
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Optimal single-path information propagation in gradient-based algorithms

Published version:

DOI:10.1016/j.scico.2018.06.002

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1671326 since 2018-12-16T17:09:38Z

Optimal Single-Path Information Propagation in

Gradient-based AlgorithmsI

Giorgio Audritoa,b, Ferruccio Damiania,b, Mirko Virolic

aDipartimento di Informatica, University of Torino, Torino, Italy
bCentro di Competenza per il Calcolo Scientifico, University of Torino, Torino, Italy

cDISI, University of Bologna, Cesena, Italy

Abstract

Scenarios like wireless network networks, Internet of Things, and per-
vasive computing, promote full distribution of computation as well as op-
portunistic, peer-to-peer interactions between devices spread in the environ-
ment. In this context, computing estimated distances between devices in
the network is a key component, commonly referred to as the gradient self-
organisation pattern: it is frequently used to broadcast information, forecast
pointwise events, as carrier for distributed sensing, and as combinator for
higher-level spatial structures. However, computing gradients is very prob-
lematic in an environment affected by mutability in the position and working
frequency of devices: existing algorithms fail in reaching adequate trade-offs
between accuracy and reaction speed to environment changes.

We propose BIS (Bounded Information Speed) gradient, a fully-distributed
algorithm that uses time information to achieve a smooth and predictable
reaction speed, and prove it is optimal across algorithms following a single-
path-communication strategy to spread information. We empirically evalu-
ate BIS gradient and compare it with other approaches, showing that BIS
achieves the best accuracy while keeping smoothness under control, and ac-
cordingly provides improved performance when used as building block in

IThis work has been partially supported by: EU Horizon 2020 project Hy-
Var (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it).

Email addresses: giorgio.audrito@unito.it (Giorgio Audrito),
ferruccio.damiani@unito.it (Ferruccio Damiani), mirko.viroli@unibo.it (Mirko
Viroli)

Preprint submitted to Elsevier July 25, 2018

more complex algorithms for creating spatial structures and performing dis-
tributed collection of data.

Keywords: Aggregate Programming, Gradient, Information Speed,
Reliability, Spatial Computing

1. Introduction

The increasing availability of computational devices of every sort, spread
throughout our living and working environments, is creating new challenges
in the engineering of complex software systems, especially in contexts like
the Internet-of-Things, Cyber-Physical Systems, Pervasive Computing, and
so on. To take full opportunity of such large-scale computational infrastruc-
tures, models that focus on the aggregate behaviour of devices have been
proposed for their ability to provide pervasive and intelligent sensing, coordi-
nation, and actuation over the physical world [1]. They raise the abstraction
layer, through algorithms that provide distributed data structures that more
easily capture the goal of a large-scale situated system.

In particular, in this context, “collective” programs take as input data
located in physical positions of space, typically perceived by (virtual or phys-
ical) sensors [2], and produce analogous data as outputs, to be used to feed
(virtual or physical) actuators, having an effect on other computational com-
ponents, on the physical world, or on humans in it. Ultimately, a distributed
computational process continuously executing over “space” and “time” can
hence be viewed in terms of such an input/output transformation, which can
involve complex coordination patterns, reuse existing library components,
and be in need of satisfying multiple non-functional requirements: scalabil-
ity, resilience to unpredictable changes, and heterogeneity and dynamism of
the communication infrastructure. Accordingly, a key issue when trying to
scale with the complexity of a collective application of this kind is the lack
of libraries of reusable distributed algorithms with guaranteed resilience and
performance to match the requirements of nowadays dynamic environments.

A prototypical example is given by the so-called gradient algorithm [3, 4,
5, 6], which amounts to computing shortest paths from all nodes to a given set
of source nodes through a fully distributed process to be iteratively executed
to promptly react to any change in the environment.1 Gradients are very

1In a traditional settings, this essentially solves a shortest path (SP) problem in a

2

commonly used: to broadcast information, forecast events, dynamically par-
tition networks, ground distributed sensing [7], anticipate future events [8],
and to combine into higher-level spatial structures [4]. However, the known
distributed algorithms for gradient computation are not fully satisfactory, as
they involve relevant trade-offs between scalability, resiliency and precision.

This paper proposes the BIS (Bounded Information Speed) gradient, an
improvement of the classic gradient algorithm in [6] (called “classic” hence-
forth), relying on time information to achieve smooth and predictably effi-
cient reaction to changes. Given a rising speed v (i.e., increase in distance
estimate over time) as a parameter, it enforces an information propagation
speed (i.e., space travelled by information over time) equal to v. This allows
to scale from the classic gradient (where essentially v = 0) to a reaction speed
that we prove to be optimal (among those algorithms that spread information
across single-path communications) when v equals the average information
speed. If v is greater than such an average, however, a metric distortion is in-
duced that may cause the algorithm to systematically overestimate gradient
values. It is thus crucial to tune correctly the parameter in order to achieve
the best accuracy.

To face this problem, we compute mathematical estimates of the average
single-path communication speed, and use them for validating the perfor-
mance of BIS gradient with respect to the three most performing distributed
algorithms: classic [6], CRF [9] (a variation aimed at speeding up the raising
of values) and FLEX [3] (addressing changes in network configuration). We
thus show that the BIS gradient achieves the best accuracy while keeping
smoothness under control. This comparison is carried out through a general
approach to the empirical evaluation of performance for distributed algo-
rithms (and gradient algorithms in particular). We consider gradients both
in isolation, and as constituent building blocks of more complex algorithms
for creating spatial structures and performing distributed collection of data.

The remainder of this paper is organised as follows. Section 2 provides
the background for this paper and discusses related works, introducing the
relevant gradient algorithms. Section 3 describes the proposed BIS gradient
algorithm together with the mathematical estimates of average single-path
information speed. Section 4 discusses possible implementations of BIS and
of some relevant applications of it. Section 5 discusses the methodology

weighted network like addressed, e.g., by the Dijkstra’s algorithm.

3

for empirical evaluation of spatial computing algorithms and compares the
various gradient algorithms accordingly. Section 6 concludes and outlines
possible directions of future research.

This document is an extended version of the prior work in [10] with the ad-
dition of two prototypical application scenarios for gradients (channel broad-
casting and data collection, empirically evaluated in Sections 5.3 and 5.4),
and documented source code (in field calculus, reviewed in Section 2.1) for
all algorithms and application scenarios presented in this paper (Sections
2.4 and 4). Most notably, novel improvements to the broadcast and chan-
nel pattern are discussed in Sections 4.1 and 4.2: computationally efficient
broadcast in sub-networks and improved channel shaping.

2. Background and Related Work

We now present a brief overview of gradient-related works in distributed
computing, while focussing on the gradient algorithms that are closer to our
approach and applicative scope: classic, CRF and FLEX gradients. The
algorithms will be presented both through the equations that define their
computation in each single node and with their code in field calculus [11, 12],
a tiny functional language designed as lingua franca for collective adaptive
systems. Section 2.1 presents the field calculus syntax and informal seman-
tics. Section 2.2 introduces the built-in functions and code conventions used
in this paper. Section 2.3 presents and overview of the different approaches
to gradient calculations and their different scopes. Section 2.4 presents the
state-of-the-art gradient algorithms relevant to the scope of this paper.

2.1. Field Calculus

We hereby recollect the most basic characteristics of field calculus [11,
12], an aggregate programming language providing a functional composi-
tion mechanism for distributed computations. The advantages of using it is
twofold: (i) it concisely allows us to formally express the algorithms used in
this paper with actual executable code; and (ii) its compositional model will
emphasise the “building block” nature of the proposed gradient algorithms.
In field calculus, each program P can be interpreted in two complementary
ways: according to a local viewpoint, or to a global viewpoint.

Under the “global” viewpoint [13], computation is modelled as occur-
ring on the overall network of interconnected devices, interpreted as a single

4

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v ∣∣ if(e){e}{e}

∣∣ e(e)
∣∣ nbr{e} ∣∣ rep(e){(x)=>e} expression

v ::= φ
∣∣ ` value

φ ::= δ 7→ ` neighbouring field value

` ::= c(`)
∣∣ f local value

f ::= b
∣∣ d

∣∣ (x)=>e function value

Figure 1: Syntax of field calculus.

