 

Degrees of 
freedom 

Mean 
squared error 

F-statistic p-value 
(Prob>F) 

d=
0.

05
 Groups 0,2052 2 0,1026 9,5531 0,0011 

Error 0,2256 21 0,0107   
Total 0,4308 23    

d=
0.

10
 Groups 0,1796 2 0,0898 8,2779 0,0022 

Error 0,2279 21 0,0109   
Total 0,4075 23    

d=
0.

15
 Groups 0,1630 2 0,0815 7,8570 0,0028 

Error 0,2179 21 0,0104   
Total 0,3809 23    

d=
0.

20
 Groups 0,1817 2 0,0909 20,7711 0,00001 

Error 0,0919 21 0,0044   
Total 0,2736 23    

d=
0.

25
 Groups 0,1557 2 0,0778 7,0401 0,0046 

Error 0,2321 21 0,0111   
Total 0,3878 23    

 
A preliminary study of the combined effectiveness in using descriptors ∏1(0.15) and ∏2(0.20) to classify the 

canopy wall vigour has been performed implementing a binary decision tree algorithm. For this task, a cross-validation 
approach has been adopted, using the leave-one-out cross-validation methodology. The fraction of misclassified data 
resulted equal to 0.12. An improvement in classification performance can be achieved increasing the number of 
samples. Estimates of predictor importance have been also computed for the trained decision tree model, which 
confirmed the need to use both the predictor ∏1(0.15) and ∏2(0.20).  
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Figure 5. A decision tree diagram trained with descriptor ∏Q(0.15) and ∏S(0.20). 
 

 
4. Conclusions 

In this work, a new methodology to process and merge data provided by vineyard 2D multispectral map and 3D 
point-cloud model has been presented, aimed at reliably describing the canopy status variability within row-layout 
vineyards. The proposed approach exploits both spatial and spectral information, with particular attention to the canopy 
wall analysis, in term of leaves density distribution and irregularities. Two families of crop canopy descriptor have been 
discussed in this study, as a function of a spatial computing parameter, in order to evaluate their effectiveness in 
describing vines canopy degree of growth. Analysis of variance has been used to select the more preforming ones, using 
a sample set made by 24 portion of vine rows. A preliminary evaluation of their classification potential has been tested 
training a binary decision tree model, using the leave-one-out cross-validation methodology. Obtained results are 
promising, although a limited number of descriptors has been still considered.  

The presented data processing approach, new and with high potential, will be extended to define addition families of 
descriptors, evaluating the effect of several parameters. Indeed, additional crop descriptors can be used to train 
enhanced ensemble classifier, the effectiveness of which is strictly related to the numerosity of adopted independent 
variable. 
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