EDEN 2018 ANNUAL Conference

Exploring the Micro, Meso and Macro

Navigating between dimensions in the digital learning landscape

EDEN 2018 Annual Conference
Genoa, Italy
17-20 June 2018

CONFERENCE PROCEEDINGS

Edited by
Airina Volungeviciene, András Szűcs
on behalf of the European Distance and E-Learning Network
European Distance and E-Learning Network, 2018
Introduction

The demand for people with new, enhanced skills is growing. The volume of information produced and shared in all fields is overwhelming. Building the data economy became part of the EU Digital Single Market. Powerful and sophisticated ICT is part of everyday life, and the world of learning is not an exception. Pressure is on all players of the online education community to keep up with new learning solutions, and better supply the skills currently demanded by growing economies.

Open Education continues its success, providing radical advances in knowledge acquisition, sharing, distribution, and improving business models. Digital credentials and open badges are the new currencies which are beginning to transform the economic models in education.

Social and economic tensions continue to raise the issues of scalability, the micro-credentialling of education, training and skill development processes. Practitioners and stakeholders are eagerly seeking right approaches to providing learning opportunities, and many scholars are researching holistic answers.

Micro, meso and macro aspects provide an interesting range of lenses for considering the problem. These aspects may be applied in a general sense, distinguishing between the learning of individuals, learning at the institutional or group levels through a meso lens, and the learning of organizations or societies directed through policies through the macro lens.

Navigating these dimensions are the reshaping of digital pedagogy and online instructional design; the social elements including digital societal mechanisms and the position of the individual in our new era. We have need of systematic awareness and research in the critical era of sustainable socio-cultural aspects as they relate to learning.

European Union initiatives emphasize solutions to emerging needs and seek to improve competitiveness and professional development; enhance cross-sectional skills; and fuel the engines of social innovation – creativity, entrepreneurship, critical thinking and problem solving.

The EDEN 2018 Genova Conference aims to respond to contemporary needs by:

- tracking and demonstrating evidence about the mechanisms and value chains across micro-, meso- and macro-learning
- exploiting the socio-cultural specifics related to the granularity of learning
- digging deeper into finding viable, achievable and scalable solutions
- learning more about didactical design through peer learning and scholarly observation
- discussing structural and operational questions of collaborative - social technologies
Acknowledgement and thanks are given to the Programme and Evaluation Committee

Airina Volungeviciene, EDEN President, Vytautas Magnus University, Lithuania
Marina Rui, University of Genova, Italy
Diana Andone, Politehnica University of Timisoara, Romania
Ulrich Bernath, Ulrich Bernath Foundation for Research in ODL, Germany
Lisa Marie Blaschke, Carl von Ossietzky University of Oldenburg, Germany
Stefania Bocconi, ITD-CNR, Italy
Mark Brown, National Institute for Digital Learning, Dublin City University, Ireland
Elena Caldirola, University of Pavia, Italy
Wendy Chowne, The London Institute of Banking & Finance, United Kingdom
Alastair Creelman, Linnaeus University, Sweden
Claudio Dondi, Senior Expert in Education and Training, Italy
Helga Dorner, Central European University, Hungary
Josep M. Duart, Universitat Oberta de Catalunya, Spain
Paolo Ferri, University of Milano Bicocca, Italy
Pierpaolo Limone, University of Foggia and Coordinator of EduOpen, Italy
Stefania Manca, ITD-CNR, Italy
Tommaso Minerva, University of Modena e Reggio Emilia and President of SIeL, Italy
Fabio Nascimbeni, Universidad Internacional de la Rioja, Spain
Mark Nichols, The Open University, United Kingdom
Don Olcott Jr., Carl von Ossietzky University of Oldenburg, Germany
Ebba Ossiannilsson, Swedish Association of Distance Education, Sweden
Mauro Palumbo, University of Genoa, Italy
Wim Van Petegem, Katholieke Universiteit Leuven, Belgium
Antonella Poce, University Roma III, Italy
Alfredo Soeiro, University of Porto, Portugal
Sandra Kucina Softic, University of Zagreb, Croatia
Elsebeth Korsgaard Sorensen, Aalborg University, Denmark
Andras Szucs, Secretary General, EDEN, United Kingdom
Denes Zarka, Budapest University of Technology and Economics, Hungary
TABLE OF CONTENTS

EDUCATIONAL SYSTEMS

Open Universities: The Challenge for Renewal

Alan Tait, The Open University, United Kingdom

1

Deborah Arnold, Albert Sangrà, Universitat Oberta de Catalunya, Spain

1

Business Processes Support and Automatization Systems in Educational Institutions

Katarina Tomičić-Pupek, Vjeran Strahonja, Lana Škvorc, Faculty of Organization and Informatics, University of Zagreb, Croatia

10

Characteristics of Digital and Network Society: Emerging Places and Spaces of Learning

Margarita Teresevičienė, Giedrė Tamoliūnė, Justina Naujokaitienė, Danutė Pranckutė, Vytautas Magnus University, Lithuania; Ulf Daniel Ehlers, Baden-Wurttemberg Cooperative State University, Germany

19

DEVELOPMENTS IN DIGITAL LEARNING METHODOLOGY

A model of Online Collaborative Project-Based Learning (OCPBL) within a Digital Competence Course in Higher Education

Montse Guitert, Teresa Romeu, Marc Romero, Universitat Oberta de Catalunya, Spain

22

Support Learning through Microcredentialling – The Case of the MicroHe Initiative

Ulf-Daniel Ehlers, Baden-Wurttemberg Cooperative State University, Germany, Anthony Camilleri, Knowledge Innovation Center, Malta, Raimund Hudak, Baden-Wurttemberg Cooperative State University, Germany, Henri Pirkkalainen, Tampere University, Finland, Matteo Uggeri, Fondazione Politecnico di Milano, Italy

31

Individual and Institutional Support in ODL: How the Macro may Benefit from the Micro

Antonis Lionarakis, Anna Apostolidou, Antonia-Maria Hartofylaka, Maria Niairi, Kyriaki Sfakiotaki, Hellenic Open University, Greece

38

IHE Delft’s Digital Education Transformation

Nelson Jorge, Raquel dos Santos, Ger Tielemans, Erwin Ploeger, IHE Delft Institute for Water Education, The Netherlands

47

“EdX Insights” Metrics from a Socio-Constructivist Pedagogical Perspective

Inés Gil-Jaurena, Daniel Domínguez Figaredo, National Distance Education University (UNED), Spain, Anuchai Theerarongchaísri, Chulalongkorn University, Thailand, Tsuneo Yamada, The Open University of Japan, Japan