“spatial computing” machine, evolving over time both topologically and re-
garding sensors and inputs. The data abstraction manipulated is hence a
whole distributed space-time field evolution Φ, mapping computation events
ε (space-time points where and when a device evaluates its program) to as-
sociated data values. Under the “local” viewpoint, instead, single devices
logically undergo computation of a same program P in asynchronous rounds,
during which each device (i) perceives contextual information through sen-
sors; (ii) retrieves local information stored in the previous round, and collects
messages received from neighbours while sleeping, in the form of neighbouring
fields φ mapping neighbour device identifiers δ to values v; (iii) evaluates the
program P, manipulating the data values retrieved from neighbours, context
or local memory; (iv) stores local data, broadcasts messages to neighbours,
and produces output values (possibly fed to actuators); (v) goes back to sleep
for some time until the next round;

Figure 1 presents the syntax of the field calculus. A program P consists
of a sequence of function declarations (of the kind “def d(x1, . . . , xn) {e}”)
and of a main expression e. The syntax of expressions comprises:
• variables x (used as function formal parameters) and values v, which

in turn can be either neighbouring field values φ (associating neighbour
devices to local values—not allowed to appear in source programs), or
local values (built-in functions b, user-defined functions d, anonymous
functions (x)=>e, data values c(`)—numbers, literals, etc.);
• nbr-expressions nbr{e}, modelling neighbourhood interaction through

sharing the value of expression e: each device δ broadcasts the value
of e in δ, and evaluates the expression into a neighbouring field value
φ associating to each neighbour δ′ of δ the latest evaluation of e in δ′;

5

• rep-expressions rep(e1){(x)=>e2}, repeatedly evolving a local state
through time, by computing expression e2 substituting the variable x

with the value calculated for the whole rep-expression at the previous
computational round, if present, or with the value of e1 otherwise;
• branching statements if(e1){e2}{e3}, which ensure correct matching

of outgoing and ingoing nbr-messages through a process called align-
ment, forcing e2 and e3 to be computed into two independent clusters
(consisting of the devices that evaluated e1 to True or False respec-
tively): in fact, devices that computed different branches e2 and e3 also
computed different “sharing” nbr-expressions, and such expressions in
e3 are ignored by e2 and vice-versa, effectively splitting that part of
the computation into non-communicating parts;
• function calls e(e) where a functional expression e is applied by-value

to its arguments: as with branching statements, correct matching of
messages is guaranteed through alignment, splitting the computation
into several clusters (one for each possible value of e).

A third “limit” viewpoint is also possible for self-stabilising programs
[14, 15], i.e., programs such that given an input that is everywhere constant
after a certain time t0, it produces an output that is everywhere constant af-
ter a certain time t1 ≥ t0, and this “stabilised” output after t1 depends only
on the values of the “stabilised” input after t0. All the programs presented
in this paper can be readily shown to be self-stabilising by means of the tech-
niques in [14, 15]. Under the limit viewpoint, a program receives in input a
list of computational fields, space-distributed data structures mapping device
identifiers δ to values v, and produces as output another computational field.
This input-output mathematical function represents the limit behaviour of
the program, thus permitting to abstract the time information manipulated
under the global viewpoint, and is usually the most convenient viewpoint for
programmers (when applicable), which are in this way enabled to reason in
terms of mathematical composition of spatial input-output mappings.

2.2. Built-in Functions and Code Conventions

In the field calculus code to come, we shall use [e] as a shorthand for
tuple(e), and let x = e1 in e2 as a shorthand for ((x)=>e2)(e1). Constructs
will be coloured in red, built-in functions in blue and user-defined functions
in violet. We assume the existence of the following built-in functions:
• mux, the classic multiplexer operator selecting its second or third argu-

ment based on the boolean evaluation of the first;

6

• maxHood and minHood, which compute the maximum (resp. minimum)
in the range of a neighbouring field value;
• minHoodLoc, which selects the minimum of a neighbouring field value

and a provided local value;
• 1st, 2nd and 3rd, which select components of a value of tuple type;
• nbrRange, which evaluates to the neighbouring field value of short-

range distances with neighbours, as perceived by a local sensor;
• getDeltaTime, which evaluates to the time elapsed from the previous

computation round, as perceived by a local sensor;
• nbrLag, which evaluates to a neighbouring field of time differences with

the messages received from neighbours, as perceived by a local sensor.
We also overload local built-in operators (e.g., +) to behave pointwise on
neighbouring field values when needed.

The following algorithms will take as input a computational field source

designating the selected sources, such that source is 0 in sources and ∞
otherwise. Furthermore, space and time distances from neighbours will be
stored in variables dist and lags, whereas the local algorithm estimate
(taking into account the source value only) will be stored in variable loc.
Notice that the time difference between the present round and the value
obtained from a neighbour can be calculated as:

lags = nbrLag() + nbr{getDeltaTime()}.

This is due to the fact that neighbours’ values are obtained through nbr{old}
where old is the bound variable of the main rep-operator, which represents
the overall result of the algorithm in the previous round. Thus, nbr{old} are
the algorithm’s values in the second-last rounds of neighbours, from which
time nbrLag() + nbr{getDeltaTime()} has elapsed.

2.3. Gradient-based Approaches

In this paper we are concerned with coordination strategies for situated
networks, where the objective can be represented in terms of a global, system-
level “pattern” to be achieved by local interactions between neighbouring
devices, showing inherent resilience with respect to unpredicted changes—in
network topology, scale, inputs coming from sensors, and so on. This view-
point is endorsed by a number of works in a recent thread of research, in the
context of coordination models and languages [5, 16, 17], multi-agent sys-
tems [18, 19, 20] and spatial computing [1, 4, 7, 21, 22]. In spite of various

7

3.3

1.5

0

3.1

6.5

2.9

5

0

2.7

1.9

3.3

0.8

1.5

2.5

2.7
4.1

3.5

0.2

3.6

2.1

2.9

Figure 2: The computational field given by the gradient computed in a sample network
with two source devices (in red), and distance labels on links between devices.

differences and peculiarities, they all promote the idea of creating complex
distributed algorithms as spatial computations, where few basic communi-
cation and coordination mechanisms are provided to the programmer, who
uses them by progressively stacking building blocks into layers of increasing
complexity.

In this context, gradient data structures, or gradients for short, are per-
vasively used as key building blocks [4, 7]. They produce a map—also called
a computational field [23, 11]—assigning to each device δ in a network N its
estimated distance from the closest source device (an input for the problem),
computed by the shortest-path through weighted links in the network (see
Fig. 2 for an example of one such computational field).

Applications of gradients are countless. Other than to trivially estimate
long-range distances (possibly according to metrics computed during execu-
tion of the algorithm), gradient computations enact an outward progressive
propagation of information along optimal paths. Thus, they are used as
forward “carrier” for broadcasting information, forecasting events, and dy-
namically partitioning networks [7]. Also, used backwards, one can make
information flow back to the source, to move or steer mobile agents or data
towards the source, or to summarise or average distributed information, i.e.,
to generally support distributed sensing [7]. Other applications include: con-
sidering future events so as to provide proactive “adaptation” [8], managing
semantic knowledge in situated environments [24], create high-level spatial
structures [4], elect leaders on a spatial basis [25], and so on.

Due to their usefulness, several works also study how to establish gradi-
ents in contexts where local estimation of distances is not available [26, 27],
and others take them as basic example to study self-stabilisation techniques
[5, 28].

8

2.4. Gradient-based Implementations

According to the framework presented in [14], it is suggested to associate
to fundamental building blocks (including the gradient) a library of alterna-
tive implementations, among which one can pick the right implementation
for each specific use in the application at hand. It is therefore of interest
to analyse different trade-offs in the implementation of gradient algorithms,
with the goal of identifying approaches guaranteeing reactivity and smooth-
ness in the way gradients (and the many applications on top) can respond
to dynamic environments. In its most basic form, the gradient can be calcu-
lated through iterative and asynchronous application of a triangle inequality
constraint in each device δ, starting with ∞ everywhere:2

G(δ) =

{
0 if source(δ)

min{G(δ′) + w(δ′, δ) : δ′ ∈ N linked3 with δ} otherwise

where w(δ′, δ) is any given positive metric, providing a notion of distance
between devices. We call this procedure classic gradient, and report its field
calculus code in Figure 4 according to the conventions in Section 2.2. As-
sume repeated fair application of this calculation in a fixed network, namely,
devices update infinitely often as they never stop working. Then the gradient
will converge to the correct value at every point [28], either at the limit for
devices that get suddenly disconnected to the source (which raise indefinitely
towards the correct value ∞) or in finite time otherwise. However, the per-
formance of this algorithm in a mutable environment4 is impaired by several
limitations.

• Speed Bias : if devices are continuously moving, the values produced by
the algorithm systematically underestimate5 the correct value of the
gradient; with an error that increases with the movement speed.

2Generalisations of the distance estimation problem are possible, such as allowing ar-
bitrary values for source devices. However, since this generalisation is seldom used and
somehow straightforward, in the remainder of this paper we focus on the distance estima-
tion problem for which source devices have distance zero.

3The network topology is not assumed to be constant or globally known: a device δ′ is
linked with δ provided that a recent broadcast of messages from δ′ reached δ.

4In a static environment, the algorithm converges in the optimal number of steps given
by the Floyd-Warshall algorithm.

5Sporadic overestimation is also possible, however the “minimising” nature of the al-
gorithm propagates lower estimates and disperses higher ones.

9

0

3.1

6.5

2.9

5

4.1

3.5

0.2

3.6

2.1

t = 0

0

3.1

6.5

3.3

5

4.1

3.5

0.2

3.6

2.1

t = 1

0

3.5

6.6

3.3

5.4

4.1

3.5

0.2

3.6

2.1

t = 2

0

3.5

6.9

3.7

5.4

4.1

3.5

0.2

3.6

2.1

t = 3

0

3.9

7

3.7

5.8

4.1

3.5

0.2

3.6

2.1

t = 4

0

3.9

7.3

4.1

5.8

4.1

3.5

0.2

3.6

2.1

t = 5

0

4.1

7.4

4.1

6.2

4.1

3.5

0.2

3.6

2.1

t = 6

0

4.1

7.6

4.3

6.4

4.1

3.5

0.2

3.6

2.1

t = 8

Figure 3: Evolution after loss of the right source. In each round all devices compute in
order, from the one holding the highest value to the one with the lowest. Each device rises
by 0.4 every two rounds, because of the short link at the middle of the graph.

