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Abstract

We analyze a discrete time two-sector economic growth model where the production

technologies in the final and human capital sectors are affected by random shocks both

directly (via productivity and factor shares) and indirectly (via a pollution externality).

We determine the optimal dynamics in the decentralized economy and show how these

dynamics can be described in terms of a two-dimensional affine iterated function system

with probability. This allows us to identify a suitable parameter configuration capable

of generating exactly the classical Barnsley’s fern as the attractor of the log-linearized

optimal dynamical system.
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In this paper we build a non-trivial two-sector growth model that, thanks to

pollution externalities randomly affecting output and human capital production,

allows for a suitable parameterization that generates the Classical Barnsley’s fern

as the unique attractor of the economy.

1 Introduction

Over the last two decades a large and growing number of studies have tried to characterize the

eventual fractal nature of the steady state in economic models. Indeed, since the pioneering

work by Montrucchio and Privileggi (1999) it has been well known that traditional macroe-

conomic models may give rise to random dynamics possibly converging to invariant measures

supported on fractal sets. Several works try to identify the conditions under which this might

be the case by borrowing from the iterated function systems literature (Hutchinson, 1981;

Vrscay, 1991; Barnsley, 1993). Most of these works analyze discrete time stochastic economic

growth models with logarithmic utility and Cobb-Douglas production, either in a one-sector

or two-sector framework, showing that through appropriate log-transformations their optimal

dynamics can be converted into an affine iterated function system converging to a singular

measure supported on some fractal set; in the case of unidimensional iterated function systems

such an attractor can be the Cantor set (Montrucchio and Privileggi, 1999; Mitra et al., 2003;

Mitra and Privileggi, 2004, 2006, 2009; Marsiglio, 2012; Privileggi and Marsiglio, 2013; La

Torre et al., 2015), while in the case of two-dimensional iterated function systems it can be

either the Sierpinski gasket or distorted-copies of the Barnsley’s fern (La Torre et al., 2011;

La Torre et al., 2015; La Torre et al., 2018). With the exception of La Torre et al. (2018)

who consider also shocks affecting factor shares, in all these works randomness affects economic

activities through the productivity channel, following the Brock and Mirman (1972) tradition.

Some of these works also identify specific parameter configurations under which the invariant

probability measure turns out to be either singular or absolutely continuous (Mitra et al., 2003;

La Torre et al., 2015; La Torre et al., 2018).

We contribute to this stochastic growth and fractal attractors literature by analyzing an

economy in which economic production is affected by random shocks both directly (via produc-
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tivity and factor shares) and indirectly (via a pollution externality). Specifically, we build on

the model by La Torre et al. (2018) in which such direct effects have already been accounted

for in order to allow for pollution to be an additional and indirect source of randomness. To

the best of our knowledge none of the extant works has ever considered how the presence of

externalities complicate aggregate macroeconomic dynamics and what this may imply for the

attractor of the associated iterated function system. However, accounting for the existence of

such a pollution externality, as widely discussed in the environmental economics literature, is

important to better characterize potential economic outcomes. Several papers document and

discuss the extent to which the economy and the environment are mutually related (IPCC,

2007; Nordhaus, 2013): on the one hand, economic activities generate pollution which is the

primary determinant of environmental problems; on the other hand, environmental degrada-

tion precludes pollution absorption which in turn critically determines economic capabilities.

Moreover, due to the large degree of uncertainty associated with environmental phenomena,

very little is known with precision about such a bilateral economy-environment relation, which

is most likely to be random (Soretz, 2003; Marsiglio and La Torre, 2016). In order to take

these issues into account in the most intuitive way, we focus on the optimal dynamics in the

decentralized economy, where the externality is not internalized yet but it fully affects the evo-

lution of both control and state variables; such a setting is the most appropriate to give rise

to a simple but realistic characterization of real world dynamics. We show how the optimal

dynamics can be described in terms of a two-dimensional affine iterated function system with

probability, whose coefficients can eventually take on negative values, differently from all extant

papers. Such a peculiarity of our framework, due to the presence of the pollution externality,

allows us to identify a suitable parameter configuration capable of generating exactly the clas-

sical Barnsley’s fern as the attractor of the log-linearized optimal dynamical system. To the

best of our knowledge, no other macroeconomic model has ever been able to give rise to the

Barnsley’s fern1 for some specific – but fully admissible – parameter configuration.

This paper proceeds as follows. In Section 2 we briefly recall some basic results from the

1Since the coefficients in their iterated function system can only take on positive values, La Torre et al.’s
(2018) model is able to generate only distorted copies of the fern, which ultimately do not even remotely resemble
a fern.
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mathematical theory on iterated function system, which will help us discuss our following

results. In Section 3 we formally introduce our model which consists of a two-sector economic

growth model subject to random shocks affecting economic productive activities both directly

and indirectly, thanks to the role played by pollution. We also derive the optimal rule for the

control variables and the optimal dynamics of the state variables – physical and human capital

– in the decentralized economy in which the pollution externality is not internalized. In Section

4 we introduce a log-transformation which allows us to recast the nonlinear optimal dynamical

system in terms of a two-dimensional affine iterated function system, allowing us to borrow

from the mathematical literature to discuss its eventual convergence to an invariant measure

supported on some fractal set. In Section 5 we present two specific model’s parameterizations:

the first one allows us to obtain exactly the classical Barnsley’s fern as the attractor of the

log-linearized optimal dynamics; the second one focuses on a more realistic scenario giving

rise to an attractor very different from a fern. In Section 6 as usual we conclude and present

directions for future research, while the Appendix contains a brief sketch of the proof yielding

the optimal dynamics of the model presented in Section 3.

2 Preliminaries on Iterated Function Systems

Let (X, d) denote a compact metric space. An N -map iterated function system (IFS) on X,

w = {w1, . . . , wN}, consists of N contraction mappings on X, i.e., wi : X → X, i = 1, · · · , N ,

with contraction factors ci ∈ [0, 1) (see Barnsley, 1993; Hutchinson, 1981; Barnsley et al., 1986;

Kunze et al., 2012). Associated with an N -map IFS one can define a set-valued mapping ŵ on

the space H ([a, b]) of nonempty compact subsets of X as follows:

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H ([a, b]) .

