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Abstract 36 

Local Mate Competition theory (LMC) predicts female-biased offspring sex-ratios when mate 37 

competition occurs locally between siblings. The mating system of marine polychaete worm 38 

Dinophilus gyrociliatus apparently fits LMC theory well. Females lay egg-capsules with 3-6 large 39 

eggs (which produce females), and 1-2 small eggs (which produce males), resulting in female-40 

biased sex-ratios. However, mating occurs between larvae, inside egg-capsules and brothers fertilize 41 

sisters, possibly preventing any competition between unrelated males and obviating the need for 42 

sex-ratio adjustments to local population size. Therefore, we tested whether mothers adjusted their 43 

offspring sex-ratio to local population size, controlling for density. As predicted by LMC theory, 44 

sex ratios of single females were less male-biased than those of populations of multiple females, 45 

suggesting that males also compete with unrelated males. Sex ratio adjustments occurred 46 

irrespective of density, revealing sophisticated perception of the social environment in these worms. 47 

 48 

 49 

Key words: local mate competition, Dinophilus gyrociliatus, polychaete worm, sex ratio, perceptual 50 

ability 51 
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Introduction 53 

 54 

Sex allocation theory predicts conditions in which organisms are expected to adjust their 55 

relative allocation to male and female offspring (Charnov 1982; West 2009). Generally, the 56 

proportion of males to females is predicted to be equal (1:1) in panmictic populations of gonochoric 57 

species (as a result of frequency-dependent selection), if parents pay similar costs for sons and 58 

daughters (Fisher 1930; Charnov 1982). If costs differ, allocation of resources to sons and daughters 59 

should respond to the relative gains possible through either sex (Charnov 1982). Indeed, there are 60 

taxa where sex ratios are strongly biased towards one sex (Hamilton 1967; Clark 1978). Local mate 61 

competition theory (LMC) explains biased sex-ratio when siblings compete for mating (Hamilton 62 

1967). LMC theory suggests that natural selection favors female-biased sex ratios when matings 63 

occur within patches and brothers compete for mating. Sex ratios become less female-biased as 64 

competition between brothers decreases and chances of mating with unrelated females increase 65 

(Charnov 1982; Werren 1983; Hardy 2002). By producing relatively fewer sons and more 66 

daughters, mothers reduces the competition among brothers for mates, but also increase their fitness 67 

return because by producing more daughters, they produce more mates for their sons (Taylor 1981, 68 

West 2009).  69 

LMC theory has been tested in different organisms (e.g. Hamilton 1979; Waage 1982; 70 

Yamaguchi 1985; West et al. 2005; Sato & Saito 2007). For example, wasps increase the number of 71 

sons as the number of females that lay in the patch increases (Charnov 1982; Kinoshita et al. 2002; 72 

Shuker & West 2004; Shuker et al. 2006).  73 

The marine polychaete worm Dinophilus gyrociliatus is a diploid organism with 74 

chromosomal sex determination (the male sex is heterogametic), egg dimorphism and a special 75 

mating system (Charnov 1987; Simonini et al. 2003; Sella 2006). Females lay transparent egg-76 

capsules which contain relatively very small eggs (~ 40 μm) and develop into dwarf males, and 77 

relatively very large eggs (80-100 μm) which develop into females (Åkesson & Costlow 1991). The 78 
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sex ratio of the eggs in the capsule is female-biased (e.g. 1:3), as well as the parental investment in 79 

daughters. Quoting Charnov (1987, p. 224), “… While the Dinophilus sex ratio is mildly female-80 

biased, note that the egg dimorphism means that the resources allocated to daughters are vastly 81 

greater than allocated to sons. A simplistic calculation might go as follows: if the resources 82 

allocated per egg scale with egg volume (which scales with a linear dimension cubed), then each 83 

female egg gets ≈ 8 times the resources of each male egg. With a sex ratio of 3:1, this means a 84 

resource ratio of 24 units to daughters: 1 unit to sons; about 96% of the reproductive resources go to 85 

daughters.” 86 

Mating occurs between newly-hatched, related, larvae inside capsules, setting the stage for 87 

high local mate competition. Females grow larger than males and outlive them (males do not even 88 

have a digestive system). Sex ratio is plastic in these worms in response to diet, temperature, 89 

salinity and age. Females produce eggs with more male-biased sex-ratios when they are fed less 90 

proteinaceous diet, get older, or are reared under stressful temperature or salinity conditions 91 

