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Abstract 

Background:  Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are approved drugs for the treatment of hypergly-
cemia in patients with type 2 diabetes. These effects are mainly mediated by inhibiting endogenous glucagon-like 
peptide-1 (GLP-1) cleavage. Interestingly, gliptins can also improve stroke outcome in rodents independently from 
GLP1. However, the underlying mechanisms are unknown. Stromal cell-derived factor-1α (SDF-1α) is a DPP-4 substrate 
and CXCR4 agonist promoting beneficial effects in injured brains. However, SDF-1α involvement in gliptin-mediated 
neuroprotection after ischemic injury is unproven. We aimed to determine whether the gliptin linagliptin improves 
stroke outcome via the SDF-1α/CXCR4 pathway, and identify additional effectors behind the efficacy.

Methods:  Mice were subjected to stroke by transient middle cerebral artery occlusion (MCAO). linagliptin was 
administered for 3 days or 3 weeks from stroke onset. The CXCR4-antagonist AMD3100 was administered 1 day before 
MCAO until 3 days thereafter. Stroke outcome was assessed by measuring upper-limb function, infarct volume and 
neuronal survival. The plasma and brain levels of active GLP-1, GIP and SDF-1α were quantified by ELISA. To identify 
additional gliptin-mediated molecular effectors, brain samples were analyzed by mass spectrometry.

Results:  Linagliptin specifically increased active SDF-1α but not glucose-dependent insulinotropic peptide (GIP) 
or GLP-1 brain levels. Blocking of SDF-1α/CXCR4 pathway abolished the positive effects of linagliptin on upper-limb 
function and histological outcome after stroke. Moreover, linagliptin treatment after stroke decreased the presence of 
peptides derived from neurogranin and from an isoform of the myelin basic protein.

Conclusions:  We showed that linagliptin improves functional stroke outcome in a SDF-1α/CXCR4-dependent man-
ner. Considering that Calpain activity and intracellular Ca2+ regulate neurogranin and myelin basic protein detection, 
our data suggest a gliptin-mediated neuroprotective mechanism via the SDF-1α/CXCR4 pathway that could involve 
the regulation of Ca2+ homeostasis and the reduction of Calpain activity. These results provide new insights into 
restorative gliptin-mediated effects against stroke.
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Background
Dipeptidyl-peptidase 4 (DPP-4) inhibitors (gliptins) are 
oral antidiabetic drugs used to treat type 2 diabetes mel-
litus (T2D). Gliptins mediate their anti-diabetic effects 
by primarily inhibiting degradation of endogenous 
glucagon-like peptide 1 (GLP-1) and glucose-dependent 
insulinotropic peptide (GIP), resulting in prolongation 
of postprandial insulin secretion [1]. Recent research has 
shown that gliptins can also reduce stroke-induced brain 
damage in animal models in presence or absence of dia-
betes [2]. Furthermore, several reports have shown that 
gliptins mediate positive pleiotropic effects in animal 
models of Alzheimer’s disease (AD) [3–7] and in diabetic 
patients with AD [8]. Translation of these positive func-
tional results to diabetic (and non-diabetic) individu-
als affected by stroke remains to be demonstrated since 
large clinical studies have not yet evaluated the poten-
tial of gliptins in improving functional stroke outcomes 
[9]. Instead, these studies assessed gliptins’ efficacy to 
prevent cardiovascular events (including stroke) and to 
decrease mortality in people with diabetes with basically 
neutral results [2, 10, 11].

The molecular mechanisms underlying gliptin-medi-
ated effects in brains are also largely unknown. GLP-1 and 
GIP are regarded as main DPP-4 substrates. However, 
we recently showed that Linagliptin can improve stroke 
outcome independently from glycemia regulation [12] 
and GLP-1R [13]. These data indicate that one or more 
additional DPP-4 substrates with direct or indirect neu-
roprotective properties may be involved in gliptin-medi-
ated brain effects. GIP can play a role in neuroprotection 
after stroke [14]. However, DPP-4 also cleaves other pep-
tides, of which many exhibit direct actions on the car-
diovascular system [15–17]. Among these, a promising 
candidate is the C-X-C motif chemokine 12 (CXCL12) 
[stromal cell-derived factor 1 alpha (SDF-1α)], which 
has been demonstrated to be fundamentally involved 
in brain homeostasis [18]. SDF-1α is a small cytokine 
mediating mobilization and homing of bone marrow-
derived stem and progenitor cells in vascular injury [19], 
lymphopoiesis, myelopoiesis and germ cell mobilization 
[20]. To exert its actions, SDF-1α activates two recep-
tors, CXCR4 and CXCR7 [19]. SDF-1α and its receptor 
CXCR4 are abundant and ubiquitously expressed in the 
developing and mature central nervous system, playing 
a role in neurogenesis and contributing to the neuronal 
development [19, 21]. Furthermore, the levels of SDF-1α 
and expression of CXCR4 in plasma and cerebrospinal 
fluid were decreased in clinical and preclinical studies 
of AD and negatively correlated to changes in cognitive 
functions [22]. The role of SDF-1α in cerebral ischemic 
injury is complex since some studies have shown positive 
effects of SDF-1α in the acute phase after stroke [23, 24] 