• Rising Value: in response to quick changes in the network (e.g., a
change in the set of source devices), the algorithm can rapidly correct
values that need to drop, while it is very slow in correcting values that
need to rise. In other words, the algorithm can badly underestimate
values for long periods of time after such changes. Precisely, the rising
speed of this algorithm is bounded by the distance between the pair of
closest devices: Fig. 3 shows an example of this phenomenon on a part
of the network in Fig. 2. This problem is also known as count-to-infinity
in the context of routing algorithms [29].

• Smoothness : in presence of random noise in distance estimates, it might
be preferable not to strictly follow the triangle inequality, so as to re-
duce the resultant flickering in the output values and improve accuracy.
More importantly, if the distance estimates are used for a more complex
coordination mechanism (e.g., for moving values towards the sources
by “descending” the shortest-paths tree obtained from the gradient,
see Section 4.3), then each variation in the estimates might change the
resulting shortest-paths tree, effectively disrupting the outcome of the
coordination for some time.

In order to overcome these limitations, several refined algorithms have
been proposed. To the best of our knowledge, those that better address those
problems are J. Beal’s CRF gradient (Constraint and Restoring Force) [9] and
FLEX gradient (Flexible) [3], considered in turn and reported in Figure 4
according to the conventions in Section 2.2.

10

def classic(source) {
rep (Infinity) { (x) =>

minHoodLoc(nbr{x} + nbrRange(), source)
}

}

def CRF(source, speed) {
let lags = nbrLag() + nbr(getDeltaTime()) in
let dist = nbrRange() in
let loc = [source, 0] in
1st(rep (loc) { (old) =>

let neigh = mux (nbr{1st(old)}+dist <= 1st(old) - lags*2nd(old),
[nbr{1st(old)} + dist, 0], loc) in

let new = minHoodLoc(neigh, loc) in
if (new == old || 1st(new) < Infinity) {

new
} {

[1st(old)+speed*getDeltaTime(), speed]
}

})
}

def FLEX(source, epsilon, frequency, distortion, radius) {
let loc = [source, 0] in
1st(rep (loc) { (old) =>

let dist = max(nbrRange(), distortion*radius) in
let new = minHoodLoc([nbr{1st(old)}+dist, 0], loc) in
let slopeinfo = maxHood([(1st(old)-nbr{1st(old)}) / dist, nbr{1st(old)}, dist]) in
if (old == new || 1st(new) == 0 || 2nd(old) == frequency ||

1st(old) > max(2*1st(new), radius) || 1st(new) > max(2*1st(old), radius)) {
new

} {
if (1st(slopeinfo) > 1+epsilon) {

[2nd(slopeinfo) + (1+epsilon)*3rd(slopeinfo), 2nd(old)+1]
} {

if (1st(slopeinfo) < 1-epsilon) {
[2nd(slopeinfo) + (1-epsilon)*3rd(slopeinfo), 2nd(old)+1]

} {
[1st(old), 2nd(old)+1]

}
}

}
})

}

Figure 4: Field calculus code for the state-of-the-art algorithms classic, CRF and FLEX.

CRF Gradient. The CRF gradient [9] is designed to address the rising value
problem by ignoring some Constraints (i.e., neighbours6), while assuming a
Restoring Force inducing a uniform rise in absence of constraints. The algo-
rithm takes as parameter an empirically tuned speed v0, and associates a “ris-
ing speed” v(δ) to each device so that: if the value of the device is currently
constrained (either by being a source or by the value of some neighbour) then
v(δ) = 0; otherwise if the value is not constrained (i.e., all neighbours have

6Recall that in the classic gradient, the value G(δ) is obtained by combining the
“triangle-inequality” constraints G(δ) ≤ G(δ′) + w(δ′, δ) for each neighbour δ′.

11

been discarded) then v(δ) = v0 (i.e., the gradient estimate is increasing at
speed v0). Before applying the minimisation as in the classic gradient, the
CRF gradient considers a neighbour δ′ as “able to exert constraint” if and
only if

G(δ′) + w(δ′, δ) ≤ G(δ)− λ(δ′, δ) · v(δ)

where λ(δ′, δ) measures time lag, i.e., how old is the information in δ about
δ′. The above condition checks whether the constraint given by δ′ is able to
bound the currently (i.e., not yet updated) value of the gradient as shifted
back to the time when the constraint was calculated. If the current device is
not yet rising, the condition amounts to the constraint being able to reduce
the current value; otherwise it becomes more restrictive.

If some neighbour that is able to exert constraint exists, the value is
calculated similarly to the classic gradient. Otherwise, a fixed rising speed
is enforced (thus rising by v0 ·∆t where ∆t is the time interval between the
last two rounds):

G(δ) =

0 if source(δ)

min{G(δ′) + w(δ′, δ) : δ′ exerts constraint} if some δ′ exists

G(δ) + v0 ·∆t otherwise

Through this algorithm the rising speed is then equal to v0, provided that v0
is small enough,7 thus addressing the rising value problem.

FLEX Gradient. The FLEX gradient [3] is designed to improve smoothness
through application of a “filtering function” to the outcome of the minimi-
sation, which reduces changes while granting an overall error of at most a
given parameter ε. Precisely, it first calculates the “maximum local slope”:

s(δ) = max

{
G(δ)−G(δ′)

w(δ′, δ)
: δ′ ∈ N linked with δ

}
This slope is then used to calculate the gradient estimation as:

G(δ) =

0 if source(δ)

G(δ′) + (1 + ε) · w(δ′, δ) if s(δ) > 1 + ε

G(δ′) + (1− ε) · w(δ′, δ) if s(δ) < 1− ε
G(δ) otherwise

7If v0 is too large, the algorithm flickers and does not stabilise to correct values.

12

where δ′ is the device achieving maximum slope (according to the values
available to the current device). The above formula, in other words, selects
the closest value to G(δ) in the interval from G(δ′)+(1−ε)·w(δ′, δ) to G(δ′)+
(1 + ε) ·w(δ′, δ), thus attempting to reduce local changes as much as possible
while introducing a metric distortion below ε. Two further optimisations are
also introduced in FLEX gradient: first, the classical gradient formula is used
instead of the above one whenever the current value is over a factor 2 from the
old value, or anyway every once in a while (details can be found in [3])—this
prevents a systematic error of ε to persist indefinitely in a static environment
after a network change; second, a distorted metric w′(δ′, δ) = max(w(δ′, δ), k)
is used, for a certain constant k—this adds some further error in the output
of the algorithm, but it also ensures that the rising speed is at least k (since
k becomes the shortest possible “distorted” distance between devices).

3. BIS Gradient

We are now ready to present the Bounded Information Speed (BIS) gra-
dient, which uses temporal interval estimates to enhance spatial distance
estimates. By determining the average information speed for single-path al-
gorithms, a conversion between the two measures is possible, and allows us
to obtain an “optimal reactivity” as we will show in Theorem 3. Section 3.1
defines single- and multi-path information speeds, while providing a statis-
tical estimate for the former. Section 3.2 presents BIS gradient in equation
form (actual code will be given in Section 4.1), investigates its performance
and proves optimality among algorithms with a single-path information flow.
Section 3.3 shows how BIS gradient can be modified to incorporate the main
elements of FLEX gradient, in case stability of values is preferred over accu-
racy of results.

3.1. Information Speed

In large-scale opportunistic networks, devices typically perform an inter-
action through short-range message passing between neighbour devices. The
speed achieved by information in this process constitutes an upper bound
for responsiveness to environment and input changes, in a similar way to
the speed of light, which is an upper bound for causal relationship between
events. Depending on the pattern followed by information exchanges, we can
distinguish between two main achievable speeds: single-path and multi-path.

13

Definition 1 (Information Speed). The single-path information speed is
the space travelled over time by messages through a (possibly mutable) span-
ning tree in the network. The multi-path information speed is the same
quantity assuming messages are exchanged through all possible links in the
network.

Clearly, the upper bound for causal relationship in a network is given
by the multi-path information speed. This communication pattern requires
multiple informations to be aggregated in each node, in order to avoid a pro-
gram state explosion, and is thus typical of “aggregation” algorithms (such
as broadcasting and collecting). Conversely, communication in existing gra-
dient algorithms (and in particular in the BIS gradient we shall introduce
in the next subsection) is usually structured on an implicit (shortest-paths)
spanning tree: messages from all neighbours are received, but only one of
them is selected and passed over for subsequent computations. Since “dis-
carded” messages do not contribute to the resulting value, the information
available in every node is the result of a single path of computation; in other
words, information follows the single-path communication pattern for exist-
ing gradient algorithms. For this reason, in the remainder of this section we
shall focus on single-path information speed and estimate its average vavg in
a random network. This estimate would be crucial to determine the value to
be passed to BIS gradient for its parameter v.

Consider a network of computing devices, each of them running an algo-
rithm with a certain time period P on data available from neighbour devices
within a certain radius R. Let D be a random variable for the distance and
T for the time interval between the event of a device sending a message and
the event of another device using that message for computation. Then the
average speed S achieved by information can be expressed as:8

E(S) = E

(
D

T

)
=
E(D)

E(T)
·
(

1 +
V (T)

E(T)2

)
(1)

truncating the bivariate Taylor expansion of the ratio function to the sec-
ond order (see [30] for a complete proof of this fact). Given the details of
the specific application setting where an algorithm is executed, the expected

8Following standard statistic notation, we use E(X) for the mean and V (X) for the
variance of a random variable X.