53

Teaching in Context: Integrating Mathematical Thinking and Personal Development Planning into the Curriculum for Part-Time, Distance-Learning Engineering Students

Carol Morris, Sally Organ, Alec Goodyear, The Open University, United Kingdom

61

Enhancing Teachers’ Intercultural Conflict Management Competences through Digital Game-Based Learning: A Pedagogical Framework

Frédérique Frossard, Mario Barajas, Universitat de Barcelona, Spain

69

LEARNER NEEDS AND ATTITUDES

Identifying Learner Types in Distance Training by Using Study Times

Klaus D. Stiller, Regine Bachmaier, University of Regensburg, Germany

78
Implementing new Educational Strategies: Synergetic Effects from a University Overarching Project 87
Helen Asklund, Laura Brander, Linda Näsström, Mid Sweden University, Teaching and Learning Services, Sweden

Three Dimensions of Persistence in Distance Higher Education – The Main Actors:
Mexican Non-Traditional Students... 93
Tomás Bautista-Godínez, Damián Canales-Sánchez, Ismene Ithaí Bras-Ruíz, Coordinación de Universidad Abierta y Educación a Distancia – UNAM, México

What Factors Influence Student Decisions to Drop Online Courses? Comparing Online and Face-to-Face Sections .. 99
Alyse C. Hachey, University of Texas at El Paso, Claire Wladis, Katherine M. Conway, City University of New York, United States of America

Technical Innovation in Blended Learning: An EU Project on Continuous Vocational Education Using Multiple Devices ... 108
Peter Mazohl, University of Technology Vienna, Austria, Ebba Ossiannilsson, Swedish Association for Distance Education, Sweden, Harald Makl, Pedagogical University College, Austria

Qualitative Learning Analytics to Understand the Students’ Sentiments and Emotional Presence in EduOpen .. 115
Fedela Feldia Loperfido, Anna Dipace, Alessia Scarinci, University of Foggia, Italy

NEW ICT AND MEDIA

Video Abstracts for Scientific Education.. 123
Margret Plank, Technische Informationsbibliothek (TIB) – German National Library of Science and Technology, Germany, Paloma Marín-Arraiza, Faculty of Philosophy and Sciences – Campus Marília, São Paulo State University, Brazil, Attila Dávid Molnár, Centre for Science Communication and UNESCO Chair for Multimedia in Education, Eötvös Loránd University of Sciences, Hungary

Using a Blended Business Decision Simulation (BDS) to Gain Practical Business Experience 131
Ingrid le Roux, University of Pretoria, South Africa

A Tale of Two Simulations in Higher Education: Exploring the Benefits of a Board Game and an Online Simulation ... 141
Lynette Nagel, Bernice Beukes, Marina Kirstein, Rolien Kunz, University of Pretoria, South Africa

Assessing the Impact of Virtualizing Physical Labs .. 151
Evgenia Paxinou, Vasilis Zafeiropoulos, Athanasios Sypsas, Chairi Kiourt, Dimitris Kalles, Hellenic Open University, Greece

SOCIAL MEDIA, DIGITAL COLLABORATIVE LEARNING

Communication and Interaction in a Blog-Based Learning Space .. 159
Michelle Harrison, Thompson Rivers University, Canada

Online Group Learning is Deeply Grounded in Shared Knowledge and Space .. 169
Marco Bettoni, Steinbeis, Switzerland, Eddie Obeng, Pentacle, United Kingdom, Willi Bernhard, Nicole Bittel, Victoria Mirata, FFHS, Switzerland

Open Data for Learning: A Case Study in Higher Education .. 178
Juliana E. Raffaghelli, Open University of Catalonia, Spain
Digital Tools in the Service of Social Media – Opportunities and Roles of Education and Content Supported by Mobile Communication Devices in Support of Informal Education and Digital Competences Development...191
György Molnár, Zoltán Szűts, Budapest University of Technology and Economics, Department of Technical Education, Hungary

MOOCS: LATEST CONCEPTS AND CASES

From Books to MOOCs and Back Again: An Irish Case Study of Open Digital Textbooks.........................199
Mark Brown, Eamon Costello, Mairead Nic Gioile Mhichil, Dublin City University, Republic of Ireland

Divergent Perceptions from MOOC Designers and Learners on Interaction and Learning Experience: Findings from the Global MOOO Survey ...208
António Moreira Teixeira, Maria do Carmo Teixeira Pinto, Universidade Aberta, Portugal,
Christian M. Stracke, Esther Tan, Open University of the Netherlands, Netherlands, Achilles Kameas,
Bill Vassiliadis, Hellenic Open University, Cleo Sgouropoulou, National Quality Infrastructure System, Greece

Assessing the Effect of Massive Online Open Courses as Remedial Courses in Higher Education210
Tommaso Agasisti, Giovanni Azone, Mara Soncin, Politecnico di Milano School of Management, Italy

MOOCs in Local Young Tertiary Universities: Strategy and Metrics...218
Anne-Dominique Salamin, HES-SO, David Russo, HES-SO Vaalais-Wallis, Switzerland

DIGITAL COMPETENCES AND SKILLS

A New Approach to Digital Competence Building for University Educators in Europe..............................226
Fabio Nascimbeni, Universidad Internacional de la Rioja (UNIR), Spain, Daniel Villar-Onrubia,
Katherine Wimpenny, Coventry University, United Kingdom, Daniel Burgos, Universidad Internacional de la Rioja (UNIR), Spain

Visual Turn in the Development of Digital Pedagogical Competencies ..233
András Benedek, MTA-BME Open Content Development Resource Group, Hungary

EPCT Certification Syllabus as Mean to Attest DigCompEdu Competences ...239
Giovanni Adorni, University of Genoa, Italy, Margaret Marshall, Epict UK, United Kingdom,
Angela Maria Sugliano, EPICT Italia Association, Italy

The Role of Public Libraries to Support Formal Education Using Smart Technologies.....................................245
Sara Al Marzooqi, Abtar Darshan Singh, Hamdan bin Mohammed Smart University,
United Arab Emirates, Edward Robeck, Salisbury University, United States of America

OPEN EDUCATIONAL RESOURCES

Effective Strategies for Incorporating Open Educational Resources into the Classroom.................................255
Les Pang, Rana Khan, University of Maryland University College, United States of America