whereas other studies have demonstrated positive effects 
by blocking the SDF-1α/CXCR4 pathway in the recovery 
phase after stroke [25, 26].

In the present study, we investigated whether protec-
tive effects of linagliptin after stroke are mediated via 
SDF-1α by blocking CXCR4 with the selective CXCR4 
antagonist AMD3100. Additionally, by using tandem 
mass spectrometry, we identified effectors putatively 
involved in gliptin-mediated effects.

Methods
Animals and experimental groups
Animals were housed on a 12  h light/dark cycle with 
ad  libitum access to food/water. Experiments were con-
ducted in accordance with the Guidelines for Care and 
Use of Laboratory Animals published by US National 
Institute of Health (Eighth edition, 2011).

101 adult male C57bl6/j mice were used in 4 studies.

Study 1 (to establish an experimental setting to study the 
effects of linagliptin [27] on functional and histological 
outcomes after stroke)
To determine whether linagliptin reduces ischemic tis-
sue damage and improves functional outcome when 
given after experimental stroke, 16 mice were subjected 
to transient middle cerebral artery occlusion (MCAO, 
see below) and treated with linagliptin (n = 9) or vehicle 
(natrosol n = 7). The first week, linagliptin was adminis-
tered once daily per oral gavage at 10  mg/kg/bw begin-
ning the day of stroke onset. During the next 2 weeks, to 
diminish per oral gavage-induced stress, mice received 
linagliptin mixed with standard laboratory chow at a 
concentration of 83  mg linagliptin pro kg chow. At this 
concentration, the plasma levels of linagliptin reach 
approximately 50–100  nM  [28], equal to an estimated 
daily intake of 5–8 mg/kg/bw. Both regimes of adminis-
tration were efficacious in the brain in previous studies 
[12, 13, 29, 30]. Mice were killed 3  weeks after MCAO. 
Motor function (see below) was assessed before, 3  days 
and 3 weeks after MCAO.

Study 2 (to quantify active GIP, GLP‑1 and SDF‑1α 
after sustained linagliptin treatment)
To determine whether linagliptin treatment up-regulates 
active GLP-1, active GIP and active SDF-1α in the brain, 
19 mice were given linagliptin (n = 10, following the same 
administration protocol of study 1) or vehicle (natrosol 
n = 9) daily. Mice were killed after 3 weeks and brain tis-
sues were isolated. Active GLP-1, active GIP and active 
SDF-1α were determined in serum and brain tissues 
using an enzyme-linked immunosorbent assay (ELISA; 
see below).
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Study 3 (to determine the potential role of the SDF‑1α/CXCR4 
pathway in linagliptin‑mediated efficacy in the acute phase 
after stroke)
To determine whether the improved stroke outcome after 
linagliptin treatment was mediated by the SDF-1α/CXCR4 
pathway, 58 mice were subjected to MCAO and treated 
with linagliptin (10 mg/kg/bw, per oral, n = 19), AMD3100 
(5 mg/kg/bw, intraperitoneal n = 11; [31]) AMD3100 + lin-
agliptin (n = 11) or vehicle (natrosol n = 17) for 3 days and 
sacrificed thereafter. AMD3100 is a strong, almost irre-
versible antagonist of CXCR4 [32]. To maximally block 
the effect of CXCR4 on the acute phase after stroke, 
AMD3100 was given starting from 1  day before MCAO. 
Subsequently, immunohistological measurements of 
ischemic brain damage were performed. All animals were 
tested for motor function before and 3 days after MCAO.

Study 4 (to identify linagliptin‑mediated effectors in the acute 
phase after stroke by mass spectrometry)
For mass spectrometric analysis, 8 mice subjected to 
stroke from Study 3 and treated with linagliptin (10 mg/
kg/bw, per oral, n = 5) or vehicle (n = 3) were employed. 
Additional 8 naive mice were treated with linagliptin 
(10 mg/kg/bw, per oral, n = 4) or vehicle (n = 4). All mice 
were sacrificed after 3  days. Brain tissues were isolated, 
frozen and analyzed by mass spectrometry.