The following two results state a convergence property of an N -map IFS towards its at-

tractor. More properties and results can be found in Barnsley (1993), Hutchinson (1981), and

Kunze et al. (2012).
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Theorem 1 (Hutchinson, 1981) For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ ch (A,B) where c = max
1≤i≤N

ci < 1

and h denotes the Hausdorff metric on H (X).

Corollary 1 (Hutchinson, 1981) There exists a unique set A ∈ H ([a, b]), the attractor of

the IFS w, such that

A = ŵ (A) =
N
⋃

i=1

wi (A) .

Moreover, for any B ∈ H ([a, b]), h (A, ŵn (B)) → 0 as n→ ∞.

An N -map Iterated Function System with (constant) Probabilities (IFSP) (w,p) is an

N -map IFS w with associated probabilities p = {p1, . . . , pN},
∑N

i=1 pi = 1.

Let M (X) denote the set of probability measures on (Borel subsets of) X and dMK the

Monge-Kantorovich distance on this space: For µ, ν ∈ M (X), with Monge-Kantorovich metric,

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−

∫

f d ν

]

.

where Lip1 (X) = {f : X → R | |f (x)− f (y)| ≤ d (x, y)}. The metric space (M (X) , dMK) is

complete (Barnsley, 1993; Hutchinson, 1981; Kunze et al., 2012).

The Markov operator associated with an N -map IFSP is a mapping M : M → M, defined

as follows: For any µ ∈ M (X), and for any measurable set S ⊂ X, define a measure ν = Mµ

as:

ν (S) = (Mµ) (S) =
N
∑

i=1

piµ
(

w−1
i (S)

)

.

The following results show that the Markov operator has a unique invariant measure ν̄ and

it is globally attracting.

Theorem 2 (Hutchinson, 1981) For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) .
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Corollary 2 (Hutchinson, 1981) There exists a unique measure ν̄ ∈ M (X), the invariant

measure of the IFSP (w,p), such that

µ̄ (S) = (Mµ̄) (S) =
N
∑

i=1

piµ̄
(

w−1
i (S)

)

.

Moreover, for any ν ∈ M (X), dMK (µ̄,Mnν) → 0 as n→ ∞.

Theorem 3 (Hutchinson, 1981) The support of the invariant measure µ̄ of an N -map IFSP

(w,p) is the attractor A of the IFS w, i.e.,

supp µ̄ = A.

In order to determine the attractor of an IFSP, the following random dynamical system

known as Chaos Game might be implemented: Starting from x0 ∈ X, let us determine

xt+1 = wσ (xt) where σ is chosen in the interval 1 . . . N with probabilities p1, . . . , pN . It can

be proved (see Kunze et al., 2012, for more details) that the orbit of this random dynamical

system is dense in the attractor A.

3 The Model

We analyze a discrete time two-sector economic growth model where the production technolo-

gies in the final and human capital sectors are affected by random shocks both directly (via

productivity and factor shares) and indirectly (via pollution). While a large literature has con-

sidered the implications of random shocks for macroeconomic dynamics by analyzing the direct

channel (Brock and Mirman, 1972; Montrucchio and Privileggi, 1999; Mitra et al., 2003; La

Torre et al., 2015, 2018), more limited is the number of works analyzing the indirect channel,

and in particular the effects of pollution on aggregate macroeconomic dynamics (Privileggi and

Marsiglio, 2013; Marsiglio and La Torre, 2016). However, it is now well known that economic

activities and environmental outcomes are mutually related, thus taking into account the ex-

istence of some economic-environmental feedback is essential to understand macroeconomic

dynamics. Several studies discuss that pollution is a by-product of economic activities and how
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pollution impacts on both aggregate economic activities and health (IPCC, 2007; Nordhaus,

2013). We take these issues into account by (i) allowing output to be the driver of pollution,

and (ii) allowing pollution to affect both the productivity of final output and that of human

capital (meant as a broad form of capital encompassing not only education but health as well;

Barro and Sala–i–Martin, 2004).

We analyze a standard two-sector optimal growth model under uncertainty, as discussed in

La Torre et al. (2011), extended to account for such mutual economic-environmental feedback.

Specifically, the representative household maximizes its lifetime utility subject to the evolution

of physical and human capital. Lifetime utility is the infinite discounted (β > 0 is the discount

factor) sum of instantaneous utilities, and the utility function is assumed to be logarithmic in

consumption. At each time t, the household chooses its level of consumption, ct, and which

share of its human capital, ut, to devote to the production of the final consumption good,

which is produced according to a Cobb-Douglas technology combining physical, kt, and human,

ht, capital. Also new human capital is produced according to a Cobb-Douglas technology,

which however employs only human capital (Lucas, 1988; Rebelo, 1991). As in La Torre et

al. (2018), the production technologies of the final good and new human capital are directly

affected by exogenous shocks which take both a multiplicative form through coefficients zt

and ηt respectively, and an exponential form affecting the factor shares in both production

functions; therefore, output is given by yt = ztAtk
αt

t (utht)
γt , where αt and γt denote the random

physical and human capital shares of income respectively, while human capital is given by

ht+1 = ηtBt [(1− ut)ht]
φt , with φt denoting the random human capital share of human capital.

In this formulation At and Bt denote the pollution-induced productivity levels in the final and

human capital sectors, respectively. Specifically, we assume that At = P νt
t and Bt = P µt

t , where

Pt denotes pollution which is a by-product of macroeconomic activities and νt, µt ∈ R are

random parameters; since these parameters can take on real values, this accounts for the fact

that pollution may have positive or negative effects on the production of final output and/or

human capital. As in Marsiglio et al. (2016) economic activities generate pollution according

to Pt = kχt

t h
ωt

t in order to represent that the production inputs are characterized by different

pollution-intensities; such intensities are set by parameters χt and ωt respectively, which, like
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νt and µt, can take on real values and are random. This implies that At = kνtχt

t hνtωt

t and

Bt = kµtχt

t hµtωt

t , suggesting that randomness through the pollution channels affects indirectly

the production technologies of the final good and human capital.