Recognition of Valid Open and Online Learning ...260
Airina Volunegvicienė, Marius Šadauskas, Danutė Pranckutė, Vytautas Magnus University, Lithuania;
Sandra Kucina Softic, SRCE, University of Zagreb, Croatia, Ferenc Tatrai, European Distance and eLearning Network, United Kingdom, Matthias Murawski, Markus Bick, ESCP Europe Business School Berlin, Germany, Julia Busche, Q21, Germany

Opening-up Education in South-Mediterranean Countries at the Macro, Meso and Micro Level...................268
Cristina Stefanelli, Mediterranean Universities Union, Italy, Katherine Wimpenny, Coventry University,
United Kingdom, Fabio Nascimbeni, Universidad Internacional de La Rioja, Spain
The Digital and Network Society Needs for Open Online Learning
Airina Volungevičienė, Elena Trepulė, Estela Daukšienė, Marius Šadauskas, Vytautas Magnus University, Lithuania, Ulf-Daniel Ehlers, Baden-Wurttemberg Cooperative State University, Germany

POLICY AND GOVERNANCE

A Digital Learning Ecologies Conceptual Framework in the Microsystem of Online Higher Education
Mitchell Peters, Montse Guitert Catasús, Marc Romero Carbonell, Open University of Catalonia (UOC), Spain

Changing Lifelong Learning Paradigm and the Digital Learning Age
Aniko Kalman, Budapest University of Technology and Economics, Department of Technical Education, Hungary

Balanced Blended Learning: Support for Decision-Makers
Marald Rouwen, Marjon Baas, Saxion University of Applied Sciences, The Netherlands

Towards Global Governance in Distance Education
Elif Toprak, Mehmet Firat, Serpil Koçdar, N. Gizem Koçak, Seçil Kaya Gülen, Erhan Akdemir, Kazim Demirer, Anadolu University, Turkey

Towards a European Maturity model for Blended Education (EMBED)
Katie Goeman, KU Leuven, Belgium, George Ubachs, EADTU, The Netherlands

Towards the Creation of a Ranking System for Online Universities: Quali-Quantitative Analysis of a Participatory Workshop
Flavio Manganello, Marcello Passarelli, Donatella Persico, Francesca Pozzi, Istituto Tecnologie Didattiche – Consiglio Nazionale Ricerche (ITD-CNR), Italy

Everything for Everybody? The Need for Distance Education to be Relevant to all its Students
Ignatius Gous, University of South Africa, School of Humanities, College of Human Sciences, South Africa

LEARNING THEORY AND IMPLEMENTATION PRACTICE

Stuck in the Middle? Making Sense of the Impact of Micro, Meso and Macro Institutional, Structural and Organisational Factors on Implementing Learning Analytics
Paul Prinsloo, University of South Africa, South Africa, Sharon Slade, The Open University, United Kingdom, Mohammad Khalil, Delft University of Technology, The Netherlands

Connect or Disconnect: Academic Identity in a Digital Age
Sue Watling, University of Hull, United Kingdom

Model-Based Approach for Penetrating Education Systems by Digital Transformation Knowledge
Christian-Andreas Schumann, Frank Otto, Claudia Tittmann, Kevin Reuther, Eric Forkel, Jens Baum, Julia Kauper, West Saxon University of Zwickau, Martin-Andreas Schumann, Chemnitz University of Technology, Germany, Feng Xiao, Tongji University, China

A Practice Orientated Framework to Support Successful Higher Education Online Learning
Paula Shaw, University of Derby, England

NATIONAL DIGITAL EDUCATION CASES

The French Thematic Digital Universities – A 360° Perspective on Open and Digital Learning
Deborah Arnold, AUNEGE, France

A Collaboration & Learning Environment to Enable to be a University Leader in Education Innovation
Willem van Valkenburg, Delft University of Technology, The Netherlands
Bavarian Virtual university – Best Practice for a Network of Higher Education Online.................................368
 Steffi Widera, Ingrid Martin, Bavarian Virtual University, Germany

Traditional and On-Line Universities, a Partnership for the Present and the Future of Education375
 Maria Amata Garito, Alessandro Caforio, Università Telematica Internazionale UNINETTUNO, Italy

Blended Learning Teaching: The Story of a Social Network with a History ...383
 Ana Rodríguez-Groba, Adriana Gewerc, Fernando Fraga-Varela, Almudena Alonso-Ferreiro,
 University of Santiago de Compostela, Spain

SOCI-CULTURAL ASPECTS OF DIGITAL LEARNING

MuseTech: A Web App to Enhance 21st Century Skills through Heritage Education392
 Antonella Poce, Francesco Agrusti, Maria Rosaria Re, Università Roma Tre, Italy

Boundary Crossing: International Students’ Negotiating Higher Education Learning with
 Digital Tools and Resources ..401
 Mengjie Jiang, Palitha Edirisingha, University of Leicester, United Kingdom

Supporting Learning in Traumatic Conflicts: Innovative Responses to Education in Refugee Camp
 Environments ..413
 Alan Bruce, Imelda Graham, Universal Learning Systems, Ireland, Maria-Antònia Guardiola, UOC, Spain

Haptic Prototype Assembly Tool for Non-Sighted, Visually Impaired and Fully Sighted Design
 Students, Studying at a Distance ..420
 Lisa Bowers, Ryan Hayle, Nick Braithwaite, The Open University, Farshid Amirabdollahian,
 University Hertfordshire, United Kingdom

E-LEARNING AT WORK AND FOR THE WORKPLACE

Using Microlearning Modules in an Integrated Talent Acquisition Framework to Enhance
 Corporate Talent Management Process ...432
 Teemu Patala, Context Learning, Finland, Alan Bruce, Universal Learning Systems, Ireland

Higher Creduation – Degree or Education? The Rise of Microcredentials and its Consequences
 for the University of the Future ..440
 Ulf-Daniel Ehlers, Baden-Wurttemberg Cooperative State University, Germany

Online Distance Courses for Older Workers: A Maltese Case Study ..450
 Joseph Vancell, University of Hull, United Kingdom

A Multi-Scale Approach to Learning Innovation Design ..459
 Susanna Sancassani, Paolo Marenghi, Daniela Casiraghi, METID Politecnico di Milano, Italy

TRAINING OF DIGITAL UNIVERSITY TEACHERS

Distance Learning and Teaching: Understanding the Importance of Tuition Observations..........................467
 Chris Douce, School of Computing and Communications, The Open University, United Kingdom

