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ABSTRACT

Treatment of cancer relies increasingly on combination therapies to
overcome cancer resistance, but the design of successful combined
protocols is still an open problem. In order to provide some
indications on the effectiveness of medical treatments, results from
in silico experiments are presented based on a mathematical model
comprising two cancer populations competing for resources and
with different susceptibilities to the action of immune system cells
and therapies. The focus is on the effects of therapies that affect
the rate of cancer growth, as in case of chemotherapy, used
alone or in combination with immunotherapy, which boost the
action of the immune system. Simulations show that a standard
dose chemotherapy is effective when the sensitive clone has a
marked competitive advantage, whereas combination of immuno-
and chemotherapy works better in all the other cases. These results
stress the importance to take into account competitive interactions
among cancer clones to decide which therapeutic strategy should
be adopted. Next the analysis is extended to protocols involving a
drug holiday, i.e. periods in which no drug is administered. Finally,
themodel has been adapted to investigate combination therapies for
non-small cell lungcancer: simulation results show that administration
of standard dose of Erlotinib (a tyrosine kinase inhibitor), alone, has
quite the same effect as a low-dose combination therapy, but the
latter produces a slower increase of resistant cells.
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1. Introduction

Cancer appears in organisms not as a single cancer clone but as a variety of clonal
populations which undergo selection by processes of competition and predation: tumour
cells compete for resources and are attacked by immune cells. The fitness of a tumour
type, i.e. the ability to adapt and grow, depends on how effectively it outcompetes the
others and how successfully develops mechanisms to prevent detection and elimination
by the immune system. In turn, natural selection promotes cell clones that have acquired
advantageous heritable characteristics (Gerlinger&Swanton, 2010). Thus, cancer types can
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be considered coexisting populations, embedded in an environment comprising normal
and immune cells (Marusyk, Almendro, & Polyak, 2012): the growth, or otherwise, of
different tumour types depends, clearly, on a variety of environmental factors, so it makes
sense to talk of an ecology of cancer (Hillen & Lewis, 2014; Pacheco, Santos, & Dingli,
2014).

Cancer heterogeneity has been invoked to explain one of the major aspects of can-
cer development, namely acquired drug resistance, by which phases of remission are
often followed by a rapid growth of tumour cells. Cancer cells can acquire resistance
to chemotherapy by a range of mechanisms but the results, however, are the emergence of
a resistant population, (Dean, Fojo, & Bates, 2005; Pisco et al., 2013). Thus, even though
therapies exist that can decimate a given cancer type, if one or more variants are present in
the tumour population which are resistant, the resurgence of treatment-refractory disease
may occur, Gerlinger and Swanton (2010). The coexistence of cancer types makes the
design of optimal protocols a challenging problem, and specifically the optimal dosing and
timing of combination of chemotherapy and immunotherapy are still an open issue, Slovin
(2012).

Obviously, given the relevance of the problem, it is not surprising that a variety of
mathematical tools has been used to model cancer dynamics and the effects of therapies.
For a review see for instance (Bellomo, Li, &Maini, 2008; Eftimie, Bramson, & Earn, 2011;
Eladdadi, Kim, & Mallet, 2014; Wilkie, 2013) and references therein.

More germane to theworkpresentedhere are themodels basedondifferential equations:
among others on tumour immune interaction, several populations are considered in
Wilson and Levy (2012) and spatial–temporal dynamics in Al-Tameemi, Chaplain, and
d’Onofrio (2012). The effects of therapies are studied in the context of evolutionary
dynamics in Gatenby, Brown, and Vincent (2009), Gatenby, Silva, Gillies, and Frieden
(2009), while the effects of immunotherapy are considered in Bunimovich-Mendrazitsky,
Byrne, and Stone (2008), De Pillis, Gu, and Radunskaya (2006), De Pillis, Eladdadi,
and Radunskaya (2014), Frascoli, Kim, Hughes, and Landman (2014) and the related
optimization problem in Ledzewicz and Schättler (2017).

For a mathematical approach to drug resistance in cancer see for instance (Komarova
&Wodarz, 2005; Tomasetti & Levy, 2010) and the review (Chisholm, Lorenzi, & Clairam-
bault, 2016). Drug holiday and protocol timing can be critical to limit drug resistance, see
for instance (Carrere, 2017; Pouchol, Clairambault, Lorz, & Trélat, 2017).

The work presented here concerns the analysis of different therapies on two competing
cancer populations with particular concern on the role of competition on the outcome of
medical treatments.

For this purpose, a model based on population theory (Murray, 2002; Hofbauer &
Sigmund, 1998) and presented in Piretto, Delitala, and Ferraro (2018) is used as an in
silico laboratory to simulate the outcomes of protocols differing in doses and timing of the
treatments and to provide an analysis of the results.