A representative illustration of study design is provided 
in Additional file 1: Figure S1.

Middle cerebral artery occlusion (MCAO)
The intraluminal filament technique was used [33]. 
Briefly, animals were anesthetized using 1.5% isoflurane, 
carotid arteries on the left side were exposed, the external 
carotid was ligated and temporary sutures were placed 
over the common carotid artery. Through a small incision 
in the external carotid artery, a 7–0 monofilament coated 
with silicone was advanced through the internal carotid 
artery until it blocked the origin of the middle cerebral 
artery. When the filament had been positioned, wounds 
were closed and the anesthesia was discontinued. After 
30  min of occlusion, the mice were anesthetized again, 
the filament was withdrawn and ligatures removed from 
the common carotid artery. Body temperature was main-
tained at 37–38 °C with a heated pad during surgery. The 
mice were then transferred to a heated box where they 
regained wakefulness and were kept there for 2 h.

Assessment of motor function
Motor performance was assessed using forepaw grip 
strength test [34] before MCAO, 3  days and 3  weeks 
after MCAO. Briefly, animals were allowed to grasp 
the handlebar connected to a force meter and gently 
dragged backward until the grip was released. 10 trials 

were performed and the highest values recorded. Grip 
strength of left and right forepaws was measured sepa-
rately and motor asymmetry was determined by the left 
to right forepaw strength ratio. The left to right forepaw 
strength ratio for each mouse before MCAO was meas-
ured and used for normalization for post MCAO ratios.

Immunohistochemistry
Animals were deeply anesthetized with sodium pento-
barbital and transcardially perfused with saline followed 
by 4% ice-cold paraformaldehyde. Brains were extracted, 
post-fixed in 4% paraformaldehyde at 4 °C overnight and 
submersed in 20% sucrose in phosphate buffer until they 
sank. 50 µm-thick coronal sections were cut using a slid-
ing microtome and stained as free-floating sections. The 
details of the immunohistochemistry, and infarct volume 
and cell quantifications have been recently described [12, 
13] and are provided in Additional file 1.

All tests and procedures were performed by an experi-
menter blinded to the experimental groups.

Determination of active GLP‑1, active GIP, active SDF‑1a
Mice were deeply anesthetized with sodium pentobar-
bital and transcardially perfused with cold saline. Brains 
were removed and midbrains with overlaying cortex dis-
sected and snap frozen.

Determination of active GLP-1 (K150JWC-1, Mes-
oscale, Gaithersburg, USA) and active GIP (Immuno-Bio-
logical Laboratories, IBL 27724) was performed based on 
manufactures instructions. Active SDF-1α was detected 
as described by Fadini et al. [35].

Liquid chromatography and mass spectrometry
Details on liquid chromatography and mass spectrom-
etry are shown in Additional file 1.

Statistics
Statistical analyses were performed using the unpaired t 
test with Welch’s correction (Study 1, 2), one-way ANOVA, 
followed by the Holm–Sidak’s multiple comparisons test 
(Study 3). For MS data receiver-operating characteristics 
(ROC) including the area under the curve (AUC) were cal-
culated and corresponding p-values were determined using 
an unpaired t test with Welch’s correction (Study 4). Differ-
ences between groups were considered statistically signifi-
cant when p < 0.05. Data are presented as mean ± SD.

Results
Sustained post‑ischemic treatment with linagliptin 
improves motor function and reduces tissue damage 
after MCAO (Study 1)
The effect of linagliptin treatment on motor function was 
evaluated 3 days and 3 weeks after MCAO. 3 days after 
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MCAO, linagliptin-treated mice exhibited significantly 
smaller motor impairment in comparison to control mice 
(20% decrease in grip strength vs. 30% of that of vehicle 
group) (Fig.  1a). After 3  weeks, as expected [36], both 
groups had recovered motor performance to pre-stroke 
levels (Fig. 1b). The infarct volume (depicted in Fig. 1d) 
was evaluated 3 weeks after MCAO and showed a signifi-
cant decrease (approximately 40% smaller) in linagliptin-
treated mice (Fig. 1c).

Treatment with linagliptin increases levels of active 
SDF‑1a, but not of active GLP‑1 and active GIP in the brain 
(Study 2)
The results showed that sustained linagliptin treatment 
significantly increased levels of all three peptides in serum 
(Fig. 2a–c). However, the treatment had no effect on lev-
els of active GLP-1 and active GIP (Fig. 2d, e respectively), 
but led to a significant increase (approximately 50%) of 
active SDF-1α (Fig. 2f ) in brain homogenates.