The whole (zt, ηt, αt, γt, φt, νt, µt, χt, ωt) ∈ R
9 is a random vector which is independent and

identically distributed, and can take on m values, i.e., at each time t

(zt, ηt, αt, γt, φt, νt, µt, χt, ωt) ∈ {(zi, ηi, αi, γi, φi, νi, µi, χi, ωi)}
m
i=1. While shocks zt, ηt enter mul-

tiplicatively the two Cobb-Douglas production functions and αt, γt, φt represent shocks on the

factor shares, νt, µt, χt, ωt are random externalities affecting final production through two chan-

nels: 1) νt, µt determine how pollution modifies final production, 2) χt, ωt determine how much

pollution is generated by the current levels of physical and human capital, kt and ht, employed

in the production of the composite good. As far as the first five shocks are concerned, we

shall assume that zt, ηt > 0, 0 < αi, γi, φi < 1 and αi + γi ≤ 1 for all i = 1, . . . ,m. We do

not impose any restriction on parameters νi, µi, χi, ωi, but the realization of the shock deter-

mines whether physical or human capital is the relatively greener production input (according

to how χt and ωt compare). Each vector realization, (zi, ηi, αi, γi, φi, νi, µi, χi, ωi), occurs with

(constant) probability pi, with pi ∈ (0, 1), i = 1, . . . ,m, and
∑m

i=1 pi = 1.

The optimization problem of the representative household can be summarized as follows:

V (k0, h0, z0, η0, α0, γ0, φ0, ν0, µ0, χ0, ω0) = max
{ct,ut}

∞
∑

t=0

βt
E0 ln ct (1)

s.t.























kt+1 = ztAtk
αt

t (utht)
γt − ct

ht+1 = ηtBt [(1− ut)ht]
φt

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0, ν0, µ0, χ0, ω0) are given,

(2)

As in Benhabib and Perli (1994), in the competitive (decentralized) solution the representa-

tive households take At and Bt as given, meaning that, because of the pollution externality, this

solution will differ from the planning (centralized) solution. Most papers focusing on the effects

of random shocks on macroeconomic dynamics analyze the centralized solution where all exter-

nalities are internalized by the social planner; we will instead focus on the decentralized solution

since it is likely to provide us with a more realistic characterization of real world dynamics.
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In a competitive solution, since agents do not take into account the existence of the pollution

externality, the optimal control problem is concave such that first order conditions turn out to

be also sufficient. However, even if the household does not internalize the externality this will

affect macroeconomic dynamics, allowing us to take track of the aggregate effects of pollution.

Hence, assuming that parameters At and Bt are considered as constants by utility maximizing

households when deriving the FOCs, similar steps as in La Torre et al. (2018)—which are

briefly recalled in the Appendix—allow us to determine the following optimal policy functions:

ct = [1− βE (α)] yt (3)

ut =
[1− βE (φ)] γt

[1− βE (φ)] γt + βE (γ)φt

, (4)

where E (α) =
∑m

i=1 piαi, E (γ) =
∑m

i=1 piγi, and E (φ) =
∑m

i=1 piφi. Substituting (3) and

(4) back into the law of motion of physical and human capital and taking into account the

pollution-induced productivity levels At = kνtχt

t hνtωt

t and Bt = kµtχt

t hµtωt

t , yield the optimal

dynamics in the competitive economy, which turn out to be characterized by the following

equations:










kt+1 = ∆tztk
αt+νtχt

t hγt+νtωt

t

ht+1 = Θtηtk
µtχt

t hφt+µtωt

t

(5)

with

∆t = βE (α)

{

[1− βE (φ)] γt
[1− βE (φ)] γt + βE (γ)φt

}γt

(6)

Θt =

{

βE (γ)φt

[1− βE (φ)] γt + βE (γ)φt

}φt

. (7)

4 Log-Transformation

We can apply the same technique developed in La Torre et al. (2018) to build a specific trans-

formation that recasts system (5) into an affine, topologically equivalent system. Specifically,
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we wish to transform it into a system of the following form:











ϕt+1 = (αt + νtχt)ϕt + (γt + νtωt)ψt + ζt

ψt+1 = µtχtϕt + (φt + µtωt)ψt + ϑt,
, (8)

where the coefficients are the exponents of physical and human capital in our original equations

(5) plus the parameters characterizing pollution externalities, and the additive random vector

(ζt, ϑt) ∈ R
2 takes on m values corresponding to realizations of the multiplicative shocks (zt, ηt).

We will show that, by imposing some conditions on the parameters, there exists a one-to-one

continuous transformation from the dynamics of (kt, ht) defined by (5) to those of (ϕt, ψt) as

in (8). By recalling section 2, the convergence of the random dynamical system in (8) to the

steady state can be obtained by noticing that equation (8) is the chaos game associated with

an IFS with probabilities whose associated Markov operator will be converging to an invariant

measure µ̄.

It may be useful to rewrite (8) in vector terms as follows:







ϕt+1

ψt+1






=







αt + νtχt γt + νtωt

µtχt φt + µtωt













ϕt

ψt






+







ζt

ϑt






, (9)

where:

Qt =







αt + νtχt γt + νtωt

µtχt φt + µtωt






(10)

is a random 2 × 2 matrix which, together with the vector (ζt, ϑt) ∈ R
2, take on m values

corresponding to the m shocks realizations.

Proposition 1 There exists a one-to-one logarithmic transformation (kt, ht) → (ϕt, ψt) defined

by










ϕt = ρ1 ln kt + ρ2 lnht + ρ3

ψt = ρ4 ln kt + ρ5 lnht + ρ6

(11)

that is topologically conjugate to the nonlinear system (5) provided that the model’s parameters

zi, ηi, αi, γi, φi, νi, µi, χi, ωi, the constants ζi, ϑi in the IFS (8), together with the coefficients
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ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, satisfy the following conditions:















































(µiχi) ρ2 = (γi + νiωi) ρ4

(γi + νiωi) ρ1 = (αi + νiχi − φi − µiωi) ρ2 + (γi + νiωi) ρ5

(αi + νiχi − φi − µiωi) ρ4 + µiχiρ5 = µiχiρ1

(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi − νiχi) ρ3 − (γi + νiωi) ρ6 = ζi

(ln∆i + ln zi) ρ4 + (lnΘi + ln ηi) ρ5 + (1− φi − µiωi) ρ6 − µiχiρ3 = ϑi

(12)

for all i = 1, . . . ,m.