Two kinds of treatment are simulated: a therapy reducing the rate of growth of cancer
used alone or in combinationwith drugs increasing the effectiveness of the immune system.
Time courses of medications are, throughout the paper, a metronomic (André, Carré, &
Pasquier, 2014) and a pulsed therapy; in last section, the switch to pulse protocol, (Foo,
Chmielecki, Pao, & Michor, 2012), has been simulated.
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In the sequel, first some general simulations are presented, centred on the study of the
therapies effects for different cases of inter-clonal competition, and next a specific type of
cancer is considered, namely the non-small cell lung cancer (NSCLC).

2. Themodel

Basic elements determining the evolution of the cell populations are proliferation, preda-
tion and competition for resources. Two competing types of cancer are considered together
with immune system cells, and the model is formulated as a system of three differential
equations:

dx1
dt

= r1x1 − r1
K1

x21︸ ︷︷ ︸
proliferation

− b12
K1

x1x2︸ ︷︷ ︸
competition

− c1
K1

x1z︸ ︷︷ ︸
predation

− g1(t)x1︸ ︷︷ ︸
chemotherapy

− h(t)
K1

x1z︸ ︷︷ ︸
immunotherapy

,

dx2
dt

= r2x2 − r2
K2

x22 − b21
K2

x1x2 − c2
K2

x2z − g2(t)x2 − h(t)
K2

x2z,

dz
dt

= βz − β

H
z2︸ ︷︷ ︸

proliferation

+ α1

H
x1z + α2

H
x2z︸ ︷︷ ︸

recognition

. (1)

The model is proposed and described in greater details in Piretto et al. (2018). Here we
briefly summarize the main assumptions:

• Tumour clone x1. The first two terms in the RHS of the equation represent the
growth of x1 in isolation, i.e. in absence of other cancer types, of the immune system
and of medical treatments. In this case, x1 undergoes a logistic growth and the
parameter r1 is the reproduction rate whereasK1 corresponds to the carrying capacity
of the environment, i.e. the maximum value that x1 can take. Development of x1 is
constrained by the competition with clone x2 (measured by the parameter b12) and
by the interaction with the immune system (parameter c1).

• Tumour clone x2. The equation for x2 is analogous to the one for x1 and the same
considerations apply.

• Immune system z. It grows with a net rate β , and in absence of tumour, it is limited by
H . In presence of cancer, z undergoes a clonal expansion weighted, respectively, by
parameters α1, α2 which measure the ability of immune cells to detect and recognize
cancer cells.

• Chemotherapy. The effects of chemotherapy on the population xi are represented in
the model by the term gi(t)xi where gi takes into account the drugs kinetics in the
organism, see (De Pillis & Radunskaya, 2001). This is equivalent to rewrite the growth
term of fi(t)xi = (ri − gi(t))xi.

• Immunotherapy. The action of the immune system can be enhanced by immunother-
apy, whose effect is expressed by the term h(t)/Kixiz, h(t) > 0 which is equivalent
to define a new parameter κi(t) = ci + h(t). More specifically, the immunotherapy
modelled here is a vaccination (DCs transduced with adenovirus containing full-
length mouse wild-type p53 (Ad-p53)) that results in the generation of immune
system cells (CTLs specific for p53-derived peptide) inducing a specific antitumoral



4 E. PIRETTO ET AL.

immune response (Nikitina et al., 2001). The effect of the immunotherapy is then an
increased ability by the immune system to recognize and kill cancer cells as proposed,
for instance, in Wilson and Levy (2012).
In the following, x = x1 +x2 denotes the total cancer load, and for simplicity’s sake,

fi(t), κi(t) are replaced by fi, κi, respectively.

The model considered here, albeit, admittedly, a drastic simplification of the processes
underlying cancer evolution, includes some of the important factors involved in cancer
development, i.e. the activity of immune system, the competition between two cancer
clones and the effects of medical treatments.

Obviously, a cancer population may contain several different clonal types; however, re-
stricting to just two is justified by the fact that experimental literature usually distinguishes
between two main populations, i.e. sensitive or resistant to therapy (Foo et al., 2012).

Also the representation of the immune system proposed here is simplified, as it does not
consider the several types of immune cells, with different effects on the tumour population,
the system is composed of, but, rather, one population acting as predator on cancer cells
(Kuznetsov, Makalkin, Taylor, & Perelson, 1994). The rationale for this simplification is
that here themain focus is the development of cancer populations, under different selective
pressures, of which the action of the immune system is a component and, therefore, has
been modelled in a simple way.