14

single-path information speed in Equation 1 can be calculated through stan-
dard means. As a prototypical example, we apply this equation to the field
calculus model of computation (see Section 2.1), obtaining a rough estimate
that will be used in the experiments of Section 5. Further work will be needed
to extend this estimate to cover more disparate models of computations and
increase its accuracy; however, this falls beyond the scope of this paper.

The average distance crossed by a message can be calculated as the aver-
age radius of communication R times the average distance of a uniformly cho-
sen random point in an n-dimensional unit ball, giving a total E(D) = n

n+1
R.

If devices are moving at a certain average speed v, this estimate should be
adapted to take into account that messages with a certain lag T could come
from a further distance up to v · T . For algorithms following a “random”
spanning tree, this extra term cancels out as it may equally likely increase
or decrease the distance travelled by a message, depending on the relative
orientation of v with that of the message. However, algorithms based on
shortest-paths spanning trees show a preference for additive terms, and an
exact calculation of the expected distance in this setting is complex and
depends on many factors. In this context, we propose to add half of the
maximum increase to the expected distance travelled to obtain a roughly
acceptable estimate E(S) = E

(
D
T

)
+ v

2
, which however imprecise will still

show its effectiveness in Section 5.
The average time interval in field calculus can be modelled as T = P ·

(I + I · F) where P represents the period of a random device, I represents
the imprecision of a single device, F represents a random phase between
devices, as a uniform distribution of values in [0, 1]. In this model, E(T) =
3
2
E(P) · E(I) = 3

2
Q (where Q is the average computation period) and:

1 +
V (T)

E(T)2
=
E(T 2)

E(T)2
=
E(P 2)

E(P)2
· E ((I + I F)2)

E(I + I F)2
=
E(P 2)

E(P)2
·
(

1 +
V (I + I F)

E(I + I F)2

)
=
E(P 2)

E(P)2
·

(
1 +

V (I) + V (I)
3

+ E(I)2

12
9
4
E(I)2

)
=

(
1 +

V (P)

E(P)2

)
·
(

28

27
+

16

27

V (I)

E(I)2

)

Notice that V (X)
E(X)2

is the square of the relative standard error σ̂2(X). Thus
the average single-path information speed vavg can be estimated as:

vavg = E(S) =
2

3

n

n+ 1

R

Q
·
(
1 + σ̂2(P)

)
·
(

28

27
+

16

27
σ̂2(I)

)
+
v

2
(2)

15

where v is the movement speed of devices. This equation tells us that: the
speed is mainly proportional to the ratio of communication radius over com-
putation period; the speed increases with the dimensionality of space, i.e.,
is lower for devices aligned in a row and higher for devices in 3-dimensional
space;9 the speed increases with the relative error of computation periods,
both among different devices and inside a single device. Equation 2 will be
used later to estimate the v parameter of the BIS gradient algorithm. We re-
mark that the average above is computed for a single hop of communication.
Over multiple hops, the relative standard error decreases while the average
does not change significantly. In case the network parameters (average ra-
dius of communication, computation period, etc.) cannot be assumed to be
constant, a simple algorithm can still estimate vavg continuously according to
Equations 1 or 2 above (by averaging the relevant quantities through low-pass
filters).

3.2. Computing Gradient through Information Speed

As exemplified in Fig. 3, in presence of a rising value problem, the increase
of distance estimate per round is bounded by the currently shortest link in the
network `. We accordingly obtain an average information speed proportional
to 2

3
`
Q

instead of 2
3

n
n+1

R
Q

, which can be arbitrarily slower as ` approaches zero.
This fact suggests us to prevent the rising value problem by lower bounding
the information speed to make this “slow” rise impossible.

The Bounded Information Speed (BIS) gradient improves over the classi-
cal gradient by enforcing a minimum information speed v requested by the
user. As long as v does not surpass the average single-path communication
speed, the algorithm is able to compute correct estimates of the gradient
with increased responsiveness. Greater values of v induce instead a metric
distortion, causing the algorithm to systematically overestimate values. In
the remainder of this paper, we shall thus express v as a fraction of vavg
(the average single-path communication speed, which we estimate through
Equation 2).

For each device in the network, we compute both the usual gradient
estimate G(δ) and a lag estimate L(δ), representing the time elapsed since

9Gradient algorithms have preference for shortest-path links, so that information tends
to propagate linearly regardless of the dimensionality of the space. This fact does not
contradict the above estimate, which assumes that transmission links are chosen randomly
(assumption viable also for gradient algorithms in sparse networks).

16

the message started from a source. Lags are estimated through local time
differences,10 so that no overall clock synchronisation is required. When
considering a candidate neighbour11 δ′ of a device δ, the time lag relative to
this neighbour is:

L(δ, δ′) = L(δ′) + λ(δ′, δ)

where λ(δ′, δ) is the lag of the message from δ′ to δ. We then take into account
this value when calculating the gradient estimate relative to this neighbour:

G(δ, δ′) = max {G(δ′) + w(δ′, δ), v · L(δ, δ′)− r}

where w is the distance between devices and r is the communication radius.
This formula accounts to assuming that messages propagate at least at speed
v, so that the gradient estimate is lower bounded by v · L(δ, δ′) (with the
additive constant −r to ensure that some error is taken into account).

The overall estimates of G(δ) and L(δ) are then obtained by minimising
G(δ, δ′) over neighbours (we assume that pairs are ordered lexicographically):

[G(δ), L(δ)] =

{
[0, 0] if source(δ)

min{[G(δ, δ′), L(δ, δ′)] : δ′ ∈ N linked with δ} otherwise

This algorithm generalises the classic gradient algorithm, as shown in the
following.

Theorem 1 (Degenerate BIS). The BIS gradient with v = 0 is equivalent
to the classic gradient.

Proof. If v = 0, G(δ, δ′) = max {G(δ′) + w(δ′, δ), 0 · L(δ, δ′)− r} is equal
to G(δ′) + w(δ′, δ) so that L(δ) is implicitly discarded.

In particular, the same result would hold for devices with no lag estima-
tor so that λ(δ, δ′) is always 0. For devices with an internal timer (so that
a lag estimator can be defined), tweaking the parameter v close to the aver-
age single-path information speed provides a guaranteed reactivity, which is
optimal among algorithms with a single-path information flow.

10More specifically, each device computes λ(δ′, δ) as tnow−tmess, where tnow is its current
time and tmess is its local time when the message from δ′ was received. Since λ(δ′, δ) is
obtained by subtracting local times on a same clock, it is an absolute interval thus not
requiring inter-device synchronization (assuming homogeneous clock speed).

11We recall that neighbouring relations may evolve over time, and the given equations
are repeatedly applied in asynchronous rounds (see Section 2.4).

17

d0

d1d1

d2δ

Figure 5: Information flow upon disconnection of a source device.

Theorem 2 (Performance Bound). Information speed in BIS gradient,
calculated w.r.t. the gradient estimates, is at least v. Furthermore, values
constrained by obsolete information increase at least at speed v.

Proof. Since G(δ, δ′) ≥ v · L(δ, δ′) − r for all δ′, also G(δ) ≥ v · L(δ) − r
concluding the first part. For the second part, consider an information that
started propagating from a certain source at time t0 and is now obsolete (e.g.,
the source has been disconnected), and fix a device δ computing in times
t1, . . . , tn constrained by such obsolete information. Since L(δ) = ti − t0 in
each computing round i ≤ n, G(δ) ≥ v ·L(δ)− r = v · (ti− t0)− r concluding
the second part.

Theorem 3 (Optimality). The BIS gradient with v equals to the average
single-path information speed vavg attains optimal reactivity among algorithms
with a single-path information flow.

Proof. As a prototypical example, consider an already stabilised network
with a selected source device and its corresponding influence region, i.e., the
set of devices whose distances are calculated w.r.t. the selected source (red).
Suppose that the selected source device is suddenly disconnected at time
t = 0. In any algorithm with a single-path information flow, the information
about this disconnection flows through the influence region at average speed
v. For example, device δ in Fig. 5 is reached by this information at time d0

v
,

and it cannot change its value from d0 before that time.
In the best case scenario, after the information about the disconnection

reaches the border a new wave of information can bounce back towards the
inside of the region, bringing values calculated from other sources (green).
Since the shortest path from the disconnected source to the border and then
back to device δ has length d1 + d2 (black arrow) and information flows at
speed v, the earliest time when δ can reach the correct value is d1+d2

v
. Notice

that this value is d1+d2 since the distance from the border to the two sources
is the same.

18

t = 0.0

0
0

3.1
1.6

6.5
1.2

2.9
0.8

5
1.4

4.1

3.5

0.2

3.6

2.1

t = 0.8

0
0

3.1
1.6

6.5
1.2

3.3
1.8

5
1.4

4.1

3.5

0.2

3.6

2.1

t = 1.4

0
0

3.1
1.6

6.5
2.2

3.3
1.8

5
2.4

4.1

3.5

0.2

3.6

2.1

t = 1.6

0
0

3.1
1.6

6.5
2.2

4.4
2.6

5
2.4

4.1

3.5

0.2

3.6

2.1

t = 1.8

0
0

4.1
0.8

6.5
2.2

4.4
2.6

5
2.4

4.1

3.5

0.2

3.6

2.1

t = 2.2

0
0

4.1
0.8

7.6
1.2

4.4
2.6

5
2.4

4.1

3.5

0.2

3.6

2.1

t = 2.4

0
0

4.1
0.8

7.6
1.2

4.4
2.6

7.6
3.4

4.1

3.5

0.2

3.6

2.1

t = 2.6

0
0

4.1
0.6

7.6
1.2

4.4
2.6

7.6
3.4

4.1

3.5

0.2

3.6

2.1

t = 2.8

0
0

4.1
0.6

7.6
1.2

4.3
0.8

7.6
3.4

4.1

3.5

0.2

3.6

2.1

t = 3.4

0
0

4.1
0.6

7.6
1.2

4.3
0.8

6.4
1.4

4.1

3.5

0.2

3.6

2.1

Figure 6: BIS gradient sample execution; lag estimates are in italic, and a single device
fires every 0.2 time units.