Activity Theory as Design Tool for Educational Projects and Digital Artifacts ..472
 Corrado Petrucco, Cinzia Ferranti, University of Padova, Italy

“The Cobbler Who Wears the Best Shoes”: How to Educate the Staff of the Higher Education
 Institutions Using Digital Technologies: Study of the Plekhanov University Experience479
 Olga A. Grishina, Dinara R. Tutaeva, Alexey I. Grishin, Plekhanov Russian University of Economics, Russia

Educamps in Distance Education: Professional Development and Peer Learning for Student
 Teachers in ICT ...485
 Sólveig Jakobsdóttir, University of Iceland, School of Education, Iceland
CHINA E-LEARNING PANORAMA

A Study on Designing Online Learning Activity ... 492
 Song Li, School of Education and Instruction, The Open University of China, China

The Open University of China and Chinese Approach to a Sustainable and Learning Society 500
 Yanwei Qi, Wei Li, The Open University of China, China

MOOCs Copyright protection in China ... 506
 Jie Li, The open university of China, China

POSTERS

The Theory – and Especially the Practical Implementation – of Spaced Repetition in Real Life
 Study Circumstances .. 510
 Ignatius Gous, University of South Africa, School of Humanities, College of Human Sciences, South Africa

Does a Rapid Prototyping Method Stimulate our Time-Pressured Teachers to Design Rich and
 Blended Learning Environments? .. 511
 Sylke Vandercreyssse, Sofie Bamelis, Delphine Wante, Kurt Galle, VIVES University of Applies Science, Belgium

Alebrije Model for the Development and Supply of Educational Content 515
 Jorge León Martínez, Edith Tapia-Rangel, National Autonomous University of Mexico (UNAM), Mexico

International Collaborations in Blended Learning: A Double Degree Model 519
 Charles Krusekopf, Royal Roads University, Victoria, BC, Canada

Student Active Learning in Net Based Education – Educational Development in Teaching of
 Information Literacy ... 525
 Anna Gahnberg, Sonja Fagerholm, Swedish National Defence University, Anna Lindh Library, Sweden

Online Induction to Support Transition to Taught Postgraduate Study 528
 Megan Kime, University of Leeds, United Kingdom

An Innovative Tool to Assist the Creation of High Quality Open, and Distance Learning Courses –
 The Virtual Teachers Toolbox (VTT-BOX.EU) .. 534
 Peter Mazohl, University of Technology Vienna, Austria, Ebba Ossiannilsson, Swedish Association for
 Distance Education, Sweden, Harald Makl, Pedagogical University College, Austria, Maria Ampartzaki,
 Michail Kaloiannakis, University of Create, Greece

University Students as Digital Content Creators .. 541
 Marco Toffanin, Alessio Surian, University of Padova, Italy

Efficiency of the Computer Aided Education in Basic Statistics Course 546
 Anita Csesznák, Réka Szobonya, Budapest Business School, Hungary

The Figure of the Tutor in the BA SDE on Line: An Explorative Survey on the Vision and Perception
 of Students .. 552
 Beatrice Partouche, Università degli Studi Foggia-Roma Tre, Sebastina Sabrina Trasolini,
 Università degli Studi Roma Tre, Italy

Bridging the Gap between Education, Training and the World of Work through the DC4JOBS
 Project’s e-Platform ... 560
 Anca Colibaba, Universitatea Gr.T.Popa Iasi, Romania/ EuroED Foundation Romania, Irina Gheorghiu,
 Albert Ludwigs University Freiburg, Germany, Stefan Colibaba, Universitatea Al. I. Cuza Iasi,
 Cintia Colibaba, Universitatea Ion Ionescu de la Brad Iasi, Claudia Elena Dinu, Universitatea Gr.T.Popa
 Iasi, Ovidiu Ursa, Universitatea Iuliu Hatieganu Cluj-Napoca / QUEST, Romania
The Pedagogical Exploitation of Land Art with ICT for the Cultivation of Creativity: The Case of ActionBound (Augmented Reality Application) ... 568
Alexia Spanoudaki, University of Crete, Greece, Alexandros Stavrinos, Anglia Ruskin University, United Kingdom

Improvement of Grants Support Process in Schools ... 574
Martina Tomičić Furjan, Igor Pihr, Faculty of Organization and Informatics, University of Zagreb, Croatia

Learning & Social Network at the University of Crete (ELearning LAB) ... 582
Panagiotes Anastasiades, University of Crete, Department of Education – eLearning Lab, Greece

An Analysis of Content and Policies in Computer Science Education in United States 590
Dorian Stoilescu, Western Sydney University, School of Education, Australia

“Connecting Schools” Project: Working for an Inclusive Learning Network ... 595
Sonia Camara, Airea-elearning, Itziar Kerexeta, University of Basque Country, Spain

Results of Advanced Statistics Education for Economists on B.Sc Course 600
Éva Sándorné Kriszt, Anita Csesznák, Réka Szobonya, Budapest Business School, Hungary

Development Opportunities for Labour Market Competences at the Base of Higher Education 606
Katalin Nagy, György Molnár, Budapest University of Technology and Economics, Department of Technical Pedagogy, Hungary

Facilitating Young People’s Induction into the World of Work through the WWW Online Apprenticeship Simulator ... 608
Anca Colibaba, Universitatea Gr.T. Popa Iasi / EuroED Foundation, Stefan Colibaba, Universitatea Al. I. Cuza Iasi, Romania, Anais Colibaba, Trinity College Dublin, Ireland, Rodica Gardikiotis, Universitatea Gr.T. Popa Iasi, Ovidiu Ursa, Universitatea Iuliu Hatieganu Cluj-Napoca / QUEST, Romania

EMEMITALIA 2018 - WIDENING LEARNING HORIZONS

Le Interazioni tra Docenti nei Social Network: Un Caso di Studio sui Gruppi Chiusi di Facebook 619
Francesca Zanon, Denise Benvenuto, Università degli Studi di Udine, Italia

Digital Learning for Both Self-Directed and Cooperative Learning in Lifelong Learning 629
Beatrice Ruini, Università di Modena e Reggio Emilia, Italy

Esperienze di Didattica Universitaria Attraverso una piattaforma Video: La prospettiva del Docente e le Proposte di Student Engagement ... 637
Cinzia Ferranti, Cecilia Dal Bon, Marco Toffanin, Università degli Studi di Padova, Italia