Finally, we are aware that chemotherapy not just affects cancer cells reproduction rate,
but it has at least a twofold effect (Zitvogel, Apetoh, Ghiringhelli, & Kroemer, 2008) on the
immune system and on the healthy host tissue: on one hand, it weakens the proliferation
of immune cells, and on the other, it elicits or reactivates anticancer immune response,
enhancing the immunogenic characteristics of tumour cells. Here the focus is on the
primary aspect of chemotherapy, namely the reduction of cancer cells proliferation.

2.1. Stability analysis

A detailed stability analysis of system (1) and the stationary points has been presented in
Piretto et al. (2018), and it can be carried out with the standard methods of analysis, see
(Murray, 2002; Hofbauer & Sigmund, 1998). The main results are reported here in view of
the discussion of Section 3.

In the positive orthant R3+, the system (1) has 8 stationary points, whose components
will be denoted by x∗

1 , x
∗
2 , z

∗. Four of these points are of the form P = (x∗
1 , x

∗
2 , 0) with

x1 ≥ 0, x2 ≥ 0, and they are clearly unstable as dz/dt > 0 if z < H : thus, they are of no
biological interest.

The other points correspond to the case of tumour eradication, survival of a single cancer
clone (competitive exclusion) and coexistence of both cancer clones. In more detail:

• Tumour eradication. Tumour eradication corresponding to Pte = (0, 0,H), occurs
when:

K1r1 < c1H , K2r2 < c2H , (2)

in this case Pte is the only stationary point, and it is globally asymptotically stable,
corresponding to the well known fact that the immune system routinely suppresses
tumoral cells in the organism.
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• Competitive exclusion:Onlyone tumour type survives, and then two cases are possible:
EC1 corresponding to the survival of just the clone x1 (stationary point Pec1 =
(x∗

1 , 0, z
∗), x∗

1 > 0, z∗ > 0) and EC2 denoting the survival of just x2 (Pec2 = (0, x∗
2 , z

∗)
with x∗

2 > 0, z∗ > 0). Permanence of a single type can happen in two ways: either
one of conditions (2) does not hold, and the corresponding population survives, or
both cancer clones escape eradication by the immune system, but one dominates the
other and the principle of competitive exclusion applies. In this case, there exists a
single globally stable stationary point, namely Pce1, or Pce2, depending on which clone
prevails.

• Coexistence. In this case, called COE for short, both tumour types are present and
the stationary point is Pcoe = (x∗

1 , x
∗
2 , z

∗), with all components greater than zero.
Coexistence occurs when both types survive, the action of the immune system
and competitive interaction are not so strong to cause competitive exclusion, the
corresponding stable point is Pcoe.

In conclusion, stability analysis allows to make explicit which conditions should be
satisfied by parameters for the occurrence of the different trends. Thus, what is of interest
are not the stationary points, per se, but rather the correspondence between parameters
and composition of the cancer population.

In the following, it will be assumed that, before therapy, both cancer clones escape
eradication by the immune system and hence the system will be in a configuration
leading, asymptotically, to EC1 (resp. EC2), i.e. survival of just x1 (resp. x2) or to COE, i.e.
coexistence of the two cancer clones.

3. Simulations

The model outlined in the previous sections is the basis for in silico experiments. A variety
of simulations have been carried out, corresponding to different cancer types under the
effect of different protocols (with respect to the dose and the time schedule), involving
chemotherapy, immunotherapy and molecular target therapy.

3.1. Therapies

As mentioned before the effect of chemotherapy is simulated by decreasing the rate of
growth ri to fi, whereas simulation of immunotherapy consists in increasing the efficiency
of the immune system, from ci to κi.

Thus, administered doses are expressed in terms of differences between new and old
values of these parameters,

Ch =
∫ Tf

Ti
g(t)dt =

∫ Tf

Ti

[
ri − fi(t)

]
dt, (3a)

I =
∫ Tf

Ti
h(t)dt =

∫ Tf

Ti

[
κi(t) − ci

]
dt, (3b)

where [Ti,Tf ] is the time interval of administration of the treatments.
Any measure of the efficiency of a treatment needs to take into account not just the

decrease of the total cancer load x = x1+x2 but also the trend of resistant cells numerosity,
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a critical factor in assessing howwell a therapy works. A parameter depending on variation
(or otherwise) of the total load and of the number of resistant cell can be defined as follows.

Let parameters ε, and δ be given by:

ε = xpre − xpost
xpre

, δ = x2,pre − x2,post
xpre

, (4)

here xpre, xpost are respectively the total cancer loads one day before and one day after the
administration of the therapy, whereas x2,pre and x2,post are, respectively, the values of x2
(the resistant clones) before and after therapy. Parameters ε and δ are not independent, as
x2,post ≤ xpost ; indeed, it is straightforward to show that δ is a linear function of ε and, in
particular, δ = 1 if ε = 1.