(Prevedelli & Simonini 2000; Simonini 2001; Simonini & Prevedelli 2003). However, if mating 92 

occurs strictly within egg-capsules, this should prevent any possibility for competition between 93 

unrelated males and thus completely obviate the need for sex-ratio adjustments to local population 94 

size. Therefore, we tested whether D. gyrociliatus females adjusted their offspring sex-ratio to local 95 

population size.  We also controlled for potential confounding effects of population density 96 

(accumulation of catabolites, oxygen consumption, etc.). 97 

  98 

Material and methods 99 

 100 

Study species 101 

Dinophilus gyrociliatus is a small, interstitial, marine polychaete worm, commonly found in 102 

harbors and shallow waters all around the world. Populations  are  highly  dispersed,  but  local 103 

densities  fluctuate  (Prevedelli  et al.  2005). This species is gonochoric, sexually dimorphic and 104 
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reproduces iteroparously. Males are only 50 μm long, their coelom is almost entirely occupied by 105 

the testis and, although detailed studies are lacking, they usually die shortly after fertilizing their 106 

sisters inside egg capsules (Prevedelli & Simonini 2000). Females are approximately 1000 μm long. 107 

They emerge from capsules 5-6 days after spawning and produce the free-living population. 108 

Females begin spawning when they are 10-14 days old (Simonini et al. 2003). 109 

 110 

Experimental procedure 111 

We used a laboratory population established from females collected in Sicily (Italy) in 2008. 112 

We isolated 200 females into Petri dishes and used their same-age offspring for the experiment. 113 

After each female laid at least one egg capsule, she was removed, and her offspring was reared to 114 

sexual maturity and randomly assigned to one of the following treatments, which differed by female 115 

population-size and/or by enclosure size:  116 

single females in small enclosures: 1 female in 4 ml of water (density: 0.25 females/ml; n = 117 

29 replicates); 118 

single females in large enclosures: 1 female in 16 ml of water (density: 0.0625 females/ml; n 119 

= 34 replicates). 120 

multiple females in small enclosures: 10 female in 4 ml of water (density: 2.5 females/ml; n = 121 

6 replicates);  122 

multiple females in large enclosures: 10 female in 16 ml of water (density: 0.625 females/ml; 123 

n = 3 replicates).  124 

To avoid pseudoreplication, multiple females were not sisters. Because counting eggs (and 125 

especially the tiny male eggs) within egg-capsules is difficult and time-consuming, the number of 126 

replicates for the large population size was small (multiple females, where we expected many egg-127 

capsules). As a result, the number of replicates was unbalanced among treatments. The experiment 128 

started the same day for all groups and lasted 16 days. Every other day, we noted the number of 129 



7 
 

newly laid egg-capsules and the number of male and female eggs per capsule (stereomicroscope, 40 130 

x magnification). Egg capsules were then removed to avoid variation in social conditions. 131 

Worms were reared in filtered marine-water (density: 1024 g/m3) and fed TetraMin Baby© ad 132 

libitum. Petri dishes were kept in thermostatic chambers (20°C). Sea water was not renewed during 133 

the experiment.  134 

 135 

Statistical analyses  136 

We calculated the sex ratio of egg capsules in each replicate as the number of male eggs divided by 137 

the sum of male and female eggs.  138 

Following Wilson & Hardy (2002), we used a generalized linear model (GZLM) with 139 

binomial distribution and logit link function (dependent variables: number of male eggs and total 140 

number of eggs; categorical predictor variables: female population-size and enclosure size). We 141 

removed non-significant interaction term (IBM SPSS 20.0.0 statistical package). 142 