Fig. 1  Effect of linagliptin treatment on motor function and infarct volume. a Forepaw grip strength at Day 3 and b 3 weeks after MCAO. c Infarct 
volume 3 weeks after MCAO. d Photomicrographs of NeuN immunoreactivity. Dashed line outlines the area of visible ischemic damage after MCAO. 
Unpaired t test with Welch’s correction, mean ± SD. * and ** denote p < 0.05 and p < 0.01 respectively
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AMD3100 decreases positive linagliptin effects on motor 
function and tissue damage in the acute phase after stroke 
(Study 3)
In Study 1 (see Fig. 1a), linagliptin showed a strong effect 
in improving upper-limb function at Day 3 after stroke. 
To test the potential involvement of the SDF-1α/CXCR4 
pathway on this beneficial effect mediated by linagliptin, 
AMD3100 (specific antagonist of the SDF-1α/CXCR4) 
was administered from Day 1 before stroke until this time 
point. Moreover, the study was terminated at Day 3 after 
stroke to avoid the potential global side effects of chronic 
CXCR4 blocking. The results show that AMD3100 com-
pletely prevented the improvement of motor function 
induced by linagliptin (Fig.  3a). Moreover AMD3100 
reduced the effect of linagliptin on histological outcome 
in the cortex (Fig.  3d). The neuroprotective effect of 
3-days linagliptin treatment (based on histological anal-
yses) was smaller as compared to 3-weeks treatment in 

Study 1 and was undetectable by ischemic volume meas-
urements (Fig.  3b) or by quantifying surviving NeuN+ 
neurons in the striatum (Fig. 3c). This was probably due 
to a shorter linagliptin administration in comparison 
with Study 1 where the mice were treated for 3  weeks 
after stroke before sacrifice.

Tandem mass spectrometry (Study 4)
We could not detect linagliptin in the brain under our 
experimental conditions.

47 differentially occurring peptides between groups 
from 16 different precursor proteins were identified 
(Table 1). Of these, the most frequent peptides originated 
from glyceraldehyde-3-phosphate dehydrogenase (G3P), 
neurogranin (NEUG) and an isoform of myelin basic pro-
tein (MBP).

G3P is a key cytosol enzyme in glycolysis. Linagliptin 
stroke (LS) and vehicle stroke (VS) groups showed higher 

Fig. 2  Effect of linagliptin treatment on active GLP-1, active GIP and active SDF-1a in serum and brain. Serum levels of active GLP-1 (a), active GIP 
(b) and active SDF-1α (c) after prolonged linagliptin treatment. Levels of active GLP-1 (d), active GIP (e) and active SDF-1α (f) in the brain after pro-
longed linagliptin treatment. Unpaired t test with Welch’s correction, mean ± SD. **, ***and **** denote p < 0.01, p < 0.001 and 0.0001 respectively
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Fig. 3  Effect of AMD3100 and linagliptin on motor function and tissue damage after MCAO. a Forepaw grip strength at Day 3 after MCAO. b 
Ischemic volume at Day 3 after MCAO. The number of surviving neurons in the striatum (c) and cortex (d) at Day 3 after MCAO. e Representative 
photomicrographs of brain sections (NeuN immunostained) used in the quantitative analyses. Solid black line denotes the area of the stroke infarct 
volume measurement. Solid white line denotes the area of decreased neuronal density after MCAO. Dashed black line denotes the area of neuronal 
quantification by stereology methods. One-Way ANOVA followed Holm–Sidak’s multiple comparisons test, mean ± SD. * and ** denote p < 0.05 and 
p < 0.01 respectively and indicate the statistically significant difference over the vehicle group
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Table 1  List of identified peptides

UniProt name Protein name Sequence From–to

Higher signal intensities in LS and VS

 1433B_MOUSE 14-3-3 protein beta/alpha L.WTSENQGDEGDAGEGEN.- 230–246

 1433Z_MOUSE 14-3-3 protein zeta/delta L.WTSDTQGDEAEAGEGGEN.- 228–245

 RLA2_MOUSE 60S acidic ribosomal protein P2 -.MRYVASYLLAALGGN.S 1–15

 ATPB_MOUSE ATP synthase subunit beta, mitochondrial A.AQASAAPKAGTATGRIVA.V 48–65

 ATPB_MOUSE ATP synthase subunit beta, mitochondrial Y.AAQASAAPKAGTATGRIVA.V 47–65