Note that ε and δ can take negative values, whereas, to combine them in a global
parameter, they need to be non-negative. To this aim, a transformation is applied to ε, δ
by means of the sigmoid function

g(a) = 1
1 + exp ( − a)

.

Define
yε = g(ε)

g(1)
, yδ = g(δ)

g(1)
, (5)

where the division by g(1) is just to ensure that sup yε = sup yδ = 1.
Variables yε , yδ define a feature space where outcomes of different therapies can then be

mapped. An efficiency index that depends on the decrease of both x and x2 can be defined
in a natural way as

γ = yεyδ. (6)

When ε = δ = 0, γ = 0.467 and thus one can choose γ̂ = 0.5 as a threshold for the
effectiveness of therapies (i.e. γ > γ̂ corresponds to a positive treatment). Note that δ is
usually very small in our simulations; however, what matters here it is not the absolute
value of the parameter but, rather, the sign and the relative values in the different cases.

Obviously no index can fully capture the complexity involved in the results of med-
ical treatments and parameters introduced here are meant to give just some insight on
therapeutic outcomes.

3.2. Parameters and simulation settings

Parameters used in the simulations have been evaluated fromdata reported in the literature
(De Pillis, Gu, and Radunskaya, 2006; Kuznetsov, Makalkin, Taylor, & Perelson, 1994, or,
as in case of b12, b21, varied in an exploratoryway. They are reported inTable 1.A sensitivity
analysis has been carried out in Piretto et al. (2018) to evaluate the effects of an error in the
parameter estimation. The parameters with the greater impact on the output of the model
(i.e. ri, Ki and H) are set to fit the data of (Ramakrishnan et al., 2010).

The different parameters and simulation settings used in the sequel can be summarized
as follows:

• Cancer type. It is assumed that x1 has a larger proliferation rate, r1 > r2,
and it is susceptible to chemotherapy, whereas x2 is resistant (f2 = r2). According to
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Table 1. Table of the parameters and initial conditions used in all the simulations.

Parameter Unit Value/Range Interpretation Source

r1 days−1 0.15 Tumour growth rate of x1 De Pillis et al. (2006)
r2 days−1 0.11 Tumour growth rate of x2 De Pillis et al. (2006)
bij days−1 0.01 − 1 Intratumoral competition Estimated
ci days−1 5.5 Killing rate by the immune system Kuznetsov et al. (1994)
Ki cells 5 · 107 Tumour carrying capacity De Pillis et al. (2006); Kuznetsov et al. (1994)
H cells 3 · 105 Immune system threshold Kuznetsov et al. (1994)
αi days−1 1.8 · 10−3 Immune recruitment rate Kuznetsov et al. (1994)
β days−1 0.8 Immune system growth rate Estimated

(Foo et al., 2012), the slower grow rate of drug-resistant cells is due to the evolutionary
cost to be resistant. Immunotherapy affects both cancer clones in the same way.
In addition, different competitive efficiencies, expressed by b12, b21, are considered,
corresponding to clones competition for resources, as, for instance, space, glucose or
oxygen.
We focus on three types of cancer populations, characterized by different asymptotic

behaviours, as highlighted in Section 2.1:

– Coexistence (COE). Before therapy, x1, the susceptible clone, is also the fittest,
as it has the larger rate of growth and also a competitive advantage (b12 = 0.02
and b21 = 0.07) even though x2 is not totally eliminated.

– Competitive exclusion (EC1). x1 is the dominant clone. In this configuration,
x1 increases its competitive advantage (b12 = 0.1 and b21 = 0.5) so that,
asymptotically, x2 is wiped out.

– Competitive exclusion (EC2). The resistant clone x2 dominates x1 (b12 = 0.5
and b21 = 0.09), so that, asymptotically, x1 disappears.

• Immune system. The immune thresholdH is alsoderived fromthe literature (Kuznetsov,
Makalkin, Taylor, & Perelson, 1994), corresponding to a patient with standard im-
mune system. Obviously, H can vary with age and in particular is lower for older
patients.

• Initial conditions. Cancer evolution starts with resistant population, x2, small with
respect to the susceptible, x1, i.e. x1(0) = 9 · 104, x2(0) = 4 · 104, and the immune
cells are z(0) = 5 · 102.

• Therapydose. In the simulatedmedical protocols, two therapies (chemo- and immuno-
) are administered simultaneously. The effects of twodoses of chemotherapy, standard
and low, denoted, respectively, by Ch+ and Ch−, corresponding to different values
of integral (3a), are evaluated in combination with the immunotherapy, denoted by
I.
Moreprecisely the combinations consideredhere areCh+ (standarddoseof chemother-
apic drug alone), Ch−I (lowdose of chemotherapy in combinationwith immunother-
apy) andCh+I (standard chemotherapic dose combinedwith immunotherapy). Total
doses areCh− = 2.41,Ch+ = 9.66, I = 971. Standard and lowdoses are set according
to the data of (Ramakrishnan et al., 2010).