Proof. We use (11) to rewrite both sides of (8):

ρ1 ln kt+1 + ρ2 lnht+1 + ρ3 = (αt + νtχt) (ρ1 ln kt + ρ2 lnht + ρ3)

+ (γt + νtωt) (ρ4 ln kt + ρ5 lnht + ρ6) + ζt

ρ4 ln kt+1 + ρ5 lnht+1 + ρ6 = µtχt (ρ1 ln kt + ρ2 lnht + ρ3)

+ (φt + µtωt) (ρ4 ln kt + ρ5 lnht + ρ6) + ϑt.

Then, use (5) to rewrite the LHS in each equation above in order to obtain the following two

equations:

ρ1 ln∆t + ρ1 ln zt + ρ1 (αt + νtχt) ln kt + ρ1 (γt + νtωt) lnht

+ρ2 lnΘt + ρ2 ln ηt + ρ2µtχt ln kt + ρ2 (φt + µtωt) lnht + ρ3

= (αt + νtχt) ρ1 ln kt + (αt + νtχt) ρ2 lnht + (αt + νtχt) ρ3 (13)

+ (γt + νtωt) ρ4 ln kt + (γt + νtωt) ρ5 lnht + (γt + νtωt) ρ6 + ζt,

ρ4 ln∆t + ρ4 ln zt + ρ4 (αt + νtχt) ln kt + ρ4 (γt + νtωt) lnht

+ρ5 lnΘt + ρ5 ln ηt + ρ5µtχt ln kt + ρ5 (φt + µtωt) lnht + ρ6

= µtχtρ1 ln kt + µtχtρ2 lnht + µtχtρ3 (14)

+ (φt + µtωt) ρ4 ln kt + (φt + µtωt) ρ5 lnht + (φt + µtωt) ρ6 + ϑt.
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As these equations must hold for all t ≥ 0, under the i.i.d. assumption it is sufficient

that they hold for all parameters’ values, that is, for all i = 1, . . . ,m; hence, in the sequel we

replace the time index t of each term involving only the model’s parameters with the index

i = 1, . . . ,m (clearly, the state variables kt and ht remain indexed by t). By equating the

corresponding coefficients in the LHS and the RHS, equations (13) and (14) become independent

of values taken by the variables ln kt and lnht; this is equivalent to the following conditions

(corresponding to system (25) in La Torre et al., 2018):























(µiχi) ρ2 = (γi + νiωi) ρ4

(γi + νiωi) ρ1 = (αi + νiχi − φi − µiωi) ρ2 + (γi + νiωi) ρ5

(αi + νiχi − φi − µiωi) ρ4 + µiχiρ5 = µiχiρ1

for all i = 1, . . . ,m.

After joining them with the terms that do not depend on ln kt and lnht left in equations (13)

and (14) we obtain the system of 5m equations in (12) and the proof is complete.

System (12) has 5m equations and 6 unknowns, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6; clearly such system has

no solution whenever there is more than one state of nature, i.e., when m ≥ 2, as already

with m = 2 it has 10 equations in 6 unknowns. Hence, following an approach similar to that

pursued in La Torre et al. (2015, 2018), in the next section we will add more constraints on

the parameters’ values so to increase the number of unknowns; specifically we will treat some

values for the coefficients zi, ηi as unknowns in order to have as many unknowns as the number

of equations in (12). A complication ensuing in this case is that system (12) ceases to be linear,

as the new unknowns (even in their log-expression) ln zi, ln ηi enter multiplicatively the other

unknowns of the type ρi. Therefore, to solve (12) we will rely on numerical methods.

5 Some Specific Parameterizations

We now present two different model’s parameterizations. The first allow us to generate exactly

the classical Barnsley’s fern, but this requires to impose somehow questionable parameters

values. The second tries to fix this issue by focusing on more realistic parameter values; this

however gives rise to an attractor very different from a fern.
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5.1 A Model Generating the Classical Barnsley’s Fern

It is well known that the classical Barnsley’s fern (Barnsley, 1993) is produced by the following

affine IFS:


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










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


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


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
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
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
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




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


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









































w1 (ϕ, ψ) =







0 0

0 0.16













ϕ

ψ






+







0

0






with prob. p1 = 0.01

w2 (ϕ, ψ) =







−0.15 0.28

0.26 0.24













ϕ

ψ






+







0

0.44






with prob. p2 = 0.07

w3 (ϕ, ψ) =







0.20 −0.26

0.23 0.22













ϕ

ψ






+







0

1.60






with prob. p3 = 0.07

w4 (ϕ, ψ) =







0.85 0.04

−0.04 0.85













ϕ

ψ






+







0

1.60






with prob. p4 = 0.85.

(15)

We now look for a configuration of parameters’ values for the economic growth model dis-

cussed in Section 3 such that the dynamics described by the IFS (15), generating the Barnsley’s

fern through the chaos game, are obtained as the result of some logarithmic transformation of

the form in (11) applied to the optimal nonlinear dynamics defined by (5). In other words,

following the arguments developed in Section 4 we look for suitable values of the parameters

zi, ηi, αi, γi, φi, νi, µi, χi, ωi that allow the existence of coefficients ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 solving sys-

tem (12). Note that the existence of a pollution externality allows some of the parameters in

the random matrix (10) to take on negative values, which is specifically required in order to

generate the IFS (15).