Then δ holds value d0 at time d0
v

and value d1+d2 at time d1+d2
v

, effectively

rising at speed (d1 + d2 − d0)/(d1+d2
v
− d0

v
) = v. Since this is the best-case

scenario, a faster rising speed is not possible thus proving optimality of BIS
gradient.

Figure 6 shows the execution of BIS gradient on the same network of
Figure 3, with the same firing order between devices. The assumed commu-
nication radius is r = 6, and the average speed is vavg = 2

3
6/1 = 4 since

devices are steady and the average fire rate is 1. The last fire of the dis-
connected left source happens at t = −1 before of the shown graphs, and
lags of nodes depending on that source keep rising accordingly. At t = 1.8
reconfiguration starts, reaching correct values by t = 3.4 instead of t = 8
necessary for the classic gradient.

3.3. Reducing Volatility and Communication Cost

An improved reactivity to changes naturally translates into an increase in
volatility of values, thus reducing the degree of smoothness. This holds true
also for the BIS gradient: in a mutable environment, even calculating the
exact gradient all the times would perform poorly on smoothness, since it
would rapidly adapt all the values as noise and small movements take place.

In order to improve smoothness of rapidly self-healing algorithms, it is
then necessary to insert a damping component. Also the FLEX gradient,
designed for improved smoothness, can be seen as the embedding of the
following damping function into the classical gradient computation:

damp(old, new) =

new + ε · w(δ′, δ) if old > new + ε · w(δ′, δ)

new− ε · w(δ′, δ) if old < new− ε · w(δ′, δ)

old otherwise

19

In future works, it is therefore natural to investigate whether the insertion
of this damping function (or others) into algorithms other than the classic
gradient would achieve the same effect. In Section 5 we shall show that this is
true to some extent, allowing the BIS gradient for an improved smoothness.

4. Implementation and Usages of Gradient Algorithms

We now present implementations of the gradient algorithm introduced
in the previous section, and of its usage as foundational building block for
some more complex applications (in particular, channel broadcasting and
data collection). Section 4.1 presents the field calculus code (see Section
2.1) of the BIS gradient algorithm, together with extensions to be used as
building blocks for more complex systems. Section 4.2 uses these blocks to
define a channel broadcast service, as a sample application, which will later be
experimentally evaluated in Section 5.3. Section 4.3 discusses the application
of gradients to data collection, one of the main building blocks in the context
of distributed sensing, which will later be experimentally evaluated in Section
5.4.

4.1. BIS Gradient as a Building Block

Figure 7 presents the code of BIS gradients as presented in Section 3,
according to the conventions in Section 2.2. The field calculus code of the
algorithms is obtained through an almost straightforward translation of the
formulas in the corresponding sections. In Viroli et al. [15] it is argued that
the following three main building blocks form a combinator set able to express
many relevant self-stabilising distributed systems:

• G, which propagates initial values outwards from a set of sources,
while updating them through a function accumulate. This building
block is mostly used to either calculate distances or broadcast values,
but it can in principle be applied to many different tasks.

• C, which accumulates values inwards into a set of sources, computing in
them an aggregate summary of the original values: e.g., the minimum
or the sum of these values.

• T, which evolves a local value through time via a decay function.

20

def BIS(source, speed, radius) {
let lags = nbrLag() + nbr(getDeltaTime()) in
let dist = nbrRange() in
let loc = [source, source] in
1st(rep (loc) { (old) =>

let dx = nbr{1st(old)}+dist in
let dt = nbr{2nd(old)}+lags in
minHoodLoc([max(dx, dt*speed-radius), dt], loc)

})
}

def BISflex(source, speed, radius, epsilon, frequency) {
let lags = nbrLag() + nbr(getDeltaTime()) in
let dist = nbrRange() in
let loc = [source, source, 0] in
1st(rep (loc) { (old) =>

let dx = nbr{1st(old)}+dist in
let dt = nbr{2nd(old)}+lags in
let new = minHoodLoc([max(dx, dt*speed-radius), dt, dist], loc) in
let round = rep (0) {(x) => x+1} % frequency in
let delta = epsilon*3rd(new) in
if (old == new || 1st(new) == 0 || round == 0 ||

1st(old) > max(2*1st(new), radius) || 1st(new) > max(2*1st(old), radius)) {
new

} {
let sign = if (1st(old) < 1st(new)) {1} {-1} in
let diff = abs(1st(new) - 1st(old)) in
if (diff > delta) {

[1st(new) - delta*sign, 2nd(new), 3rd(new)]
} {

old
}

}
})

}

Figure 7: Field calculus code for BIS gradient with or without a FLEX damping.

Distance estimation algorithms (such as BIS gradient) are closely related
to the G building block: however, the former is more general as it involves
arbitrary accumulation along shortest paths. Nonetheless, an enhancement of
BIS gradient taking into account initial values and accumulate functions
can be directly obtained.

Figure 8 presents possible implementations of the G building block. Func-
tion G-BIS extends BIS by adding a third tuple element in the main rep-
loop, which tracks the values as they are accumulated. This element is
set as initial in the local loc value and updated (for each neighbour) as
accumulate(nbr{3rd(old)}) in the main loop. Then, when the neighbour
inducing the best estimate for the distance is selected, the corresponding
updated value is carried over with it.

Function G, instead, implements the G-mechanism as a separate func-
tion taking distances as input, showing that in fact any distance estimation
algorithm can be converted into a G block. Furthermore, such an “exter-

21

def G-BIS(source, initial, accumulate, speed, radius) {
let lags = nbrLag() + nbr(getDeltaTime()) in
let dist = nbrRange() in
let loc = [source, source, initial] in
3rd(rep (loc) { (old) =>

let dx = nbr{1st(old)}+dist in
let dt = nbr{2nd(old)}+lags in
let v = nbr{3nd(old)} in
minHoodLoc([max(dx, dt*speed-radius), dt, accumulate(v)], loc)

})
}

def G(initial, accumulate, gradient) {
rep (initial) { (old) =>

2nd(minHoodLoc([nbr{gradient}, accumulate(nbr{old})], [gradient, initial]))
}

}

def G’(initial, null, accumulate, gradient) {
rep (null) { (old) =>

mux(gradient == 0, initial,
2nd(minHood(

mux(nbr{old} == null, [Infinity, null], nbr{[gradient, old]})
))

)
}

}

Figure 8: Implementations of the G block.

nal” approach allows for better factoring of source code, possibly reusing
computed distances multiple times and reducing the overall computational
stress. Notice that the result of composing G with BIS is not fully equivalent
to G-BIS. In the latter, values are accumulated through the paths that the
algorithm deems to be “shortest”. In the former, information about which
paths are preferred is not available, and values are thus accumulated greedily
from the neighbours with lowest gradient. This choice tends to minimise the
number of hops the information has to travel, hence improving over G-BIS

when the G block is used for, e.g., broadcast. However, in other contexts
where the accumulate function is space-dependent the integrated algorithm
G-BIS might be preferable.

Furthermore, function G does not perform properly also when executed
into a sub-cluster of the devices used to compute the gradient.12 In this case,
a device might not have any neighbour with lower gradient inside the cluster,
hence getting assigned an invalid value (as if it were a source). In addition,
devices might greedily select a neighbour with an invalid value or which just
entered the cluster, in both cases propagating the errors.

12We shall see in the next section the channel, in which this situation happens.

22

def broadcast(value, null, grad) {
G’(value, null, (v) => v, grad)

}

def distance(grad source, grad dest) {
let loc = min([grad source, grad dest], [grad dest, grad source]) in
broadcast(2nd(loc), -Infinity, 1st(loc))

}

def elliptic-channel(grad source, grad dest, source dest, width) {
sqr(grad source + grad dest) <= sqr(source dest) + sqr(width)

}

def rectangular-channel(grad source, grad dest, source dest, width) {
let s = sqr(grad source) - sqr(width/2) in
let d = sqr(grad dest) - sqr(width/2) in
4*s*d <= sqr(sqr(source dest) - s - d)

}

def channel-communication(value, null, source, destination, width, gradient) {
let grad source = gradient(source) in
let grad dest = gradient(destination) in
let source dest = distance(grad source, grad dest) in
let channel = rectangular-channel(grad source, grad dest, source dest, width) in
if (channel) { broadcast(value, null, grad source) } { null }

}

Figure 9: Generic code for broadcasting and channel establishment.

These issues can be overcame by tweaking the function G through the
addition of a null value, as shown in function G’ (Figure 8). In this function,
the initial value is assigned only in sources, and null is used in its place
everywhere else. When a neighbour has to be selected for propagation, it is
thus possible to discard the neighbours with a null value, implementing a
preference for values originating from real sources.