A Multiple Approach to Support International Collaboration on MOOC Design: The Experience of Tomorrow’s Land MOOC ... 647
Valeria Baudo, Daniela Casiraghi, Alessandra Tomasini, Susanna Sancassani, Politecnico di Milano – METID, Italy

I MOOC per L’alta Formazione: I Master su EduOpen Attivati dall’Università di Modena e Reggio Emilia ... 657
Annamaria De Santis, Katia Sannicandro, Bojan Fazlagic, Claudia Bellini, Cinzia Tedeschi, Tommaso Minerva, Università degli Studi di Modena e Reggio Emilia, Italia

Esperienze Formative e Prodotti Innovativi Presso l’Università degli Studi di Pavia nel Quadro Strategico Europeo ET 2020 ... 665
Elena Caltirola, Rosalia Palumbo, Annalisa Golfredi, Enrica Crivelli, Daniela Boggiani, Donata Locatelli, Università degli Studi di Pavia, Italia
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemi e Software Open Source Nella Formazione Degli Insegnanti per Una Scuola Senza Esclusi</td>
<td>Muonio Pierluigi, Università della Calabria, Italia</td>
</tr>
<tr>
<td>ZenBOT – Agente per il Supporto delle Attività Format–ive in Ambiente Moodle</td>
<td>Andrea Zappi, Roberto Beccari, Green Team Società Cooperativa, Italia</td>
</tr>
<tr>
<td>Comprensione Testuale e Successo Accademico degli Studenti a Distanza</td>
<td>Luciano Di Mele, Gianluigi Cosi, Uninettuno University, Italia</td>
</tr>
<tr>
<td>Teaching Digital Skills to Future Teachers: A Blended-Learning Workshop Experience</td>
<td>Floriana Falcinelli, Elisa Nini, Università degli Studi di Perugia, Italy</td>
</tr>
<tr>
<td>Innovazione e ICT Nell’insegnamento di Informatica del Corso di Laurea in Medicina e Chirurgia</td>
<td>Maria Renza Guelfi, Marco Masoni, Jonida Shtylla, Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Andreas R. Formiconi, Dipartimento di Statistica, Informatica, Applicazioni</td>
</tr>
<tr>
<td>Valutazione e Certificazione Delle Competenze Negli Ambienti di Apprendimento Digitali</td>
<td>Luciano Cecconi, Università degli Studi di Modena e Reggio Emilia, Italia</td>
</tr>
<tr>
<td>MLTV, Rendere L’apprendimento e il Pensiero Visibili Nella Scuola Secondaria di Secondo Grado</td>
<td>Silvia Panzavolta, Elena Mosa, Chiara Laici, Maria Guida, Letizia Cinganotto, INDIRE, Italia</td>
</tr>
<tr>
<td>Teachers’ Digital Culture: The Horizon of Italian Participants in a TFA Course</td>
<td>Fedela Feldia Loperfido, Katia Capaseno, Anna Dipace, Alessia Scarinci, Università di Foggia, Italy, Jarmo Viteli, University of Tampere, Finland</td>
</tr>
<tr>
<td>Promuovere L’innovazione Didattica e lo Sviluppo Professionale Della Docenza Universitaria: Primi Risultati Dello Sportello E-Learning Dell’università’ di Firenze</td>
<td>Marcantonio Catelani, Presidente Servizi Informatici Ateneo Fiorentino (SIAF), Andreas Robert Formiconi, Delegato del Rettore all’e-learning, Università di Firenze, Maria Ranieri, Dipartimento di Scienze della Formazione e Psicologia, Università di Firenze, Francesca Pezzati, Università di Firenze SIAF, Italia, Juliana Elisa Raffaghelli, Universitat Oberta de Catalunya, Spagna, Isabella Bruni, Università di Firenze SIAF, Italia</td>
</tr>
<tr>
<td>Online Tutoring to Enhance University Success</td>
<td>Alice Barana, Cecilia Fissore, Marina Marchisio, Sergio Rabellino, University of Torin, Italy</td>
</tr>
<tr>
<td>Disegnare L’apprendimento: Un Modello Dinamico per Pianificare Percorsi dal Micro- al Meso- al Macro-Learning</td>
<td>Flavia Giannoli, Docente formatore MIUR, Italia</td>
</tr>
<tr>
<td>Innovazione della Formazione: Il Modello di e-Learning Adottato dall’Esercito Italiano</td>
<td>Marina Marchisio, Sergio Rabellino, Università di Torino, Enrico Spinello, Gianluca Torbidone, Comando per la Formazione e Scuola di Applicazione dell’Esercito, Italia</td>
</tr>
<tr>
<td>Didattica per Competenze: Azioni e Figure Nella Formazione Universitaria</td>
<td>Claudia Bellini, Annamaria De Santis, Katia Sannicandro, Tommaso Minerva, Luciano Cecconi, Università degli Studi di Modena e Reggio Emilia, Italia</td>
</tr>
</tbody>
</table>
Competenze Critiche e Riflessive in un Corso Universitario Blended ...810
Nadia Sansone, Donatella Cesareni, Ilaria Bortolotti, Università di Roma La Sapienza, Italia

Attivazione, Erogazione e Monitoraggio dei Corsi di Laurea Blended dell’Università degli Studi di Modena e Reggio Emilia ..818
Katia Sannicandro, Annamaria De Santis, Bojan Fazlagic, Claudia Bellini, Cinzia Tedeschi, Tommaso Minerva, Università degli Studi di Modena e Reggio Emilia, Italia

Mappe Dinamiche per “Navigare la Conoscenza” ..827
Antonio Marzano, Sergio Miranda, DISUFF, Dipartimento di Scienze Umane Filosofiche e della Formazione, Università degli Studi di Salerno, Italia

Formazione dei Futuri Insegnanti e Tecnologie: Atteggiamenti e Percezioni di Apprendimento in un Percorso Blended Basato sull’Approccio Trialogico ...841
Nadia Sansone, Donatella Cesareni, Federica Micale; Università La Sapienza, Roma, Italia

Scenari del Lavoro, Futuro e Formazione 4.0 ...849
Prof. Giuditta Alessandrini, Dipartimento di Scienze della Formazione, Università degli Studi di Roma Tre, Italia

Il Ruolo dei Gesti Significativi del Docente nei Video Multimediali per l’Educazione ...855
Riccardo Fattorini, Gisella Paoletti, Università degli Studi di Trieste, Italia

Imparare ad Insegnare il Pensiero Computazionale: Un’esperienza di Vera Alternanza
Scuola-Lavoro Presso L’università di Genova ...862