• Time protocols. Two time courses are examined here: a metronomic therapy (André,
Carré, & Pasquier, 2014), i.e. an administration of the two drugs every day guaran-
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teeing a quasi stationary level of drug in the bloodstream and a pulsed protocol (Foo
et al., 2012) in which drugs are administered in a series of "pulses" each followed by
an interval of no therapy (one pulse every two weeks).

3.3. Some in silico experiments

In general, we have found that outcomes from the pulsed and metronomic (continuous)
therapies are similar, but in some cases the pulsed therapy yields better results and therefore
the graphs refer to it. Moreover, we are interested here on the evolution of cancer and thus,
for simplicity’s sake, in figures, the time course of the immune system z is not included.

Results, in the different cases of competition, are summarized here and they refer, unless
otherwise indicated, to the pulsed therapy:

• Coexistence. Standard doses of chemotherapy alone Ch+ are inefficient, γ = 0.15; the
negative value of ε (ε = −0.54) indicates that the total cancer load x keeps growing
during the treatment (see the purple curve in Panel (a) of Figure 1 and the red circle
in Figure 4). The population of resistant clone x2 survives and increases unchecked by
x1 (δ = −1.26), and thus, after an initial drop, the cancer rebounds, as a consequence
of a clonal inversion where x2 become the larger clonal population, as shown in Panel
(a) of Figure 1.
A combination of weak chemotherapy and immunotherapy Ch−I is more efficient,

γ = 0.61, in reducing the total load (ε = 0.58) and preventing the growth of
the resistant clone (δ = 0.04): x1 is kept under control since it is sensitive to both
therapies, while the growth of x2 is curtailed by immunotherapy and by x1. The results
are presented with a red square in Figure 4 and in Panel (b) of Figure 1.
Results with Ch+I, a combination of standard chemotherapy combined with im-

munotherapy, are similar, γ = 0.62: obviously, there is a large drop of x (ε = 0.82),
but now x2 can grow without interference by x1, as indicated by the negative value
of δ = −0.09, and indeed the total population is composed mostly by resistant cells
(see Panel (c) of Figure 1 and Panel (a) of Figure 4).
When the combination Ch−I is administered the metronomic protocol is slightly

less efficient (γ = 0.57), whereas in the other two cases there is no difference. Results
donot vary if the values of parametersbij are exchangedwithin theCOE configuration.

• Competitive exclusion: clone x1 dominates. In this case, Ch+ is effective, γ = 0.62
(ε = 0.66); given the superiority in fitness of x1 even a reduced population of this
clone it is sufficient to keep x2 small (see Figure 2 Panel (a)). The combination Ch−I
is less efficient than in COE configuration, γ = 0.60 (Figure 2 Panel (b)); here what
matters is to control x1 and thus the introduction of immunotherapy cannot, in this
case, compensate the reduction of the chemotherapy dose. Finally Ch+I is an effective
treatment (γ = 0.68) and the number of cancer cells becomes very low, almost to the
level of eradication (ε = 0.98), see Figure 2 Panel (c).
The metronomic protocol is slightly less effective for Ch+ (γ = 0.60) and Ch−I

(γ = 0.57).
• Competitive exclusion: clone x2 dominates. In this case, one should expect to find
therapy outcomesnotmuchdifferent fromCOE, butwith the effect of clonal inversion
somehow intensifiedby the fact that x2 is nowdominant. For instanceCh+ (γ = 0.08)
is useless, as it merely accelerates the disappearance of x1, already doomed by the
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Figure 1. Time courses of x1 (red dashed line) x2 (blue dotted line) and total cancer population x
(continuous purple line), in the COE case. The cyan vertical lines correspond to the administration of
medication during the pulsed therapy. (a): Standard chemotherapy dose (Ch+). (b): Combination of low
chemotherapy dose and immunotherapy (Ch−I). (c): Combination of standard chemotherapy dose and
immunotherapy (Ch+I).

Figure 2. Time courses of x1 (red dashed line) x2 (blue dotted line) and total cancer population x
(continuous purple line), in case EC1. The cyan vertical lines correspond to the administration of
medication during the pulsed therapy. (a): Standard chemotherapy (Ch+). (b): Combination of low-
dose chemotherapy and immunotherapy (Ch−I). (c): Combination of standard dose chemotherapy and
immunotherapy (Ch+I).

competition. The result is an increased total load (ε = −0.84), composed almost
entirely by x2 (δ = −1.75). This effect is clearly shown in Figure 3: the Panel (a)
shows the time courses of x1, x2 and x during the administration of Ch+ with a
pulsed therapy and Panel (b) displays the fraction x2/x of the resistant clone during
the treatment’s cycle.
It is interesting to note that in this case Ch−I has the same effectiveness as Ch+I

(γ = 0.61 and γ = 0.60, respectively), since, even though the latter yields a large
reduction of x (ε = 0.61, ε = 0.79, resp.), the combination Ch−I gives a better
performance in controlling x2 (δ = 0.03, compared with δ = −0.09).