4.2. Channel Communication and Broadcast

Gradient algorithms and other instances of the G block can be composed
together to form increasingly complex patterns. Among them, the channel
pattern aims at selecting a geometrically-shaped region of devices, suitable to
be used as a “communication channel” for broadcasts from a source (or other
distributed computations), and has the remarkable feature of not involving
any other building block (C, T, etc.). Thus, we chose it as an example
for experimentally evaluating the performance of BIS and other gradient
algorithms in broadcast-like behaviour.

Figure 9 presents the functions involved in the channel pattern, paramet-
ric in a given gradient algorithm. Firstly, a broadcast function is easily im-
plemented by calling block G’ with an identity accumulate function. Then,
a single broadcast is used to disseminate in the whole network information

23

about the distance between a given source and destination. This could be
accomplished through a simple broadcast(grad source, grad dest), which
broadcasts from the destination its distance to the source: however, func-
tion distance slightly improves this method by simultaneously broadcasting
both from the source and from the destination.

Given the total distance t between source and destination, a maximum
width w of the channel, and the distances s, d of a device from source and
destination, we are able to compute whether the device belongs to the corre-
sponding channel of a given shape. Firstly, we can assume the channel to be
elliptical, so that the maximum width corresponds to the minor axis and t to
the focal distance: in this case, a device belongs to the ellipse if and only if
s+ d ≤

√
t2 + w2 (as implemented in function elliptic-channel). We can

also assume instead the channel to be rectangular, gaining the added benefit
of a constant width throughout all of its length. In this case, assuming that
s, d ≥ r = w/2, a device belongs to the rectangle if and only if

√
s2 − r2 +

√
d2 − r2 ≤ t

since
√
s2 − r2,

√
d2 − r2 are the projected left and right distances of rectan-

gle points to the segment joining distance and destination. If we rewrite the
above equation removing roots, we obtain

4 · (s2 − r2) · (d2 − r2) ≤ (t2 − (s2 − r2)− (d2 − r2))2

which also works13 for s, d ≤ r and is implemented in rectangular-channel.
Finally, all of these functions can be combined together to form the fi-

nal channel-broadcast pattern. After distances for the given device from
source and destination are computed using the given gradient algorithm, the
distance between source and destination is collected by function distance.
Whether the device belongs to the channel or not is then stored in channel,
and a broadcast is performed in the cluster corresponding to the channel.14

13More precisely, the above equation defines a locus of points consisting of a rectangle
from the source to the destination of given width, augmented on the short sides by small
circumferences arcs (centered in the destination or source and pointing at an opposite
corner of the rectangle).

14This pattern is useful whenever the values to be broadcast are significantly heavier
than simple distance estimates, so that the complexity of the function is dominated by
the final broadcast.

24

4.3. Data Collection

In Section 4.1 we argued that gradient algorithms are closely related to
the G building block, and can in fact be extended to cover its behaviour.
However, gradient algorithms are also crucial for the computation of the C
building block, as they provide a necessary input to it: an estimate of the
distance from the sources, to guide data flow towards them.

The two main state-of-the-art implementations of the C building block
are called single-path and multi-path, and are thoroughly discussed in Viroli
et al. [14]. As inputs, they receive a value to be aggregated (for every
device), an accumulate function with a corresponding null value (e.g., +
with 0), a gradient directing the aggregation flow, and a root function that
“inverts” the effects of accumulate (only for multi-path C). The purpose of
both algorithms is to compute in the gradient sources the overall network
aggregate of the given values with the given accumulating function: e.g., the
sum of all values if accumulate is +, which in turn may provide an estimate
of the overall average when divided by the number of devices (obtained by
summing 1 for each device through C).

The single-path algorithm computes the aggregate by flowing data through
the spanning tree of shortest paths from the source, obtained by selecting a
single parent for each device. While this algorithm might be preferable in
static networks, the multi-path algorithm is usually more efficient whenever
variable inputs are taken into account (moving devices, etc.).

The multi-path algorithm computes the aggregate by flowing data through
all possible paths in the network, as in the following code that relies on the
built-in functions countHood, which counts the number of true values in a
neighbouring field value, and foldHood(f, φ, `), which aggregates with func-
tion f the initial value ` with every value in φ.

def multi-path(value, null, accumulate, root, gradient) {
1st(rep ([value, value]) { (old) =>

let nchild = countHood(nbr{gradient} < gradient) in
let toacc = mux(nbr{gradient} > gradient, nbr{2st(old)}, null) in
let total = foldHood(accumulate, toacc, value) in
[total, root(total, nchild)]

})
}

In each device, the number of children (i.e., neighbours closer to the source)
is computed in nchild. Then, a total value is obtained by aggregating
the values “shared” by each parent (i.e., neighbour further away from the
source) together with the local value. Finally, the total value is split into

25

nchild equal parts through root(total, nchild),15 and the reduced result
is “shared” to children.

5. Analysis and Verification

We now evaluate empirically the performance of BIS gradient, by com-
paring it in several scenarios with respect to the state-of-the-art algorithms
reviewed in Section 2. The parameters and characteristics of simulations are
chosen according to a general methodology for evaluating approximated lo-
calised algorithms.16 All the experiments made in this paper are available
online.17

Section 5.1 presents the general methodology and discusses the require-
ments of an effective test scenario for gradient algorithms. Section 5.2 eval-
uates the performance of gradient algorithms in isolation, as both error and
smoothness. Section 5.3 evaluates their performance when used inside the
channel pattern (see Section 4.2). Section 5.4 evaluates their performance
when used inside the multi-path C building block (see Section 4.3).

5.1. Performance Indicators

In order to empirically evaluate the performance of an approximated lo-
calised algorithm, several aspects need to be taken into account. We divide
them into environment characteristics, input properties, and output require-
ments.

Environment. A spatio-temporal computing environment is characterised
by its degree of steadiness, which both in time and in space can be
further specified through measures of noise and variability. We classify
as noise the small high-frequency variations that are not intended to
alter the expected output of the algorithm: in space, it corresponds to
short-range Brownian movements; in time, it corresponds to random
fluctuation in the frequency of events (in each device). We classify as

15For example, if accumulate is + then root(total, nchild) = total/nchild.
16With approximated localised algorithm we denote any spatially-distributed iterative

process that aims to approximate a target global input/output transformation (taking
into account environmental data, as described in Section 1). For example, this is the case
for gradient algorithms that approximate shortest-path distances (output) given a source
set and an environmental configuration (input).

17https://bitbucket.org/gaudrito/scp-optimal-gradient

26

variability the larger low-frequency variations that are intended to alter
the expected output: in space, it corresponds to long-range directional
movements; in time, it corresponds to systematic error in the frequency
of events (changing between devices or through time).

Input. To assess the performance of an algorithm, we need to split tests into
two further possible situations: constant input, to isolate and measure
the responses to environment variations; discontinuous input, where
a sudden change happens at a certain point in time, to measure the
healing speed of the algorithm.

Output. Given a test environment and input, we need to measure two dif-
ferent qualities of the output generated by the algorithm: precision
and smoothness. Precision is the deviation from the ideal outcome:
with a constant input, it measures systematic error (e.g., speed bias
for gradient algorithms); with a discontinuous input, it measures heal-
ing speed (e.g., rising value for gradient algorithms). Smoothness is
the volatility of the output values, usually measured as the integral of
absolute differences between consecutive values (first derivative of the
output), and aims for gradual and unidirectional changes in the output
values, absorbing noise. It needs to be measured both on constant and
discontinuous input.

Performance assessment of approximated localised algorithms thus re-
quires extensive testing over several different environments, combining di-
verse degrees of noise and variability (both in space and in time). Among the
different possibilities, we find it generally appropriate to include: zero-noise
zero-variability (in both space and time), in which the basic self-stabilisation
property18 is measured [28]; high-noise high-variability (in both space and
time), in which a bottom line of guaranteed performance is measured in an
extreme case; further intermediate cases, which can help differentiate how
performance is affected by the different types of mutability (in space or time,
as noise or variability), depending on the specific application. In each of those
scenarios, performance is measured through precision and smoothness ; on an
input that is first constant for a long enough period of time to reach stable

18An algorithm is self-stabilising if given a constant environment, it eventually reaches
a correct output for any possible initial state.

27

results, and then change discontinuously and keeps the new value constant
until stable results are reached again.

5.2. Isolation Test: Swapping Source Corridor

In order to compare the performance of the different gradient algorithms
presented in this paper, we chose an environment able to trigger the issues
presented in Section 2:

• speed bias, by considering environments with increasing variability in
space;

• rising value, through arranging devices densely into a long corridor with
a source at one end, so that the ratio between the longest and shortest
distance between devices is high;

• smoothness, by measuring it in each test scenario.

Following the guidelines introduced in Section 5.1, we thus tested the follow-
ing scenarios.

• Environment: we put 1000 devices with communication radius 10m and
average fire rate 1s uniformly at random into a 500m× 20m corridor,
producing a network 50 hops wide. We tested this environment with in-
creasing variability in space (long range movements) from 0 (none), to
0.5 (moderated) and 1 (high), and either zero or high19 noise (both in
space and in time) and variability in time. We modelled random inter-
vals between rounds of computation according to a Weibull distribution
[31], which is the most commonly used family of positive random vari-
ables (having exponential and Rayleigh distributions as special cases).