The realization of the random matrix Q1 representing the first map in the IFS (15), w1,

imposes a constraint that yields immediately the values of ρ2, ρ4 and ρ5 for all i = 1, . . . , 4. In

fact, according to (10), µ1χ1 = 0 must hold for i = 1; as (γi + νiωi) 6= 0 in the wi maps for

i = 2, . . . , 4, replacing µ1χ1 = 0 in the first equation of system (12) for i = 1 yields ρ4 = 0,

which, when substituted in the third equation of system (12) leads to µiχiρ5 = µiχiρ1, which,

in turn implies that ρ5 = ρ1 must hold, as µiχi 6= 0 in the wi maps for i = 2, . . . , 4. Finally,

using ρ5 = ρ1 in the second set of equations of system (12) and noting that, besides having
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(γi + νiωi) 6= 0 in the wi maps for i = 2, . . . , 4, (αi + νiχi − φi − µiωi) 6= 0 at least in the w1

map (for i = 1), we observe that also ρ2 = 0 must hold. Therefore, with ρ2 = ρ4 = 0 and

ρ5 = ρ1 satisfying the first three equations in (12) for all i = 1, . . . , 4, after substituting such

values in the remaining equations the whole system boils down to the following 8 equations:











(ln∆i + ln zi) ρ1 + (1− αi − νiχi) ρ3 − (γi + νiωi) ρ6 = ζi

(lnΘi + ln ηi) ρ1 + (1− φi − µiωi) ρ6 − µiχiρ3 = ϑi

for i = 1, . . . , 4, (16)

having only the three coefficients ρ1, ρ3 and ρ6 as unknowns.

As anticipated at the end of Section 4, we will choose arbitrarily 3 out of the 8 values for

the multiplicative shocks zi, ηi (or, equivalently, ln zi, ln ηi) and leave the remaining 5 values for

zi, ηi (ln zi, ln ηi) as unknowns so that, together with the 3 coefficients ρ1, ρ3, ρ6, (16) becomes

a system of 8 equations in 8 unknowns. Specifically, we will set

ln z1 = −0.4, ln η1 = −0.2 and ln η2 = 0 (17)

and leave ln z2, ln z3, ln z4, ln η3 and ln η4 as unknowns, to be found as part of the solution for

system (16).

As far as all other parameters are concerned, we set β = 0.96, while the constant terms ζi

and ϑi in system (16) are clearly given by the coordinates of the constant vectors in the maps

wi of the IFS (15). To choose all the exponents involved in the optimal dynamics (5) we must

equate the random matrix Qi defined in (10) to the 4 values considered in the IFS (15), that is,

we must choose values for the exponents αi, γi, φi, νi, µi, χi, ωi that satisfy the following 4 sets

of conditions:

1.



































α1 + ν1χ1 = 0

γ1 + ν1ω1 = 0

µ1χ1 = 0

φ1 + µ1ω1 = 0.16

2.



































α2 + ν2χ2 = −0.15

γ2 + ν2ω2 = 0.28

µ2χ2 = 0.26

φ2 + µ2ω2 = 0.24
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3.



































α3 + ν3χ3 = 0.20

γ3 + ν3ω3 = −0.26

µ3χ3 = 0.23

φ3 + µ3ω3 = 0.22

4.



































α4 + ν4χ4 = 0.85

γ4 + ν4ω4 = 0.04

µ4χ4 = −0.04

φ4 + µ4ω4 = 0.85.

1. The third equation for the first shock realization requires that either µ1 or χ1 be zero;

we opt for the former solution, µ1 = 0, as the latter would imply that α1 is zero

as well from the first equation, which is ruled out by the basic assumptions on the

model’s fundamentals. Such choice implies that, in the first shock realization, the pro-

duction of human capital is not being affected by pollution. Setting α1 = 0.3 and

ν1 = −0.5 (output production decreases in the stock of pollution) the first equation yields

χ1 = −0.3/ (−0.5) = 0.6 (pollution increases in the stock of physical capital); setting

γ1 = 0.6, the second equation yields ω1 = −0.6/ (−0.5) = 1.2 (pollution increases in

the stock of human capital as well); finally, with µ1 = 0 the last equation implies that

φ1 = 0.16. This configuration envisages χ1 < ω1, so that human capital turns out to be

more pollution-intense than physical capital.

2. In the second set of conditions we set µ2 = −0.5 (human capital production decreases

in the stock of pollution), so that the third equation yields χ2 = 0.26/ (−0.5) = −0.52

(pollution decreases in the stock of physical capital), which, by setting α2 = 0.15 in

the first equation, leads to ν2 = (−0.15− 0.15) / (−0.52) = 0.3/ (0.52) = 0.577 (output

production increases in the stock of pollution). By setting φ2 = 0.1 the last equation

yields ω2 = (0.24− 0.1) / (−0.5) = 0.14/ (−0.5) = −0.28 (pollution decreases in the

stock of human capital), which, after substituting into the second equation, in turn yields

γ2 = 0.28 − 0.577 (−0.28) = 0.28 + 0.162 = 0.442. In this case again χ2 < ω2, but now

both have negative values, which implies that the stock of pollution is more sensitive to

changes in the stock of physical capital than in the stock of human capital.

3. In the third set of conditions again we set µ3 = −0.5 (human capital production decreases

in the stock of pollution), so that the third equation yields χ3 = 0.23/ (−0.5) = −0.46

(pollution decreases in the stock of physical capital), which, by setting α3 = 0.05 in the
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first equation, leads to ν3 = (0.20− 0.05) / (−0.46) = 0.15/ (−0.46) = −0.326 (output

production decreases in the stock of pollution). By setting γ3 = 0.05 the second equation

yields ω3 = (−0.26− 0.05) / (−0.326) = 0.31/ (0.326) = 0.951 (pollution increases in the

stock of human capital), which, after substituting into the last equation, in turn yields

φ3 = 0.22− (−0.5) (0.951) = 0.22+0.475 = 0.695. Also in this scenario χ3 < ω3, but now

χ3 and ω3 have opposite signs, meaning that they affect pollution in opposite directions.

4. In the fourth shock realization we set µ4 = −0.1 (human capital production decreases in

the stock of pollution), so that the third equation yields χ4 = −0.04/ (−0.1) = 0.4 (pol-

lution increases in the stock of physical capital), which, by setting α4 = 0.89 in the first

equation, leads to ν4 = (0.85− 0.89) / (0.4) = −0.04/ (0.4) = −0.1 (output production

decreases in the stock of pollution with the same intensity as human capital produc-

tion). By setting γ4 = 0.06 the second equation yields ω4 = (0.04− 0.06) / (−0.1) =

−0.02/ (−0.1) = 0.2 (pollution increases in the stock of human capital), which, after sub-

stituting into the last equation, in turn yields φ4 = 0.85−(−0.1) (0.2) = 0.85+0.02 = 0.87.

The fourth configuration thus has χ4 > ω4, so that physical capital turns out to be more

pollution-intense than human capital.