 ATP5H_
MOUSE

ATP synthase subunit d, mitochondrial M.AGRKLALKTIDWVSF.V + Acetyl (N-term) 2–16

 KCRB_MOUSE Creatine kinase B-type L.IEMEQRLEQGQAIDDLMPAQK.- 361–381

 IF4H_MOUSE Eukaryotic translation initiation factor 4H N.SAIFGGARPREEVVQKEQE.- 230–248

 IF4H_MOUSE Eukaryotic translation initiation factor 4H M.ADFDTYDDRAYSS.F + acetyl (N-term) 2–14

 G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase N.RVVDLMAYMASKE.- 321–333

 G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase M.FQYDSTHGKFNGTVKAEN.G 45–62

 G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase L.ISWYDNEYGYSNRVVDLMAYMASKE.- 309–333

 G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase M.VKVGVNGFGRIGRLVTRA.A 2–19

 G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase M.VKVGVNGFGRIGRLVT.R 2–17

 GBB2_MOUSE Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 
beta-2

M.SELEQLRQEAEQLRN.Q + acetyl (N-term) 2–16

 ESTD_MOUSE S-Formylglutathione hydrolase T.FIADHIRHHAKYLNA.- 268–282

 TPIS_MOUSE Triosephosphate isomerase M.APTRKFFVGGN.W 52–62

 G6PI_MOUSE Glucose-6-phosphate isomerase M.AALTRNPQFQKLLEWHRAN.S + acetyl (N-term) 2–20

 G6PI_MOUSE Glucose-6-phosphate isomerase N.GLISFIKQQRDTKLE.- 544–558

Higher signal intensities in VS, LC, VC

 DPYL2_
MOUSE

Dihydropyrimidinase-related protein 2 S.SAKTSPAKQQAPPVRNLH.Q 518–535

 DPYL2_
MOUSE

Dihydropyrimidinase-related protein 2 V.APPGGRANITS.L 560–570

 DPYL2_
MOUSE

Dihydropyrimidinase-related protein 2 V.APPGGRANITSLG.- 560–572

 EAA2_MOUSE Excitatory amino acid transporter 2 M.ASTEGANNMPKQVEVRMHDSHLS.S + acetyl (N-term) 2–24

 EAA2_MOUSE Excitatory amino acid transporter 2 M.ASTEGANNMPKQVEVRMHDSH.L + acetyl (N-term) 2–22

 MBP_MOUSE Myelin basic protein V.TPRTPPPSQGKG.R 93–104

 MBP_MOUSE Myelin basic protein R.TPPPSQGKGRGLS.L 96–108

 MBP_MOUSE Myelin basic protein I.VTPRTPPPSQGKG.R 92–104

 MBP_MOUSE Myelin basic protein N.IVTPRTPPPSQGKGRGLSLS.R 91–110

 MBP_MOUSE Myelin basic protein N.IVTPRTPPPSQGKG.R 91–104

 MBP_MOUSE Myelin basic protein R.TPPPSQGKGRGLSLS.R 96–110

 MBP_MOUSE Myelin basic protein V.TPRTPPPSQGKGRGLSLS.R 93–110

 MBP_MOUSE Myelin basic protein K.RPSQRSKYLATA.S 6–17

 MBP_MOUSE Myelin basic protein Q.KRPSQRSKYLATA.S 5–17

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLAT.A + acetyl (N-term) 2–16

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATA.S + acetyl (N-term) 2–17

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATAS.T + acetyl (N-term) 2–18

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATAST.M + acetyl (N-term) 2–19

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATASTMD.H + acetyl (N-term); oxidation 
(M)

2–21

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATASTMDH.A + acetyl (N-term); oxida-
tion (M)

2–22

 MBP_MOUSE Myelin basic protein M.ASQKRPSQRSKYLATASTMDHA.R + acetyl (N-term) 2–23

 MAG_MOUSE Myelin-associated glycoprotein G.KRPTKDSYTLTEELAEY.A 604–620

 NEUG_MOUSE Neurogranin K.GPGPGGPGGAGGARG.G 55–69
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signal intensities of 5 unique G3P-derived peptides in 
comparison to linagliptin non-stroke (LC) and vehicle 
non-stroke (VC) groups (Table 1).

NEUG is primarily expressed in the brain [37] and is 
the main postsynaptic protein regulating the availability 

of Calmodulin by binding to it in the absence of Ca2+ 
[38]. Here, signal intensities of 6 unique peptides were 
lower in LS in comparison to the remainder of samples 
(VS, LC, VC) (Fig. 4).