• Input: we provided the algorithms with a single source, steadily located
on the left end of the corridor until time 300, and then abruptly moved
to the opposite right end. In this way, reaction to discontinuous input
is measured (in the middle of the graphs) as well as behaviour under
constant input (at the sides of the graphs).

19Brownian motion and 50% relative standard error in fire rate between different devices
plus another 50% in each device.

28

• Output: for each scenario we measured precision as absolute error w.r.t.
Euclidean distance and smoothness as absolute difference between val-
ues in consecutive rounds (both averaged).

Figure 10 summarises the evaluation results with high noise and time
variability, which were obtained (similarly also to the experiments in next
subsections) with Protelis [32] (an incarnation of the field calculus [11]) as
programming language to code the model, Alchemist as simulator [33] and
the Supercomputer OCCAM [34] to run the experiments. Results with zero
noise and time variability are not shown as they were almost identical to the
corresponding ones in Figure 10, showing that these variables do not affect
significantly the behaviour of any of the considered algorithms. We tested
classic, CRF, FLEX, BIS with v = 0.5vavg, BIS with v = 0.5vavg and FLEX
damping, BIS with v = 0.9vavg, BIS with v = 0.9vavg and FLEX damping.
The tolerance of the FLEX damping was set to 10%. We run 10 instances of
each scenario with different random seeds and averaged the results.

The rising value problem corresponds to the spikes in the middle of the
graphs, which are considerably shorter (faster healing) for BIS gradient, even
when v = 0.5vavg. Speed bias is visible from the increase in error baseline
under increasing space variability, and is more contained for BIS gradient
(in particular when v is high). The only setting where BIS does not achieve
the best precision is under constant input and zero space variability, where
the error value is still small and in fact determined by the small variations
reported in smoothness.

As expected, the increase in precision corresponds to a decreased smooth-
ness, so that BIS gradient has the highest value volatility (increasing with
v). Embedding the FLEX damping into BIS proves to be effective in reduc-
ing fluctuations for all values of v, so that BIS with v = 0.5vavg and FLEX
damping score better than CRF gradient and comparably similar to FLEX
and classic gradients, while still achieving a much higher precision.

Overall, these results prove that BIS gradient achieves a much higher
healing speed and accuracy (especially when v is high), while still keeping
smoothness under control (especially when FLEX dumping is also used).
This properties are readily appreciable in practical applications where inputs
cannot be assumed to be constant: as we shall show in the next subsec-
tion, in these settings BIS gradient remains effective whereas other gradient
algorithms fail to produce sensible results, disrupting the higher-order coor-
dination mechanisms relying on them.

29

Figure 10: Precision (left) and smoothness (right) of gradient algorithms under increasing
space variability (from top to bottom) and high noise and time variability.

30

5.3. Integration Test: Channel Maintenance

In order to compare the effectiveness of gradient algorithms as building
blocks for complex patterns, we evaluated their performance when used in
the channel pattern (see Section 4.2), which does not involve other building
blocks, thus avoiding unwanted possible interplays between them. Following
the guidelines (see Section 5.1), we thus tested the following scenarios.

• Environment: we put 1000 devices with communication radius 10m and
average fire rate 1s randomly into a 200m× 50m corridor, producing a
network about 20 hops wide. We tested this environment by increasing
simultaneously space noise, time noise and time variability (from 0 to 1
in the scale of Section 5.2). We did not consider space variability (long
range movements), since it often disrupts the output of the channel
pattern: in future works, we plan to further improve the algorithms in
order to be able to apply the channel pattern also in these situations.

• Input: we provided the algorithms with a source and destination steadily
located on opposite corners (south-west and north-east) of the corri-
dor until time 300, and then abruptly moved to the opposite corners
(south-east and north-west); so that reaction to discontinuous input
is measured (in the middle of the graphs) as well as behaviour under
constant input (at the sides of the graphs).

• Output: for each scenario we measured the average error between the
ideal rectangular channel region and the actual region computed by the
algorithms, and the delay with which messages from the source reach
the destination. As a comparison, we also measured the analogous delay
with a full broadcast (without the channel): however, we decided not
to include them in the graphs since these delays are almost identical.

Figure 11 summarises the evaluation results. We tested classic, CRF,
FLEX, BIS and BIS with FLEX damping (10% tolerance). We run 50 in-
stances of each scenario with different random seeds and averaged the results,
which had an average 7.2% relative standard error.

Regarding error in channel selection, all algorithms performed similarly
under constant input except for CRF, which had significantly lower perfor-
mance in scenarios with variability. Reactions to discontinuities, instead,
presented a clear hierarchy of algorithms: BIS, followed by FLEX, CRF and
classic (which was never able to rebuild a functioning channel before the end

31

Figure 11: Error in channel selection (left) and efficiency of broadcasting through it (right)
of gradient algorithms under increasing noise and variability (from top to bottom).

32

of the experiment). As predicted, the addition of FLEX damping slightly
reduced BIS performance under no variability, while becoming increasingly
better with high variabilities.

Regarding delay of broadcast messages, there was no significant difference
between algorithms under constant input. The only relevant factor thus was
the instant in which a functioning channel was rebuilt, so that BIS always
scored better than BIS with FLEX damping, followed by FLEX and CRF
(which was increasingly better under increasing variability, in spite of the
high error in channel selection), with classic scoring worst as it were never
able to recover by the end of the experiment.

5.4. Integration Test: Data Collection

As a further inspection on gradient algorithms as building blocks, we
evaluated their effectiveness when used to perform data collection through
block multi-path C (see Section 4.2). Following the guidelines (see Section
5.1), we thus tested the following scenarios.

• Environment: as in Section 5.2, we put 1000 devices with communica-
tion radius 10m and average update rate 1s randomly into a 500m×20m
corridor. We tested this environment with increasing space variability
from 0 to 0.2 and noise from 0 to 0.5 (in the scale of Section 5.2).
Higher values significantly impaired the performance of all algorithms
considered.

• Input: we provided the algorithms with a single source, steadily located
on the left end of the corridor until time 300, and then abruptly moved
to the opposite right end. We made the source count the number of
overall nodes in the system—a paradigmatic case of distributed sens-
ing where each device senses value 1, and en route combination is by
mathematical sum.

• Output: for each scenario we measured the absolute error between the
source count and the actual number of devices.

Figure 12 summarises the evaluation results. We tested classic, CRF,
FLEX, BIS and BIS with FLEX damping (10% tolerance). We run 50 in-
stances of each scenario with different random seeds, obtaining results with
a significant relative standard error (varying from 41% to 203%). We thus

33

Figure 12: Error in device count of gradient algorithms under increasing noise (from left
to right) and space variability (from top to bottom).

34

aggregated the results by selecting the median (instead of the mean), which
is more reliable in highly volatile settings.

An high systematic error was reported, leading all algorithms to over-
estimate values as noise or variability increased. In scenarios with space
variability the error was significant (above 200% for all algorithms), whereas
in scenarios without variability the error stayed below 10%. In scenarios with
sufficiently high noise and variability, all algorithms exhibited an exponential
behaviour. However, the threshold above which this occurred was different
for different algorithms: in increasing order, CRF, FLEX, classic, BIS, BIS
with FLEX damping. Overall, this observations confirm the weaknesses of
multi-path C already reported in previous works [35].

CRF gradient proved to be highly unstable in all scenarios with either
noise or variability, obtaining virtually meaningless results (errors above
1010%). Even in the scenario with zero noise and variability, CRF gradi-
ent obtained the worst performance, not being able to noticeably recover
before the end of the simulation.

Before the discontinuity, the other algorithms behaved similarly, with BIS
gradient (with or without damping) performing better in presence of space
variability. After the discontinuity, BIS (with or without damping) was able
to fully recover much faster (in about 300s), followed by FLEX which had
approximately 50% recovered by the end of the simulation. In scenarios with
space variability and zero noise, this slow recovery helped classic and FLEX
gradients to obtain a lower error, since the recovery process counteracted
the overestimation for a longer transient. However, the fast recovery still
accounts in favour of BIS gradient, as improved versions of the C block might
reduce the systematic error and thus benefit from an increased reactivity.

6. Conclusions and Future Works

This paper focusses on the problem of designing resilient and reactive
algorithms to construct gradient data structures in dynamic environments,
facing a wide range of possible perturbations to network topology (due to
faults or devices being mobile) and inputs (source of the gradient). To this
end, we have introduced BIS gradient, a new gradient algorithm of opti-
mal self-healing speed among algorithms with a single-path communication
scheme. Mathematical estimations to guide the selection of the proper pa-
rameter v for the target speed of change are provided. Then, validation of
the proposed approach, with comparison with existing algorithms, has been

35

carried out in a variety of settings: (i) the gradient block in isolation under
a wide variety of different conditions, (ii) usages of the gradient to broadcast
information and create spatial structures, and (iii) to collect and summarise
data items. In the future, experiments based on real traces could be carried
out to further improve the confidence on the performance of this algorithm,
and to more clearly identify practical situation in which it can be favoured.
Overall, BIS is shown to better adapt to dynamic environments and react to
changes with respect to previous algorithms.