Gli Open Learners di EduOpen: Numeri e Prospettive ..871
Annamaria De Santis, Katia Sannicandro, Bojan Fazlagic, Claudia Bellini, Cinzia Tedeschi, Tommaso Minerva, Università degli Studi di Modena e Reggio Emilia, Italia

Developing Competence Assessment Systems in e-Learning Communities ...879
Alice Barana, Luigi Di Caro, Michele Fioravero, Francesco Floris, Marina Marchisio, Sergio Rabellino, University of Turin, Italy

Un Significativo Isomorfismo la “Classe Di Bayes” Tra Teoria Pratica ..889
Paolo Maria Ferri, Stefano Moriggi, Università degli Studi Milano Bicocca, Italia

Il Numero 0 del Primo Giornale Online Della Cattedra Unesco in “Antropologia Della Salute. Biosfera e Sistemi di Cura” ...898
Anna Siri, Antonio Guerci, Università degli Studi di Genova, Donatella Gennai, Istituto Comprensivo Cogoletto, Mauro Carosio, Marina Rui, Università degli Studi di Genova, Italia
DEVELOPING COMPETENCE ASSESSMENT SYSTEMS IN E-LEARNING COMMUNITIES

Alice Barana, Luigi Di Caro, Michele Fioravera, Francesco Floris, Marina Marchisio, Sergio Rabellino, University of Turin, Italy

Abstract

This paper presents the development of systems for helping a community of educator to share and reuse digital learning materials, and for enabling learners to enhance their online formative assessment. This educational design research is conducted iteratively toward dual goals: fostering competency-based assessment and proposing new structured knowledge for practitioners facing similar issues. Two main products respectively related to the research goals are presented, to be used as the core of the systems integrated to virtual learning communities: a methodology for planning automatic assessment units as parts of adaptive learning paths, and an ontological scheme about the relations between cognitive processes and disciplinary contents defining learning objectives. The outcomes are discussed considering results obtained from some experimentation.

Introduction

The spread of Technology Enhanced Learning and the growth of Virtual Learning Communities (VLCs) rely deeply on the efficiency of the processes of finding, sharing, reusing, and analysing educational contents. Considering the scope of automatic assessment, the present research proposes methodologies and tools for supporting the assessment of competences in VLCs. The research involves the development of a system integrated in Learning Management Systems (LMSs) hosting the VLC: it serves as engine for the automatic generation of digital maps from the collection of resources shared by the community of instructors. The maps will generate “learning object trajectories” (or “learning paths”), which are paths composed of nodes and edges: a node is a reference to a resource available in the LMS, while an edge between two nodes is created by matching commonalities between learning intentions and success criteria related to the two learning objects identified in the nodes. The system’s usage will be twofold: to support teachers to design e-learning units for competence assessment and to enhance their usage by the students for self-assessment. More specifically, the system will serve as and information retrieval system for the instructors, and as a recommender system for the students. It will be adaptive in the sense that it will provide materials according to success criteria compared to students’ results. Furthermore, it will provide the community of teachers with aggregate analyses on the results of the community of students, to foster discussions on the effectiveness of the materials and methodologies proposed among the community of teachers.
Developing Competence Assessment Systems in e-Learning Communities

Alice Barana et al.

instructors. This paper presents the development process and the results obtained from a mixed qualitative and quantitative analysis conducted by our University in few projects.

State of the art

There is no universally shared definition of competence (or competency). Competence means the ability to cope with a task, or a set of tasks, managing to activate and orchestrate internal, cognitive, affective and willful resources, and to use the external resources available in a coherent and fruitful way. Series of progressive specific objectives can compose the set of targets toward the competences expected at the end of a scholastic path. Several taxonomies have been published and largely used for the design and interpretation of both learning objectives and achievement tests. Examples are Bloom’s Taxonomy (1956) and Anderson and Krathwohl’s revision of Bloom’s taxonomy (2001). Focusing on mathematics education, and assuming that all cognitive levels could be tested using objective test questions (Beever & Paterson, 2003), the use of an Automatic Assessment System can efficiently support the preparation of activities aimed at obtaining, managing and monitoring performance results to validate the achievement of learning objectives (Barana & Marchisio, 2016; Barana, Marchisio, & Rabellino, 2015). The extension of the taxonomical models for automatic assessment can be enriched if implemented as semantic technologies. Taxonomy differs from other formalizing knowledge resources by their degree of formalization (Navigli, 2016). Higher-formalized instrument are Ontologies, which have been used for many different tasks (Elizarov et al., 2014). Considering the contest of virtual communities, semantic technologies integrated with automatic assessment tools can have great impact on formative assessment. Formative assessment is the way learners use information from judgments about their work to improve their competence. Since the nineties, the concern about formative assessment has grown to cover one of the major issues in the educational research. Paul Black and Dylan Wiliam conceptualized formative assessment through five key strategies (2009). The present research is conceived to implement Black and William’ five strategies into five innovative actions in VLCs. The implementation strongly relies on Natural Language Processing (NLP) techniques. The work is carried within communities of practice that have certain characteristics of innovativeness, responsiveness to evidence, connectivity to basic science, and dedication to continual improvement (Spector et al., 2014). The research seeks to understand how designs function under different conditions and in different contexts, which however share the common characteristic of constituting a Virtual Learning Community (VLC) (or a “community of communities”) (Pardini et al., 2013). A VLC is a system where

- instructors (experts in the disciplines to be learned) manage one or more courses dedicated to a group of learners;
- tutors (discipline and ICT experts) help instructors in experimenting innovative methodologies for teaching, creating digital materials, peer collaboration, sharing resources and best practices, using advanced tools integrated to the LMS that hosts the online courses;
- instructors and tutors agree upon a framework of competences expected to be achieved by the learners at the end of the learning process.
Developing Competence Assessment Systems in e-Learning Communities
Alice Barana et al.

The research is conducted with VLC at local, national and European level. The VLCs involved have in common the technologies available: a Virtual Learning Environment (VLE) integrated with an Advance Computing Environment an Automatic Assessment System and a web conference system. The asset developed and proposed has proved to be an essential tool both to allow collaborative learning among teachers and to promote problem posing and problem solving as learning methodologies, to the extent of revolutionizing the teaching of scientific subjects (Brancaccio et al., 2015), also in different European countries (Barana et al., 2017; Brancaccio et al., 2016). It is also effective for reducing scholastic failures (Barana & Marchisio, 2015).