The table depicts the UniProt name, the precursor protein name, the amino acid sequence and the amino acid range of identified peptides. The dot within the 
sequence denotes the cleavage site. The top part list peptides found to possess significant higher signal intensities in stroke samples and the bottom part peptides 
possessing significant lower signal intensities in linagliptin-stroke samples

Table 1  continued

UniProt name Protein name Sequence From–to

 NEUG_MOUSE Neurogranin P.GGPGGAGGARGGAGGGPSGD.- 59–78

 NEUG_MOUSE Neurogranin R.KGPGPGGPGGAGGARGGAGGGP.S 54–75

 NEUG_MOUSE Neurogranin K.GPGPGGPGGAGGARGGAGGGPSGD.- 55–78

 NEUG_MOUSE Neurogranin R.KGPGPGGPGGAGGARGGAGGGPSGD.- 54–78

 NEUG_MOUSE Neurogranin G.RKGPGPGGPGGAGGARGGAGGGPSGD.- 53–78

 SNG3_MOUSE Synaptogyrin-3 A.YPGYPVGSGVEGTETY.Q 193–208

Fig. 4  Detection of neurogranin peptides. The figure shows signal intensities, means and SD of 6 neurogranin (NEUG)-derived peptides (NEUG 
53–78, NEUG 54–78, NEUG 55–78, NEUG 54–75, NEUG 59–78 and NEUG 55–69) in 16 brain samples (LS linagliptin-stroke, VS vehicle stroke, LC 
linagliptin control, VC vehicle control). The star marks significant differences (ROC-AUC = 1, p < 0.005) between LS and the remainder of samples. The 
corresponding amino acid sequence is depicted at the top of each graph
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MBP is one of the most abundant protein components 
of the myelin membrane in the CNS [39] which also 
binds Calmodulin [40]. LS showed lower signal intensi-
ties of 15 unique peptides in comparison to the remain-
der of samples (VS, LC, VC), (Fig. 5).

Discussion
The primary objective of this study was to determine 
whether the improved outcome after stroke follow-
ing gliptin treatment is SDF-1α/CXCR4-dependent. 
We showed that linagliptin improves functional stroke 
outcome in a SDF-1α/CXCR4-dependent manner. Sec-
ondarily, we demonstrated that linagliptin after stroke 
decreased the presence of peptides derived from NEUG 
and MBP.

Different research groups have shown that gliptins 
reduce brain damage and improve functional parameters 
after stroke in various animal models independently from 
a T2D background (reviewed in [2, 41, 42]). A few large 

clinical studies with gliptins in diabetic patients have 
investigated the potential of these drugs to decrease car-
diovascular incidence (including stroke) and death with 
neutral results (reviewed by Nauck et  al. [10]). How-
ever, since the efficacy measures in these clinical studies 
(stroke incidence and death) did not address functional 
outcomes after stroke, further clinical studies are needed 
to evaluate the potential of these drugs to improve func-
tional stroke outcome [9]. Interestingly, the ongoing 
CARMELINA study with linagliptin (Clinicaltrials.gov; 
NCT01897532) contains a post-stroke functional sub-
study using the modified Rankin scale to assess stroke-
induced disability approximately 1 week following stroke 
and at ~ 3  months after stroke-onset. Preclinical data 
indicating that gliptins can improve stroke outcome in 
the post-stroke recovery phase have been recently shown 
by Ma et  al. in a model of transient cerebral ischemia 
induced by bilateral common carotid artery occlusion. 
The study showed that sustained linagliptin treatment 

Fig. 5  Detection of myelin-basic protein (MBP). The figure shows signal intensities of peptides with means and standard deviations in each group 
(LS linagliptin-stroke, VS vehicle stroke, LC linagliptin control, VC vehicle control) derived an isoform of myelin basic protein (MBP). The p-value was 
calculated between LS and the remainder of samples. In all cases the ROC-AUC was 1 for LS
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after cerebral ischemia counteracted cognitive impair-
ment and brain atrophy, independently from the regula-
tion of glycemia [43]. This study is remarkable because 
their model allows extending the observation period 
for several weeks after artery occlusion thus evaluating 
effects of sustained gliptin treatment in the post-stroke 
recovery phase. Our results confirm that sustained lina-
gliptin treatment after stroke is necessary to improve 
stroke outcome while a single acute bolus administration 
of linagliptin at stroke time was ineffective (previously 
published in [13]).

Clinical data suggesting that gliptins can exert benefi-
cial effects in the damaged brain do also exist. Isik et al. 
recently showed that a treatment for 6 months with sit-
agliptin was associated with improvement of cognitive 
function in elderly diabetic patients with and without 
Alzheimer’s disease [8]. To support the translation of pre-
clinical functional outcome stroke studies with gliptins 
to clinical settings, it is helpful to identify mechanisms of 
action of this class of drugs in the brain.