 143 

Results  144 

 145 

Overall, females produced 2474 egg capsules, which contained a total of 9812 female eggs 146 

and 4707 male eggs.  147 

Female population-size was a significant predictor of the sex ratio of the eggs, whereas 148 

enclosure size was not (GZLM, female population-size: Wald χ
2
 = 12.927, df = 1, P = 0.0003; 149 

enclosure size: χ
2
 = 0.367, df = 1, P = 0.545). There was a 0.277-fold increase in the sex ratios of 150 

the eggs of multiple females compared to those of single female. Therefore, sex ratios shifted 151 

significantly towards more male-biased values when multiple females were reared together, 152 

compared to single females (Fig. 1).  153 
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The production of egg capsules by females was not affected by group size or enclosure size 154 

(GLM, female population-size: F1,69 = 0.522, P = 0.473; enclosure size: F1,69 = 2.749, P = 0.102). On 155 

average, each female produced 15.47 ± 0.525 egg capsules during the 16-day long experiment.    156 

 157 

Discussion 158 

These results showed that D. gyrociliatus females adjusted the sex ratio of their offspring in 159 

response to the local population size; sex ratios (proportions of males) increased as the number of 160 

mothers in the local population increased. This result is in accordance with the expectations of 161 

LMC theory (Hamilton 1967). This was not an effect of population density (e.g., accumulation of 162 

catabolites); by varying enclosure size, we controlled for these unwanted effects and found that sex 163 

ratio adjustments occurred irrespective of density.  164 

According to LMC theory (Hamilton 1967), the offspring sex-ratio increases in subdivided 165 

populations when multiple mothers lay eggs in the same patch, so that competition for mating 166 

diminishes. In D. gyrociliatus egg capsules subdivide the populations and brothers compete for 167 

mating with females inside the capsule, apparently preventing any possibilities for competition 168 

between unrelated males. Sex-ratio adjustments would promote mothers’ reproductive success by 169 

reducing competition between brothers and increasing the number of mates for their sons (Taylor 170 

1981; West 2009). When local population size is large, competition between brothers would 171 

decrease if males could leave their capsules and mate with unrelated mates. According to Schmidt 172 

& Westheide (1972) males live long enough (1-2 weeks) to make it possible. However, such a long 173 

lifespan in organisms that do not even have a digestive system seems surprising. Indeed, we usually 174 

do not find males around in our populations, which are composed exclusively of females. However, 175 

during the present experiment, males were occasionally seen leaving their capsules and moving 176 

briefly around neighboring capsules (C.M.) as also reported by Traut (1966). Further studies are 177 

necessary to test male lifespan. Mothers might favor male mating opportunities also by laying their 178 

egg capsules close to each other, which might give dwarf short-lived males some chance to meet 179 
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other mates within short distance (G.S., unpublished data). Future studies will test whether female 180 

adjustments include variations in the relative size of male and female eggs in response to local 181 

population size, as such variations might also affect the lifespan of these dwarf males. 182 

We do not know which cues mothers use to sense how many other mothers (or egg capsules) 183 

are around. However, marine worms use waterborne chemical cues to find their mates (e.g., Ram et 184 

al. 2008) or to sense how many partners are around (Schleicherová et al. 2006, 2010)  and adjust 185 

their sex allocation accordingly (Sella & Lorenzi 2003; Lorenzi et al. 2005, 2006, 2008). Similarly, 186 

D. gyrociliatus mothers could perceive chemical cues produced by other mothers (or by egg 187 

capsules) and adjust their offspring sex ratio appropriately. 188 

 189 
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Legend 274 

 275 

Fig. 1. The mean sex ratio (± s.d.) in egg capsules (proportion of male eggs/total number of eggs) 276 

by female population-size and enclosure size. Pooling data from small and large enclosures, single 277 

females (n = 63 replicates) produced on average (± s.e.) 4.33 ± 0.14 female eggs and 1.74 ± 0.05 278 

male eggs per egg-capsule (n = 963 egg capsules). Multiple females (n = 9 replicates of 10 females 279 

each) produced on average 3.91 ± 0.26 female eggs and 2.09 ± 0.16 male eggs per egg-capsule (n = 280 

1511 egg capsules). 281 