We believe, however, that there is still some margin for further improve-
ments. For instance, some form of broadcast could be used to surpass the
theoretical limit given by single-path communication speed of BIS. Smooth-
ness could be further improved by fine-tuning other damping functions other
than the one given by the FLEX gradient. The speed bias could be addressed
directly by introducing a metric distortion dependent on the movement speed
of devices (in a similar way as it is done in [26]), and several mobility models
could be considered to fine-tune both the information speed estimate and the
metric distortion. Additionally, it is possible that variants of the proposed
algorithm can provide additional benefits in specific applications of the gra-
dient pattern; in particular, we are interested in the cases where gradients are
used to support distributed sensing of information in highly heterogeneous
and dense environments, specifically for crowd engineering applications. The
ultimate goal of this research thread is to put forward a theoretical and prac-
tical framework for building self-stabilising distributed systems for IoT-like
applications, where load-balancing, tuning of performance, and resiliency to
changes in working conditions can be automatically managed by the under-
lying platform, without behaviour specification being affected at all.

Acknowledgements

We thank the anonymous COORDINATION and SCP referees for their
comments and suggestions for improving the presentation.

[1] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the ag-
gregate: Languages for spatial computing, in: M. Mernik (Ed.), Formal
and Practical Aspects of Domain-Specific Languages: Recent Develop-
ments, IGI Global, 2013, Ch. 16, pp. 436–501. doi:10.4018/978-1-4666-
2092-6.ch016.

[2] N. Bicocchi, M. Mamei, F. Zambonelli, Self-organizing virtual macro
sensors, TAAS 7 (1) (2012) 2:1–2:28. doi:10.1145/2168260.2168262.

36

[3] J. Beal, Flexible self-healing gradients, in: Proceedings of the 2009
ACM Symposium on Applied Computing (SAC), 2009, pp. 1197–1201.
doi:10.1145/1529282.1529550.

[4] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
J. L. Arcos, Description and composition of bio-inspired design pat-
terns: a complete overview, Natural Computing 12 (1) (2013) 43–67.
doi:10.1007/s11047-012-9324-y.

[5] A. Lluch-Lafuente, M. Loreti, U. Montanari, Asynchronous distributed
execution of fixpoint-based computational fields, Logical Methods in
Computer Science 13 (1). doi:10.23638/LMCS-13(1:13)2017.

[6] M. Viroli, F. Damiani, A calculus of self-stabilising computational fields,
in: Coordination Languages and Models, Vol. 8459 of LNCS, Springer-
Verlag, 2014, pp. 163–178. doi:10.1007/978-3-662-43376-8 11.

[7] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the Internet of
Things, IEEE Computer 48 (9) (2015) 22–30. doi:10.1109/MC.2015.261.

[8] S. Montagna, M. Viroli, J. L. Fernandez-Marquez, G. Di Marzo Seru-
gendo, F. Zambonelli, Injecting self-organisation into pervasive ser-
vice ecosystems, Mobile Netw Appl 18 (3) (2013) 398–412.
doi:10.1007/s11036-012-0411-1.

[9] J. Beal, J. Bachrach, D. Vickery, M. M. Tobenkin, Fast self-healing
gradients, in: Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), 2008, pp. 1969–1975. doi:10.1145/1363686.1364163.

[10] G. Audrito, F. Damiani, M. Viroli, Optimally-self-healing distributed
gradient structures through bounded information speed, in: Coordina-
tion Models and Languages, Vol. 10319 of LNCS, Springer, 2017, pp.
59–77. doi:10.1007/978-3-319-59746-1 4.

[11] F. Damiani, M. Viroli, D. Pianini, J. Beal, Code mobility meets
self-organisation: a higher-order calculus of computational fields, in:
S. Graf, M. Viswanathan (Eds.), Formal Techniques for Distributed Ob-
jects, Components, and Systems, Vol. 9039 of Lecture Notes in Com-
puter Science, Springer International Publishing, 2015, pp. 113–128.
doi:10.1007/978-3-319-19195-9 8.

37

[12] M. Viroli, G. Audrito, F. Damiani, D. Pianini, J. Beal, A higher-order
calculus of computational fields, arXiv preprint, arXiv:1610.08116.

[13] M. Viroli, F. Damiani, J. Beal, A calculus of computational fields, in:
Advances in Service-Oriented and Cloud Computing, Vol. 393 of Com-
munications in Computer and Information Science, Springer, 2013, pp.
114–128. doi:10.1007/978-3-642-45364-9 11.

[14] M. Viroli, J. Beal, F. Damiani, D. Pianini, Efficient engineering of com-
plex self-organising systems by self-stabilising fields, in: Self-Adaptive
and Self-Organizing Systems (SASO), IEEE 9th International Confer-
ence on, IEEE, 2015, pp. 81–90. doi:10.1109/SASO.2015.16.

[15] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering
resilient collective adaptive systems by self-stabilisation, ACM Trans.
Model. Comput. Simul. 28 (2) (2018) 16:1–16:28. doi:10.1145/3177774.

[16] M. Viroli, M. Casadei, Biochemical tuple spaces for self-organising co-
ordination, in: J. Field, V. T. Vasconcelos (Eds.), Coordination Models
and Languages: 11th International Conference. Proceedings, Springer,
2009, pp. 143–162. doi:10.1007/978-3-642-02053-7 8.

[17] M. Viroli, D. Pianini, J. Beal, Linda in space-time: An adaptive coordi-
nation model for mobile ad-hoc environments, in: Coordination Models
and Languages: 14th International Conference. Proceedings, 2012, pp.
212–229. doi:10.1007/978-3-642-30829-1 15.

[18] G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, Engineering pervasive
service ecosystems: The SAPERE approach, TAAS 10 (1) (2015) 1:1–
1:27. doi:10.1145/2700321.

[19] N. Elhage, J. Beal, Laplacian-based consensus on spatial computers,
in: W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck,
S. Sen (Eds.), 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), Volume 1-3, 2010, pp. 907–914.
doi:10.1145/1838206.1838328.

[20] M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordina-
tion of pervasive services through chemical-inspired tuple spaces, ACM
Transactions on Autonomous and Adaptive Systems 6 (2) (2011) 14:1 –
14:24. doi:10.1145/1968513.1968517.

38

[21] J. Bachrach, J. Beal, J. McLurkin, Composable continuous-space pro-
grams for robotic swarms, Neural Computing and Applications 19 (6)
(2010) 825–847. doi:10.1007/s00521-010-0382-8.

[22] J. Giavitto, O. Michel, J. Cohen, A. Spicher, Computations in space and
space in computations, Tech. rep. (2004). doi:10.1007/11527800 11.

[23] F. Damiani, M. Viroli, J. Beal, A type-sound calculus of computa-
tional fields, Science of Computer Programming 117 (2016) 17 – 44.
doi:10.1016/j.scico.2015.11.005.

[24] J. L. Fernandez-Marquez, A. Tchao, G. D. M. Serugendo, G. Steven-
son, J. Ye, S. Dobson, Analysis of new gradient based aggregation al-
gorithms for data-propagation in mobile networks, in: Sixth IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW 2012), IEEE Computer Society, 2012, pp. 217–222.
doi:10.1109/SASOW.2012.45.

[25] J. Beal, M. Viroli, Building blocks for aggregate programming
of self-organising applications, in: 2nd FoCAS Workshop on
Fundamentals of Collective Systems, IEEE CS, 2014, pp. 8–13.
doi:10.1109/SASOW.2014.6.

[26] Q. Liu, A. Pruteanu, S. Dulman, Gradient-based distance estima-
tion for spatial computers, Comput. J. 56 (12) (2013) 1469–1499.
doi:10.1093/comjnl/bxt124.

[27] R. Nagpal, H. E. Shrobe, J. Bachrach, Organizing a global coordinate
system from local information on an ad hoc sensor network, in: Infor-
mation Processing in Sensor Networks, Second International Workshop
(IPSN 2003). Proceedings, 2003, pp. 333–348. doi:10.1007/3-540-36978-
3 22.

[28] F. Damiani, M. Viroli, Type-based self-stabilisation for computational
fields, Logical Methods in Computer Science 11 (4). doi:10.2168/LMCS-
11(4:21)2015.

[29] E. M. Royer, C. Toh, A review of current routing protocols for ad hoc
mobile wireless networks, IEEE Personal Commun. 6 (2) (1999) 46–55.
doi:10.1109/98.760423.

39

[30] A. Stuart, J. K. Ord, Kendall’s advanced theory of statistics. Vol. 1,
sixth Edition, Edward Arnold, London; copublished in the Americas by
Halsted Press - John Wiley & Sons, Inc. , New York, 1994.

[31] W. Weibull, et al., A statistical distribution function of wide applicabil-
ity, Journal of applied mechanics 18 (3) (1951) 293–297.

[32] D. Pianini, M. Viroli, J. Beal, Protelis: practical aggregate program-
ming, in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 1846–1853. doi:10.1145/2695664.2695913.

[33] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of
computational systems with ALCHEMIST, J. Simulation 7 (3) (2013)
202–215. doi:10.1057/jos.2012.27.

[34] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, S. Vallero, S. Ra-
bellino, The Open Computing Cluster for Advanced data Manipulation
(OCCAM), in: The 22nd International Conference on Computing in
High Energy and Nuclear Physics (CHEP), San Francisco, USA, 2016.

[35] G. Audrito, R. Casadei, F. Damiani, M. Viroli, Compositional blocks for
optimal self-healing gradients, in: 11th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2017), 2017, pp.
91–100. doi:10.1109/SASO.2017.18.

40