Table 1 summarizes all parameters’ values discussed so far.

i αi γi φi νi µi χi ωi ζi ϑi pi
1 0.3 0.6 0.16 −0.5 0 0.6 1.2 0 0 0.01
2 0.15 0.442 0.1 0.557 −0.5 −0.52 −0.28 0 0.44 0.07
3 0.05 0.05 0.695 −0.326 −0.5 −0.46 0.951 0 1.60 0.07
4 0.89 0.06 0.87 −0.1 −0.1 0.4 0.2 0 1.60 0.85

Table 1: parameters characterizing our model, additive constants and probability values
corresponding to the IFS (15) generating the classical Barnsley’s (1993) fern.

Under these parameters’ choice,

E (α) =
4

∑

i=1

αipi = 0.7735, E (γ) =
4

∑

i=1

γipi = 0.0914 and E (φ) =
4

∑

i=1

φipi = 0.7968,

such that the coefficients (6) and (7) defining the optimal policy of the model at the end of

16



Section 3 become:

i ∆i Θi

1 0.7015 0.6809

2 0.7164 0.7747

3 0.6779 0.8847

4 0.6642 0.8629

Recall that, following the discussion at the beginning of this section on the parameters’

constraints due to the first shock realization, ρ2 = ρ4 = 0 and ρ1 = ρ5. Hence, using the choice

in (17) for the values of ln z1, ln η1, ln η2, we find the following unique solution for system (16)

by means of the standard (symbolic, not numerical) ‘solve’ routine in Maple:

ρ1 = ρ5 = 5.6984

ρ2 = ρ4 = 0

ρ3 = 4.3

ρ6 = 3.9638,

with all multiplicative shocks configurations:

i zi ηi

1 0.6703 0.8187

2 0.7123 1

3 0.6731 1.0345

4 1.3824 1.3414

(18)

where the values of z1, η1 and η2 correspond to the choice in (17) and all other values are found

as a solution of (16).

Figure 1(a) reports the standard Barnsley’s fern by tracing 50,000 random iterations2 of

the affine IFS defined in (15) expressed in terms of the log-transformed variables ϕ, ψ. It is

well known that the unique invariant measure supported on the fern is singular (Theorem 1 in

La Torre et al., 2018). Figure 1(b) portraits the attractor of the corresponding nonlinear IFS

2The Maple code is available from the authors upon request.
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defined in (5) for the parameters’ values characterizing our growth model reported in Table

1, expressed in terms of physical and human capital, k, h; such attractor turns out to be a

downsized version of the fern in Figure 1(a) (rescaled by a factor 10 on the horizontal axis and

by a factor 4 on the vertical axis) which is being translated into the positive orthant (k and h

cannot be negative) and somewhat straighten up along its main branch.
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(b)

Figure 1: approximation through 50000 random iterations of (a) the IFS in (15) generating the
standard Barnsley’s fern as attractor and (b) the attractor of the corresponding nonlinear IFS in (5)

for the parameters’ values listed in Table 1.

Some comments on the parametrization employed to generate the classical fern are needed.

Leaving aside the productivity parameter values in (18), the four-shocks parameters’ config-

uration reported in Table 1 does not only clearly satisfy all the assumptions on the model’s

fundamentals, but may even be considered not totally unrealistic, as the following tentative

arguments try to clarify.

The first scenario foresees reasonable values for all three factor shares (perhaps the human

capital share, φ1, in human capital production is too low), an output production function which

decreases in the stock of pollution (ν1 < 0), while the latter increases in both the physical and

human capital stocks (χ1, ω1 > 0). The only anomalies may appear to be an output production

process that is not being affected by pollution (µ1 = 0) and a human capital production

that generates pollution with and intensity which is the double of that of physical capital
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(ω1 = 2χ1)—i.e., human capital is a dirtier input than physical capital. The latter feature

may be characteristic in an economy that is more efficient in producing physical goods than in

recycling waste generated by human activity.

In the second shock configuration, besides perhaps too low values for the physical and human

capital shares in output production and a human capital share in human capital production even

lower than in the first case, the most apparent anomalies are given by a positive relationship

between the pollution stock and output production (ν2 > 0)—i.e., pollution becomes itself some

exogenous production factor—together with a negative relationship between both physical and

human capital and pollution stock (χ2, ω2 < 0)—i.e., physical and human capital accumulation

reduces pollution. On the other hand, the negative relationship between pollution and human

capital (µ2 < 0) has an intuitive and appealing interpretation if one attributes to the latter a

broader meaning that includes health. Such scenario may describe a virtuous economy that is

capable of recycling pollution as a production enhancer (ν2 > 0), while physical together with

human capital accumulation may be thought as general progress capable of bringing about a

better and more efficient treatment and recycling of polluting by-products.

The third shock environment is characterized by even smaller values for the physical and

human capital shares in output production while the human capital share in human capital

production more realistically becomes larger. The pollution parameters envisage a reasonable

negative relationship between the pollution stock and both physical and human capital produc-

tion (ν3, µ3 < 0) together with a positive relationship between human capital accumulation and

pollution (ω3 > 0), while, again, the relationship between physical capital accumulation and

the pollution stock is negative (χ3 < 0)—i.e., physical capital accumulation reduces pollution.

In this case human capital turns out to be a dirty input while physical capital accumulation

has a beneficial effect on the environment. This may occur in an economy that invests a lot in

renewable technologies.

The last exogenous shock includes an output production function with a very large physical

capital share compared to the human capital share as well as a quite large human capital share

in human capital production, while the pollution stock decreases both physical and human

capital production (ν4, µ4 < 0) and both physical and human capital accumulation increase the
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pollution stock (χ4, ω4 > 0). Besides the excessive displacement in the final production factor

shares,3 this scenario seems to describe a somewhat more realistic economy, as human capital

happens to be a greener input than physical capital (ω4 < χ4).

5.2 A Tentative More Realistic Example

Considering the possible drawbacks of our previous parametrization, we now rely on a set of

parameter values allowing for a more intuitive interpretation of typical real world situations.