Methodology

The research investigates the possibility to create an innovative information retrieval (for instructors) and recommender (for learners) system. The system shall enable a process for:

- automating the organization of materials for automatic assessment according to learning objectives;
- support instructors in retrieving materials from a search by natural language descriptions;
- adaptively providing materials to the learners for activating a process of formative assessment;
- aggregate students’ results to foster instructors’ discussion on top of advanced analysis.

The system is designed to automatically organize shared digital materials providing that the creators publish their contents jointly with natural language descriptions of the intended learning objectives. To build such system integrated to an LMS, two outputs have been created: (a) a model for the association of learning materials with natural language descriptions related to the implied competences; (b) an ontology for enabling the automatic interpretation of the descriptions.

As primary practical contribution, the methodological principles for descriptors are used in several projects at national and local scale by instructors and tutors working within VLCs. The research involves a mixed qualitative and quantitative analysis. The methods used are: observations, synchronous online interviews, online questionnaires, document analyses, online content analysis, web-based experiments. The research methodology follows the three-interacting phases model of McKenney and Reeves (Spector et al., 2014): analysis/orientation, design/development and evaluation/retrospective phases. Furthermore, it is characterized as follows:

- **Adaptive**: the intervention and research design are adjusted in accordance with insights emerging from inquiries on instructor.
- **Grounded and oriented by theory**: firstly, the work is guided by educational theory about formative assessment, learning tasks and cognitive processes, empirical findings from learning communities, and craft wisdom generated by investigation. Moreover, the design and development work is undertaken to contribute to a broader scientific
understanding of cognitive processes activated during online assessment, and how it can contribute to evidence competence.

- **Interventionist**: the experimentation is undertaken to make a change in the particular educational context of virtual learning communities for STEM education.
- **Collaborative**: the research requires the expertise of multidisciplinary partnerships, instructors, experts in education and experts in Computer Science and in particular of NLP.
- **Pragmatic**: it is concerned with generating ontologies usable by the semantic web community, and solutions for automatic formative assessment.
- **Iterative**: research evolves through multiple cycles of design, development, testing and revision.

Associating of learning materials to natural language descriptions related to competencies

A triple of student-centred descriptors (*Performance*, *Requisites*, *Objectives*) is proposed to strengthen instructors’ reasoning on the selection of contents, development of an instructional strategy, and construction of tests and other instruments for assessing competencies. The triple to be included as metadata of a shared material for automatic assessment is defined as follows.

- **Performance** (also known as *instructional objectives*, *behavioural objectives* or *learning objectives*) is a specific statement of the observable behaviour required to who attempts performing the material.
- **Requisites** (or *prerequisites*) states the instructor’s belief of the necessary and sufficient condition to attempt performing the material.
- **Objectives** (or *goals*) specifies what learners are required to be able to do as a result of the learning activity related to the material.

Performance is proposed to activate a reflection on the structure of the materials used online, therefore should be useful to the teacher both in the design phase, and during the research and afterwards. A well-written performance should meet the following criteria: describe a learning outcome (what the student will be able to do, that *can be observed* directly), be student-oriented (describing the conditions under which the student will perform the task), be observable (indicating criteria for evaluating student’s performance). Optionally, a degree of mastery needed can be explicated. *Requisites* indicates the learning goals that should be acquired before attempting to answer. It connects to the essential objectives that are supposed to be mastered. *Objectives*, differently from *Performance*, does not depend on the type of response field. The statement should not simply describe a list of topics, that being too abstract, too narrow, nor being restricted to lower-level cognitive skills.

Ontology for enabling the automatic interpretation of natural language descriptions

Materials’ descriptors express which student’s performance is required in terms of activated cognitive processes and types of knowledge on which these processes operate. The adoption of a taxonomic model is proposed as the main reference effecting both instructors and learners:
during the design phase, it is important to “space” in the definition of learning tasks; moreover, automatically subsuming cognitive processes and knowledge types implicit in a material is the key for adaptively advising students with variegated resources. The ontological implementation of Anderson and Krathwohl’s taxonomy, to be used together with an Italian translation of OntoMathPRO, is proposed for clustering resources according to their similarity with respect to the thinking skills and types of knowledge involved. The possibility of matching similarities among digital materials is crucial for building mapped data sets of entities and relationships across entities useful for automatic formative assessment strategies.

Anderson and Krathwohl proposed a classification of cognitive processes and knowledge types: 11 types of knowledge organized into 4 categories (Facts, Concepts, Procedures, Metacognition), and 19 basic processes organized into 6 categories (Remember, Understand, Apply, Analyse, Evaluate, Create) ordered by ascending cognitive complexity. Cognitive complexity should not be confused with difficulty: for each cognitive process it is possible to design material that vary from easy to challenging. In fact, the defined epistemological categories are deeply interrelated and dependent on each other: cognitive processes activated in resolving learning tasks often operate in a coordinated manner. Cognitive processes “operate” on types of knowledge, which are considered both as objects and as a product of cognitive processes.

Considering Anderson & Krathwohl’s taxonomy, a material can be linked to a set of concepts’ couples referring to a 4×6 matrix: the first dimension of the matrix represents the types of knowledge while the second dimension represents the cognitive processes involved. The connection between a material and a matrix’s element is established by identifying cognitive processes and knowledge type from its content or metadata. Clues to be found are the following:

- one or more action verbs, each being a synonym of a single cognitive process;
- one or more disciplinary terms, each related to a single knowledge concept;

The presence of an action verb (leaf element) is considered as an indicator of a cognitive process as defined by Anderson & Krathwohl.

Considering the previous observations, this research uses an ontological version of Anderson & Krathwohl taxonomy, to be integrated with the domain-specific OntoMathPRO ontology (Elizarov et al., 2014). OntoMathPRO is a bilingual (Russian/English) ontology of mathematical knowledge, geared to be the hub for math knowledge on the Web of Data. The developers share the sources with the Semantic Web community. This research proposes the adoption and translation of OntoMathPRO also in the Italian panorama. The modelling principles for building Anderson & Krathwohl’s ontology follow the ones of OntoMathPRO ontology:

- Only classes, no individuals. Since the ontology provides a linguistic resource for text processing, individuals shall be found in concrete occurrences of named entities in descriptors.
ISA vs. whole-part. Since there are only classes instead of individuals, hierarchies are modelled in accordance with ISA relation. Whole-part semantics is expressed through ISA relation considering its interpretability according to the set theory.