In conclusion, competitive interactions contribute to shape the outcome of therapies. In
cases COE and EC2, combination therapies have comparable efficiency, Ch+I being more
effective against the growth of x and Ch−I giving a better performance in controlling x2. In
other words, there exists a trade off between the decrease of the total load and the control
of resistant clones; of course, Ch−I has the advantage of less dangerous side effect on the
patient and this could make it preferable.

On the contrary, in EC1, when the sensitive clone is strongly dominant, Ch+ yields the
best results, since, as mentioned before, the growth of x2 is curtailed by x1 competitive
advantage.
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Figure 3. (a): Time courses of x1 (red dashed line), x2 (blue dotted line) and total cancer population x
(continuous purple line), in case EC2, during a pulsed chemotherapyCh+, indicated by the cyan vertical
lines. (b): Fraction of the resistant clone during the treatment cycle.

Figure 4. (a) Values of ε and δ (see Equation (4)) and (b) values of γ (Equation (6)) for different
competition configurations. The outcomes of the pulsed protocol are shown.

Figure 4 shows, in Panel (a) the scatter plot of ε and δ, for different treatments and
different cases of clonal competition, in Panel (b) values of γ are reported in a bar diagram.

3.4. Drug holiday

Evolution of drug resistance is a dynamic process (Dhawan et al., 2017; Sharma et al.,
2010); thus in clinical protocols, repeated courses of treatment are often separated by a
periods of "drug holiday" duringwhich no therapy is administered (Carrere, 2017; Pouchol,
Clairambault, Lorz, & Trélat, 2017). Thismethod enables a regrowth of sensitive cells and a
corresponding reduction of resistant ones thus reestablishing the effectiveness of a therapy;
moreover, it allows patients to recover from the therapy side effects. Its results depend on
a variety of factors, e.g. the effect of the sensitive clone on the growth of resistant cells and
the timing and duration of the holiday.

In the framework of the presentmodel, one should expect to find the greater effect when
populations x1 (sensitive) and x2 (resistant) are in a EC1 case. Simulations reported below
compare the outcomes of the same treatment with and without drug holiday; in both cases,
values of xpre, x2,pre are taken at the beginning of the therapy (t = 50 days) and xpost , x2,post
just after the end of the second part of the treatment (t = 200 days).
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Figure 5. Time courses of x1 (red dashed line) x2 (blue dotted line) and total cancer population x
(continuous purple line), in case EC1 for standard dose chemotherapy. The cyan vertical lines correspond
to the administration of medication during the pulsed therapy. (a) Treatment cycle without interruption.
(b) Treatment cycle with drug-holiday.

Figure 6. Time courses of x1 (red dashed line) x2 (blue dotted line) and total cancer population x
(continuous purple line), in case EC1 for low-dose chemotherapy in combination with immunotherapy.
The cyan vertical lines correspond to the administration of medication during the pulsed therapy. (a)
Treatment cycle without interruption. (b) Treatment cycle with 25 days of drug-holiday. (c) Treatment
cycle with 50 days of drug-holiday.

The administration of Ch+, in the EC1 case, clearly shows the effect of a drug holiday
and, in particular, the decrease of the resistant clone (see Figure 5), besides, obviously,
confirming that chemotherapy alone is inefficient (γ ≤ γ̂ = 0.5 in both cases).

When a combination therapy is adopted the action of x1 over x2 is less relevant since
immunotherapy affects both cancer types and then the growth of x2 is limited in any
case, see Figure 6 where the results for different time spans of the drug-free interval are
compared. Values of γ are, respectively, γa = 0.48, γb = 0.57, γc = 0.67, with indices
referring to the corresponding panel. Note that, even though the best result is obtained in
Panel (c), during the period of no treatment there is a large increase of the total load, an
effect that must be obviously taken into account, when planning a drug holiday.

Finally if a Ch+I therapy is used, the population of resistant cells x2 can become
dominant during the holiday, since x1 becomes so small that its action on x2 is negligible.

Outcomes of the therapies, for the EC1 case, are shown in Figure 7, and it is apparent
that results for Ch+I (γ = 0.68) and Ch−I (γ = 0.67) are very similar.