Such a configuration is summarized in Table 2.

i αi γi φi νi µi χi ωi ζi ϑi pi
1 0.05 0.94 0.05 −0.1 −0.7 0.2 0.7 0 0 0.15
2 0.15 0.84 0.15 −0.3 −0.5 0.3 0.5 0 0.44 0.30
3 0.45 0.54 0.45 −0.5 −0.3 0.5 0.3 0 1.60 0.50
4 0.70 0.29 0.70 −0.7 0 0.7 0.2 0 1.60 0.05

Table 2: factor shares, additive constants and probability values corresponding to the IFS (19).

To such configuration corresponds the following affine IFS:
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w1 (ϕ, ψ) =







0.03 0.87

−0.14 −0.44
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
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
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
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w2 (ϕ, ψ) =
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
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
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
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
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
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
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


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


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


+






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
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(19)

In order to solve the first 3m equations in system (12) in one shot we exploit the same

property that we used at the beginning of Section 5.1 of having zero as the left bottom element

3There is, however, a growing discussion on the reduction of the labor income share due to automation,
machines and AI replacing labor in tasks that it used to perform, implying that scenarios envisaging very low
intensities of human capital in final production may well deemed plausible. See, e.g., Korinek and Stiglitz (2017)
and Acemoglu and Restrepo (2018), who also propose policies aimed at countervailing such tendency and the
inequality it involves.
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in one of the four stochastic matrices Qi. Specifically we set µ4 = 0 for i = 4, so that in the

fourth shock realization the production of human capital is not being affected by pollution.

The same argument followed in Section 5.1 then immediately yields ρ2 = ρ4 = 0 and ρ5 = ρ1

satisfying the first three equations in (12) for all i = 1, . . . , 4; after substituting such values in

the remaining equations the whole system again boils down to the same 8 equations as in (16)

having only the three coefficients ρ1, ρ3 and ρ6 as unknowns. To have 8 unknowns in total as

well, again we choose arbitrarily 3 out of the 8 values for the multiplicative shocks zi, ηi (or,

equivalently, ln zi, ln ηi) and leave the remaining 5 values for zi, ηi (ln zi, ln ηi) as unknowns; in

this example we will set

ln z1 = ln η1 = ln η2 = 0 (20)

and leave ln z2, ln z3, ln z4, ln η3 and ln η4 as unknowns, to be found as part of the solution for

system (16).

We keep the individual discount factor value β = 0.96 and all the values of the constant

terms ζi and ϑi in system (12)—i.e., in the IFS (19)—are the same as the coordinates of the

constant vectors in the maps wi of the IFS (15). We choose four values for each factor share (the

first three columns in Table 2) that, together with the probabilities listed in the last column of

Table 2, on average resemble empirical evidence:

E (α) =
4

∑

i=1

αipi =
4

∑

i=1

φipi = 0.3125, and E (γ) =
4

∑

i=1

γipi = 0.6775.

Under these assumptions the coefficients (6) and (7) defining the optimal policy of the model

at the end of Section 3 become:

i ∆i Θi

1 0.2867 0.8583

2 0.2637 0.7464

3 0.2201 0.6886

4 0.2133 0.7725

As far as the four pollution parameters, νi, µi, χi, ωi, are concerned, we propose an increasing

pattern for both the (absolute value of the) intensity of pollution affecting output production,
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νi, and the intensity of physical capital accumulation adding to the pollution stock, χi, as the

physical capital share αi in output production increases; similarly, also the (absolute value of

the) intensity of pollution affecting human capital production, µi, and the intensity of human

capital accumulation adding to the pollution stock, ωi, increase as the human capital share γi in

human capital production increases. The latter property is consistent with the assumption that

in the fourth shock configuration pollution does not affect the production of human capital,

µ4 = 0, for the technical reasons explained before.

Having set ρ2 = ρ4 = 0 and ρ1 = ρ5 and using the choice in (20) for the values of

ln z1, ln η1, ln η2, we find the following unique solution for system (16) by means of the standard

(symbolic, not numerical) ‘solve’ routine in Maple:

ρ1 = ρ5 = −3.6368

ρ2 = ρ4 = 0

ρ3 = −4.6267

ρ6 = 0.0640,

(21)

with all multiplicative shocks configurations:

i zi ηi

1 1 1

2 1.1331 1

3 1.6307 0.7816

4 1.7117 0.8381

where the values of z1, η1 and η2 correspond to the choice in (20) and all other values are found

as a solution of (16).

Figure 2(a) traces 50,000 random iterations to approximate the attractor of the affine IFS

(19) expressed in terms of the log-transformed variables ϕ, ψ. By applying condition (5) of

Theorem 1 in La Torre et al. (2018) to the random matrix Qi defined in (10) we find that also

for the parameters’ values reported in Table 2 the invariant measure supported on the attractor
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in Figure 2(a) is singular, as

|det (Q1)|
p1 |det (Q2)|

p2 |det (Q3)|
p3 |det (Q4)|

p4 < pp11 p
p2
2 p

p3
3 p

p4
4 ⇐⇒ 0.1170 < 0.3191.

Figure 2(b) portraits the attractor of the corresponding nonlinear IFS defined in (5) for the

parameters’ values characterizing our growth model reported in Table 2, expressed in terms of

physical and human capital, k, h; such attractor turns out to be a downsized version of the fern

in Figure 2(a) which is being translated into the positive orthant (k and h cannot be negative)

and rotated by 180◦, consistently with both the magnitude and the (negative) signs of the

nonzero coefficients ρ1, ρ3 and ρ5 in (21).
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Figure 2: approximation through 50000 random iterations of (a) the attractor of the affine IFS in
(19) and (b) the attractor of the corresponding nonlinear IFS in (5) for the parameters’ values listed

in Table 2.

6 Conclusions

We extend the analysis of the fractal nature of steady states in macroeconomic models, by con-

sidering a stochastic two-sector discrete-time economic growth model in which shocks affect the

production function not only directly (via productivity and factor shares) but also indirectly
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(via a pollution externality). This extension is meaningful from both economic and mathemat-

ical points of view, since it allows to capture important economy-environment feedback and it

gives rise to an IFS with potential negative coefficients. This latter characteristic, completely

lacking in extant literature and due to the presence of the pollution externality, is essential

in order to prove our main result: a fully-fledged macroeconomic model can generate optimal

dynamics which, through an appropriate log-transformation, converges to a singular measure

supported on the classical Barnsley’s fern. To the best of our knowledge, no other paper is

able to generate the Barnsley’s fern as an attractor of the optimal dynamics emerging from a

meaningful macroeconomic model. It should be also emphasized that the key features of our

model allowing for a representation of the log-transformed optimal dynamics by means of an

IFS with potentially negative coefficients paves the way for possibly characterizing a quite large

family of fractal attractors, including, perhaps, the renowned maple-leaf.