The antidiabetic effects of gliptins are mediated via 
GIP and GLP-1 regulation, but other incretin-independ-
ent mechanisms may also be involved [15]. We recently 
showed that mice lacking the GLP-1-receptor exhibit 
improved stroke outcome after linagliptin treatment [13]. 
Recent research by Han et al. has shown that a dual ago-
nist targeting both GLP-1 and GIP receptors promoted 
stronger neuroprotection against stroke than the GLP-1 
analogue Val(8)-GLP-1(glu-PAL) alone thus suggesting 
a mechanism mediated by GIPR activation [14]. Fur-
ther studies employing mice lacking GIP and/or GIPR 
are needed to investigate this hypothesis. However, we 
showed in this study that brain GIP levels were unaf-
fected by linagliptin treatment. Furthermore our previous 
study using mice lacking the GLP-1R [13] showed that 
linagliptin can improve stroke outcome independently 
from GLP-1R. Although we cannot rule out peripheral 
effects mediated by GIP, this suggests that the positive 
effect of gliptins on stroke outcome may not be necessar-
ily related to incretins.

The DPP-4 substrate SDF-1α plays a pivotal role in 
the brain, as it regulates neurovascular remodeling after 
stroke [23–26]. The beneficial effects of SDF-1α were also 
shown in rats after traumatic brain injury [44] and in an 
AD animal model, where SDF-1α treatment decreased 
beta-amyloid deposition [45]. Of relevance for our study, 
recent research in myocardial infarction (MI) has shown 
that increased SDF-1α by gliptins mediates protective 
effects against MI through anti-apoptotic effects [46, 47].

Our results show that sustained linagliptin treatment 
increases active SDF-1α in brain parenchyma. Impor-
tantly, by sustained blocking of the SDF-1α/CXCR4 
pathway, linagliptin-mediated effects on functional and 

histological outcomes after stroke were diminished. This 
indicates that improved stroke outcome by linagliptin 
occurs via the activation of the SDF-1α/CXCR4 pathway. 
DPP-4 activity was similarly inhibited in linagliptin, and 
linagliptin/AMD 3100-treated animals (data not shown). 
Therefore, the inhibitory effect of AMD 3100 over lina-
gliptin on stroke outcome could not be linked to altered 
DPP-4 activity between the groups. The pro versus 
adverse effects of SDF-1α after gliptins treatments in dia-
betic complications has been recently deeply discussed 
[48, 49]. Our results suggest that, at least when it comes 
to post-stroke treatment, the activation of the SDF-1α/
CXCR4 pathway promotes beneficial effects. Two weak-
nesses of this set of results that need to be addressed in 
the future are: (1) the fact that the study was performed 
in naïve mice and that a diabetic background could have 
affected the outcome; (2) it is unclear why the SDF-1α/
CXCR4 pathway seems to be more involved in the 
functional (Fig.  3a) rather than in the structural recov-
ery (Fig.  3d). Nevertheless, previous studies show that 
SDF-1α is involved in axonal path finding, outgrowth and 
branching; all functions involved in functional recovery 
[19].

The effects of linagliptin to reduce the injury after 
stroke could involve the neuroprotective, non-neuro-
genic rapid effects of neural progenitor cells (NPCs) [50] 
since CXCR4 inhibition in NPCs leads to failure of new-
born neurons to localize to the ischemic brain tissue [19]. 
The linagliptin effects via SDF-1α/CXCR4 to reduce the 
brain injury after stroke could also be mediated by the 
regulation of neovascularization through endothelial pro-
genitor cells (EPCs) [51] since gliptins increase ischemic 
angiogenesis by preserving EPCs function [52]. Moreo-
ver, SDF-1α is known to be involved in the recruitment to 
the injury region of EPCs [19]. This action of SDF-1α on 
EPCs could contribute to explain the stronger efficacy of 
linagliptin to improve stroke outcome after 3 weeks ver-
sus 3 days of treatment as it has been shown that EPCs 
recruitment occurs 2  weeks after ischemic injury [53]. 
New studies should be performed in the future to dem-
onstrate this hypothesis.

Finally, the SDF-1α/CXCR4 pathway could play a role 
in functional regulation of the brain vasculature, since 
linagliptin improves endothelium-dependent relaxation 
independently of glucose regulation [28]. Furthermore, 
SDF-1α/CXCR4 signaling activates endothelial nitric 
oxide synthase [32] which is a key enzyme maintain-
ing homeostasis by inducing vasodilatation and whose 
impairment is implicated in the pathogenesis of stroke 
[54]. These results support the possibility that the posi-
tive effects of gliptins on stroke outcome could also occur 
via increased blood perfusion in collateral vessels in the 
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penumbra region of ischemic brains thus mitigating the 
degenerative effects of MCAO.