In the COE case, γ = 0.69 for both combination therapies, but Ch−I is slightly better
in checking the growth of the resistant cells, with δ = 0.07 vs. δ = 0.04 for Ch+I .
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Figure 7. (a) Values of ε and δ (see Equation (4) and (b) values of γ (Equation (6)) for the EC1
configuration, comparing treatments with and without the drug holiday.

4. Application to lung cancer

So far our treatment has been quite general; here, we aim to provide some more specific
conjecture on the action of therapy. For this reason, we focus our study on non-small cell
lung cancer (NSCLC).

This type of cancer shows resistance to several therapies. One of the most clinically
effective treatment involves the use of a small-molecule tyrosine kinase inhibitor (TKIs)
Erlotinib (Pao et al., 2004). Erlotinib is an orally active selective inhibitor of the epidermal
growth factor receptor (EGFR) tyrosine kinase (Shepherd et al., 2005), whose mutation
appears in 70% of patients with NSCLC. This drug is part of the more general class of
molecular target therapies.

Recent experiments show that Erlotinib improves both survival and quality of life,
compared with placebo in patients after first or second-line chemotherapy (Shepherd et
al., 2005). These results are nevertheless controversial (Garassino et al., 2013) because one
of themost serious problems is the existence of a secondmutation resulting in a new cancer
type resistant to Erlotinib (Foo et al., 2012).

Erlotinib has the effect of reduce the rate of growth of a population of cancer cell
TKI-sensitive. For this reason, we modelled the effect of this drug as done before with
the chemotherapy namely rewriting the tumour growth term as fi(t)xi = (ri − gi(t))xi
where gi takes into account the drugs kinetics in the organism. However, in order to
perform the simulations, we must make sure that the parameters fixed before apply also at
NSCLC. To this aim, we compare a simplified version of our model (consisting only of two
populations of cancer cells, without immune system population) with data from in vitro
experiments, presented in [Figure 3B] (Chmielecki et al., 2011), during which a mixture
of sensitive and resistant cells was treated for 3 days with increasing concentrations of
Erlotinib and afterwards the ratio xpost/xc was measured, where xpost is the number of cells
after the treatment and xc refers to control. In Figure 8, experimental data are compared
with simulation results. Data are represented by squares on coloured lines, each colour
corresponding to a different initial mixture of resistant and susceptible cells, whereas
coloured circles show the simulation results for the same mixtures. We have considered
different growth kinetics for the two populations, in particular the drug-resistant cells have
a slower growth as proposed in Foo et al. (2012). The comparison shows good agreement
with data for most mixtures of the two types.
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Figure 8. Inhibition of growth as a function of the dose. Square and circles are, respectively,
experimental data and results of simulations. Colours refer to different mixture of susceptible and
resistant populations. Blue: 100% of resistant cells; red: 50% of resistant cells; green: 25% of resistant
cells; purple: 10% of resistant cells and orange 100% of susceptible cells. Simulation parameters are as in
the previous section except for b12 = 1. Initial conditions are x(0) = x1(0) + x2(0) = 1.3 · 107. Values
of f1 corresponding to the various doses are in decreasing order: f1 = (0.15 (0 nM); 0.149 (1 nM); 0.148
(10 nM); 0.125 (50 nM); 0.12 (100 nM); 0.115 (250 nM); 0.111 (500 nM)).

Figure 9. (a,b,c): Time courses of x1 (red dashed line), x2 (blue dotted line) and total cancer population
x (continuous purple line), for TKI treatments in different time and doses schedules (see text for
explanation). In particular, (c) shows the case of a switch to pulse of 1600mg/week +150 mg/day
and (b) the case of a metronomic protocols with 150 mg/day dose. (d): Relative frequency of resistant
cells. Dotted red line refers to switch to pulse protocol of 1600 mg/wk +150 mg/day, respectively.
Dashed purple line corresponds to the pulse treatment; blue continuous line refers to 150 mg/day of a
metronomic schedule.
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Figure 10. (a,b,c): Time courses of x1 (red dashed line), x2 (blue dotted line) and total cancer population
x (continuous purple line), for combination of TKIs treatment in different time and doses schedules and
low-dose immunotherapy (I = 330 corresponding to a κi = 11). (d): Relative frequency of the resistant
population in the combination protocols. Legend as in Figure 9.

4.1. Clinical protocols

In order to test some of the clinical protocols used in the treatment of NSCLC, the schedule
proposed in Foo et al. (2012) has been simulated.

• Figure 9, Panel (a). A pulsed protocol has been considered, where a dose of 1600 mg
of Erlotinib is administrated one time a week for a cycle of 30 days. Each pulse of the
cycle reduces the rate of growth of x1 to f1 = −1.3 for 36 hours, corresponding to
Erlotonib half-life in patients. The reduction has been calculated in a way that, with
5 pulses of 1.5 days the total dose is Ch = 9.66 (compare Equation (3a)).