This paper closes an open gap in the stochastic growth and fractal attractors literature.

Three important questions still remain open: (i) how to characterize also absolute continuity

of the invariant measure in a two-dimensional affine IFS; (ii) how to extend the analysis in

a framework in which probability are not constant but place-dependent; and (iii) which other

fractal attractors can by generated from the optimal dynamics of macroeconomic models. These

further issues are on top of our future research agenda.

Appendix: Optimal Policy Calculation in Section 3

We first eliminate controls and keep only the two state variables by restating problem (1) in

reduced-form:

max
{kt,ht}

∞
∑

t=0

βt
E0 ln

{

ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

− kt+1

}

(22)

s.t.































0 ≤ kt+1 ≤ ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

0 ≤ ht+1 ≤ ηtBth
φt

t

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0, A0, B0) are given,
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where, from the households point of view, At = kνtχt

t hνtωt

t and Bt = kµtχt

t hµtωt

t are taken as

given. An argument similar to that used in Section 3.2 of La Torre et al. (2018) applies here

to establish that problem (22) is concave.

The Euler-Lagrange equation with respect to kt is:

−
1

zt−1At−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1

− kt

+ βEt−1















ztAtαtk
αt−1
t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− kt+1















= 0,

which, by assuming that kt+1 = sztAtk
αt

t

{

ht − [ht+1/ (ηtBt)]
1/φt

}γt
for some constant 0 < s <

1, and recalling that {(zt, ηt, αt, γt, φt, At, Bt)} is an i.i.d. process, boils down to

1

kt
s
− kt

= βEt−1















ztAtαtk
αt−1
t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− sztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt















=
βEt−1 (αt)

(1− s) kt
=

βE (α)

(1− s) kt
,

where in the second equality kt has been pulled out of the expectation because, under our

assumption, kt = szt−1At−1k
αt−1

t−1

{

ht−1 − [ht/ (ηt−1Bt−1)]
1/φt−1

}γt−1

is a deterministic choice

taken at time t − 1, with all the information available at that moment (including the optimal

choice for ht), and in the last equality we used the i.i.d. assumption on the random variable

αt, so that E (α) =
∑m

i=1 piαi is a constant. Then, the Euler-Lagrange equation becomes

s

(1− s) kt
=

βE (α)

(1− s) kt
,

so that the constant term is given by s = βE (α). Hence, given the optimal choice for the

human capital ht+1 (or, equivalently, utht), the (candidate) optimal policy for the physical
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capital is given by

kt+1 = βE (α) ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

= βE (α) ztAtk
αt

t (utht)
γt , (23)

where in the last equality we have recovered the original control formulation for human capital

employed in final production. Then, from the constraint (2), the optimal consumption as in

(3) is immediately obtained.

The Euler-Lagrange equation with respect to ht leads to:

−

zt−1At−1γt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1−1
1

φt−1

(

ht

ηt−1Bt−1

)
1

φt−1
−1

1
ηt−1Bt−1

zt−1At−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1

− kt

+ βEt−1



















ztAtγtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt−1

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− kt+1



















= 0.

By using the optimal policy for physical capital (23) for both terms kt and kt+1, the last equation

simplifies into

γt−1

φt−1

(

ht

ηt−1Bt−1

)
1

φt−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]

ht

= βEt−1















γt
[

ht −
(

ht+1

ηtBt

)
1

φt

]















.

From the original dynamic constraint in (2) we can recover the control variable formulation for

human capital and substitute ht−1−[ht/ (ηt−1Bt−1)]
1/φt−1 with ht−1ut−1 and ht−[ht+1/ (ηtBt)]

1/φt

with htut, while also noting that [ht/ (ηt−1Bt−1)]
1/φt−1 = (1− ut−1)ht−1, thus obtaining:

γt−1 (1− ut−1)ht−1

φt−1ht−1ut−1ht
= βEt−1

(

γt
htut

)

,

which, again after pulling ht out of the expectation from the RHS as it is a deterministic choice

taken at time t− 1 with all the information available at that moment (while ut, representing a
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decision to be taken at time t, is still unknown at time t− 1), and simplifying terms, becomes

γt−1 (1− ut−1)

φt−1ut−1

= βEt−1

(

γt
ut

)

. (24)

Under the i.i.d. assumption we can safely assume that the expectation on the RHS is constant,

say Et−1 (γt/ut) = E (γ/u) ≡ C,4 and then rearrange the last equation as

γt−1

ut−1

= γt−1 + βCφt−1,

which, taking expectations on both terms, turns into

E

(

γt−1

ut−1

)

= E

(γ

u

)

= C = E (γ) + βCE (φ) ,

where under the i.i.d. assumption E (γ) =
∑m

i=1 piγi and E (φ) =
∑m

i=1 piφi are constants,

yielding the expected ratio

E

(γ

u

)

= C =
E (γ)

1− βE (φ)
.

Using the last expression for Et−1 (γt/ut) in (24) the optimal fraction of human capital to be

employed in the final good production as in (4) is immediately obtained.

Since the partial derivatives of the instantaneous utility along the optimal path (k∗t , h
∗
t )

defined by (5) are

∂

∂kt
u =

βE (α)

[1− βE (α)] k∗t
and

∂

∂kt
u =

βE (γ)

[1− βE (φ)]h∗t
,

the transversality condition

lim
t→∞

βt
E0

{

βE (α)

[1− βE (α)] k∗t
k∗t +

βE (γ)

[1− βE (φ)]h∗t
h∗t

}

= 0

is satisfied and the proof is complete.

4Since the realization γt is associated with a unique configuration (zt, ηt, αt, γt, φt, At, Bt) of shocks, it is
reasonable to assume that the optimal choice for ut must be the same whenever such configuration is realized.
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