Validating classes and relations. Terms to be added to the ontology require a reference from a refereed publication. Establishing correct relation instances relies on their validation by experts involved in the development.

URI naming convention. The ontology is bilingual (Italian/English), Italian and English labels and comments are added for each concept, providing respectively their human-readable terminology and description. Surrogate URIs are used.

Multiple inheritance. Multiple inheritance with respect to ISA-relationships is permitted.

Synset as label. Synonyms are represented by labels of the same class.

Results and discussion

The model for associating natural language descriptions was firstly experimented by two experts. A first collection of 196 digital units for automatic assessment was selected from the group of problems created with Maple TA by secondary school instructors and shared within the Italian community of “Problem Posing and Solving” (Barana et al., 2018). The units were extracted from 98 questions for automatic assessment: a unit is identified as a response field and the text that precedes it. The questions belong to “disciplinary” groups, which give the following partition on the collection of units: Contextualized problem about Algebra (4), Monomials (68), Polynomials (38), Special products (24), Contextualized problem about Probability (7), Statistics (36), Probability (13), Contextualized problem about Statistics (6). This 8-feature partition (that will be referred as D) is compared with the results from a clustering algorithm operating on the PRO descriptors, setting to 8 the number of clusters to be generated.

The clustering algorithm is executed on the similarity matrices constructed by calculating the similarity for each pair of vectors representing respectively Performance (P), Requisites (R) and Objectives (O) of each unit. The process is done for the first author (1) and the second author (2). To construct a vector from an input string representing a descriptor, the following phases are performed: tokenization, stop words removal, stemming, bag-of-words representation. The corpus of vectors is used to initialize the transformation model. The “training” consists in going through the supplied corpus once and computing document frequencies of all of its features. The transformation model is used to convert any vector from the bag-of-words representation to the representation based on the term frequency–inverse document frequency statistic (tf-idf). The similarity matrix is constructed by calculating the cosine similarity for each pair of vectors. Mini Batch k-Means is the clustering algorithm chosen (Pedregosa et al., 2011). It returns a list of 196 labels: each unit is labelled with one out of k clusters, where k (set to 8) is the number of clusters to be generated.

Clusterings generated from different collections of input strings are compared as follows, in two experiment phases. Firstly (phase 1), the clustering process was repeated 10 times following the previously described phases, setting to 8 the number of clusters that the Mini Batch k-Means
algorithm has to generate. To estimate the correlation between different clusterings, the v_measure homogeneity metric is used, which expresses how successfully homogeneity and completeness criteria have been satisfied between two clusterings (Rosenberg & Hirschberg, 2007). The experiment was repeated (phase 2) attempting noise reduction using the structured ontological knowledge. The parsing step is affected by the following rules for tokens’ filtering:

1. Words that appear in less than 2 input strings are filtered out.
2. Words that appear in more than the half of the input strings are filtered out.
3. Words are kept regardless the previous rules, if they belong to the set of concepts contained in the ontologies.
4. After the previous rules, only the first n most frequent words are kept.

These rules are proposed to enhance the influence of semantically relevant concepts. The experiment was repeated with the value of n between 7 and 15 in steps of 2. The range for number n was chosen considering the average lengths of vectors. On average, the length of vectors generated from Requirements and Objectives is 6. Considering the Performance, the value of the length of the vectors generated it is 14 for the first author and 10 for the second author.

Figure 1 shows the mean of the v_measure values obtained comparing each of the 6 clusterings generated from the units’ descriptors of each given author (1P, 1R, 1O, 2P, 2R, 2O) to respectively the “ground truth” labelling by disciplinary area (D): the first experiment results are represented as dots on the line, while the results from the experiment repetitions for different values of n are represented as bars. The standard deviation values are about two orders of magnitude smaller than the means.

The results from the two authors tend to reach an approximate level of symmetry, which suggest that a good level of inter-annotation agreement can be achieved from different authors. Phase 1 results show that there is high mutual information among each pair of clustering. The v_measure mean values decrease with the decreasing of n, Performance is the only descriptor which maintain alignment with the “disciplinary” labelling for values of n close to its average vector length. Phase 2 results suggest that filtering enables to generate clusters which express concepts slightly different from the disciplinary grouping. The D clustering was generated by the questions partition. Using an ontology can effectively extract meaningful terms referring to
concepts more related to the descriptors. Adopting ontologies as semantic-proxies will enable to capture those semantic related concepts.

The model for associating natural language descriptions is also experimented with instructors. Teachers, tutors, and experts are involved in creating new collection of materials whose design starts from the PRO descriptors. Those will be tested with similar clustering analysis. Before explaining to a group of 26 teachers the PRO methodology, they were asked to submit answers to a questionnaire inquiring whether they think about similar design aspects before starting to realize a question (design phase), during the creation (realization phase), in the phase of administration to the students (use phase). Table 1 shows that teachers’ dedication to the specification of descriptors while designing materials is natural (Likert scale from 1 to 5).

Table 1: mean and standard deviation to the answers from the questionnaire

<table>
<thead>
<tr>
<th>Question</th>
<th>Phase</th>
<th>Mean</th>
<th>Std dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How much do you reflect on the way in which the question allows you to measure the achievement of the objectives set in the following phases?</td>
<td>design</td>
<td>3.962917566</td>
<td>0.755928946</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>realization</td>
<td>3.844344152</td>
<td>0.683461909</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>use</td>
<td>2.734386367</td>
<td>1.305838972</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>design</td>
<td>3.598758769</td>
<td>0.920908553</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>realization</td>
<td>3.51227498</td>
<td>0.890870806</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>use</td>
<td>3.0873379</td>
<td>1.083791112</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>design</td>
<td>4.066593604</td>
<td>0.773717943</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>realization</td>
<td>3.795259106</td>
<td>0.832993128</td>
</tr>
<tr>
<td>How much do you reflect on the requirements necessary to answer a question in the following phases?</td>
<td>use</td>
<td>3.019007314</td>
<td>1.160576915</td>
</tr>
</tbody>
</table>

Conclusions

The investigation continues collaborating with various University projects activated with the different VLCs at local, national and European level. Qualitative analysis on these materials helps to refine the methodology. The system’s development continues with the implementation of a web-based tool integrated to the LMS hosting the VLCs involved. This will lead to experimenting the system with students.

The research project is part of a three-year PhD program in apprenticeship, in Pure and Applied Mathematics, conducted in partnership with leading providers of software based on Computer Algebra System engine.

References