• Figure 9, Panel (b). A low-dose concentration in a metronomic schedule has been
taken into account (150mgofErlotinib everyday). Theparameter f become f1(150mg)=
0.014 in the exact proportions with respect to the standard dose.

• Figure 9, Panel (c). A mixed schedule of pulsed and continuous administration (a
switch to pulse protocol) has been simulated by adding to the pulse therapy a concen-
tration of Erlotinib administered in ametronomic way (1600mg/week+150mg/day).

We have found that, irrespective of the type of cancer, starting with 5% of resistant
cells both switch to pulse and pulsed protocol are very efficient in term of reduction of
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total cancer load, compare Panels (a) and (c) of Figure 9, where Panel (b) presents, for
comparison, the effects of a low-dose metronomic schedule. Obviously in all cases, the
decrease is temporary because of the growth of the resistant population. The last panel
in Figure 9, representing the growth of the fraction x2/x of resistant cells for all analysed
schedules and levels of dose, clearly demonstrates that a protocol involving anhigh selective
pressure on the system accelerates the growth of the resistant population.

In order to increase the efficiency of the treatments, and motivated by the results
obtained in the first part of this work, another treatment, affecting both cancer types,
is modelled, namely the p53 cancer vaccine, a standard clinical in the treatment of NSCLC
(Antonia et al., 2006).

In the Figure 10, a low-dose (i.e. approximately 1/3 of the one used in simulations
of Section 3.2) continuous immunotherapy schedule is considered. The outcomes show
that the response at the end of treatments is better than with the Erlotinib alone, in every
schedule considered (compare Figure 9).

The improvement is particularly marked in case of metronomic schedule where a
low-dose combination therapy yields results comparable with high-intensity single TKI
schedules (pulsed and switch to pulse). Panel (d) of Figure 10 shows how the fraction of
resistant cells is affected by the combination therapy; comparison with the same panel of
Figure 9 show clearly a slower increase of the fraction of resistant cells for the metronomic
schedule.

5. Conclusions

Results presented here clearly suggest that inter-specific competition among cancer cells
has a powerful influence on the outcomes of therapies.

In our study, a standard chemotherapy works effectively when the sensitive clone has
a strong competitive advantage (case EC1) whereas is useless in the other cases (COE and
EC2). Combination therapies aremore effective: the use of standard doses of chemotherapy
combined with immunotherapy (Ch+I) is the most efficient treatment in the EC1 case,
but it gives, for COE and EC2, results that are similar to a combination with a lower
chemotherapic dose (Ch−I) and it is, in all cases, less effective than Ch−I in reducing the
number of resistant cells.

Simulations of drug holidays confirm the effectiveness of this method, in that both
combination therapies give better results than without interruption of the treatment;
moreover, in this case values of the efficiency index γ are very close for Ch+I and Ch−I,
also in the EC1 case. Thus, a relatively low dose of chemotherapic drug combined with
immunotherapy seems to be preferable in most instances, considering also the obvious
advantages in terms of tolerance by the organism. Comparison of the temporal protocols
shows that metronomic application of the treatment yields, in general, comparable, albeit
in some cases slightly worse, results.

In the case of non-small cell lung cancer (NSCLC), the simulations clearly show that a
combination therapy with low doses of both immunotherapy andmolecular target therapy
(Erlotinib) administered every day can give results similar to themonotherapy of Erlotinib
with higher doses. An additional benefit of a low-dose combination therapy is the slower
increase of resistance (measured as the relative frequency of resistant cells), besides the
obvious advantage in term of tolerance by the organism.
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Findings presented here agree with the growing experimental literature showing the
superiority in most cases of the combination therapies (Ledford, 2016). However, this
cannot be an absolute rule, as it depends on the interactions among cancer populations and
hence there may exist cases in which a single therapy performs better, as in case of a strong
competitive advantage of the susceptible clone. Thus, a knowledge of the evolutionary
interactions among cancer types appears to be necessary for a successful strategy against
cancer.

In order to contrast the insurgence of resistant populations, exploiting the competition
between the cancer populations seems to be the best recipe. A combination of low-doses
therapies could yield a substantial reduction on the total tumour population without
impose amassive selective pressure thatwould suppress themore competitive, but therapy-
sensitive population, which controls clonal types with the evolutionary advantage of
resistance to therapies. In this context, drug holiday offers a way to prevent the increase
of the resistant clone and our simulations highlight the role of timing and duration in
agreement with results reported in Dhawan et al. (2017).

In conclusion the best procedure seems to be, in general, not a treatment aiming to
cancer eradication, that may lead the emergence of a resistant clone, but rather protocols
that can control cancer, also taking advantage of the inter-clonal competition, as also
suggested in Gatenby (2009).
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