To further elucidate effects of linagliptin after stroke, 
we analyzed brain tissue samples by mass spectrometry. 
We did not detect linagliptin under our experimental 
conditions in agreement with previous published data 
demonstrating that linagliptin does not cross the blood 
brain barrier under physiological conditions [55]. How-
ever due to MALDI-TOF/TOF mass spectrometry condi-
tions, we cannot rule out that traces of linagliptin could 
enter the brain under stroke conditions.

Peptides that are generated by proteolytic processing 
of larger precursor proteins can be regarded as surro-
gate markers for expression levels of proteins or pepti-
dase activity [56]. In samples from animals subjected to 
MCAO, peptides derived from G3P were observed. We 
speculate that these peptides reflect a direct effect of 
ischemia causing release of substances from the cytosol 
due to cell membrane instability.

The analysis further revealed that NEUG peptides 
exhibit lower signal intensities in stroke tissue samples 
from animals treated with linagliptin (Fig.  4 and Fig-
ure S2 in Additional file 1). These results might suggest 
lowered expression of NEUG or a reduced susceptibil-
ity to proteolytic processing of free NEUG not bound to 
Calmodulin.

The protein level or proteolytic cleavage pattern of an 
isoform of MBP appeared to be also altered (Fig. 5). The 
observed pattern of MBP peptides (Figure S3 in Addi-
tional file  1) shows a very good fit to Calpain process-
ing based on the substrate and observed cleavage sites 
according to MEROPS, a database of proteolytic enzymes 
[57]. We presume that the observed MBP peptides do 
not represent breakdown products due to stroke since 
no significant difference between VS and LC/VC samples 
was present. Rather the low intensities or even dimin-
ished presence of MBP peptides in samples from mice 
subjected to stroke and treated with linagliptin, mirror 
altered proteolytic activities or insusceptibility to pro-
cessing of MBP due to e.g. Calmodulin binding [40] as 
a second-tier effect (see below) analog to NEUG. These 
peptides are not affected in samples from linagliptin-
treated control mice, which is in line with the observa-
tion that linagliptin does not cross the blood brain barrier 
under physiological conditions [55].

These data suggest that the proteolytic processing 
products of two Calmodulin-binding proteins exhibit sig-
nificantly lower signal intensities in brain samples after 
stroke under linagliptin treatment either due to altered 
expression, insusceptibility to proteolytic processing 
because of Calmodulin binding and/or altered activity of 
proteases like Calpain. Since presence of free NEUG and 
MBP and/or altered Calpain activity are all dependent on 

intracellular Ca2+ concentration [38, 58], we hypothesize 
that linagliptin treatment, presumably through SDF-1α, 
could affect Ca2+ homeostasis. Indeed, a study by Nico-
lai et  al. [59], showed that SDF-1α selectively inhibits 
the expression of NR2B, a regulatory subunit of NMDA 
receptor, altering NMDA-induced Ca2+ responses asso-
ciated with neuronal death, while promoting pro-survival 
pathways. However further studies (intracellular Ca2+ 
measurement, Calpain activity) are necessary to verify or 
falsify the proposed mechanism.

Conclusions
T2D patients have more than double the risk of ischae-
mic stroke [60]. The surviving stroke patients with T2D 
often show poor functional recovery and even further 
neurological deterioration in comparison to non-diabet-
ics. This holds true even after adjusting for stroke severity 
and patients’ age [61]. Remarkably, this important prob-
lem has been poorly investigated clinically in comparison 
to several studies focused on why the incidence of stroke 
in T2D patients is higher than in non-diabetics. There-
fore, a treatment with gliptins in the acute phase after 
stroke could be beneficial for T2D patients based on pre-
clinical studies. However, more research on the mecha-
nisms at the basis of gliptins action is needed to exploit 
their potential properties. We did demonstrate the 
involvement of the SDF-1α/CXCR4 pathway in improved 
stroke outcomes after linagliptin treatment. Our data 
also suggest a potential gliptin-mediated neuroprotec-
tive mechanism that involves NEUG and MBP through 
the regulation of Ca2+ homeostasis and the reduction 
of Calpain activity. Although these results provide a first 
glance of gliptin actions in the brain only, they represent 
new insights on effects of these anti-hyperglycemic drugs 
against decreased functional outcome after stroke.
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