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Abstract 

Polymeric tannins from grapes have always been reported as an unresolved broad peak in HPLC 

chromatograms, and this has severely limited their identification to date. This study aimed to 

disassemble this broad peak and explore the polymeric tannin molecules inside. By applying 

centrifugal partition chromatography (CPC), an efficient separation approach was developed to split 

the broad peak of grape seed tannins into fractions. Then, the fractions were analyzed by Q-ToF 

(quadrupole time-of-flight mass spectrometry) to determine the corresponding structures of the 

tannins. The results suggest that grape seed polymeric tannins were eluted consecutively according 

to their degree of polymerization (DP). Condensed tannins identified in wine grape seed have a range 

of DP and degree of galloylation (DG) up to 20 and 11, respectively. The molecular mass of the largest 

molecule detected was 6067. To our knowledge, this is the first report to offer an insight into the 

broad peak of polymeric tannins found with HPLC and to characterize the tannins with a DP up to 20 

as shown by HRMS and MS/MS data. 

Keywords: condensed tannins; grape; CPC; Q-ToF; polymer 

1. Introduction 

Condensed tannins are oligomeric and polymeric forms of flavan-3-ol monomer units that are also 

known as proanthocyanidins in the domain of phytochemistry. Owing to their considerable 

contribution to wine sensory perception (W. Ma, Guo, Zhang, Wang, Liu, & Li, 2014) and other 

bioactivities (Rasines-Perea & Teissedre, 2017), the condensed tannins derived from grape and wine 

have attracted the attention of wine chemists for decades. As the unique source of condensed 

tannins in wine (J.A. Kennedy, Saucier, & Glories, 2006), grape is easier to study than wine since 

grape tannins occur in their initial forms prior to any polymerization or oxidation reactions during 

vinification or wine aging. Until now, numerous studies have investigated the oligomeric condensed 

tannins in grape (Ge, Zhu, Kazuma, Wei, Yoshimatsu, & Komatsu, 2016; Lin, Sun, Chen, Monagas, & 

Harnly, 2014; Wen Ma, Waffo-Teguo, Jourdes, Li, & Teissedre, 2016). While polymeric tannins are 

much more abundant in grape than oligomers (K. Chira, Schmauch, Saucier, Fabre, & Teissedre, 

2009), little is known about their chemical structure or composition. The characterization of grape 
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polymeric tannins remains a challenge owing to the lack of an efficient fractioning approach and the 

limit of detection of direct mass spectrometry. 

A number of strategies have been applied to investigate tannin polymers. Depolymerization of 

polymerized tannins is one of the most popular approaches, which involves both thiolysis 

methodology (Rigaud, Perez-Ilzarbe, Da Silva, & Cheynier, 1991) and phloroglucinolysis methodology 

(James A Kennedy & Taylor, 2003). Based on the mechanism of acid-catalyzed cleavage of interflavan 

linkages, it provides information on the mean degree of polymerization and constitutive flavanol 

units. Nevertheless, neither the polymer distribution nor the structures of the polymerized tannins 

can be characterized via this approach since all the constitutive units are cleaved. Reverse-phase 

HPLC-UV-MS is generally used to identify tannin molecules but it is effective only for the analysis of 

monomers and oligomers rather than polymeric tannins. Usually, polymeric tannins have to be 

removed in the sample preparation process, because their reverse-phase HPLC-UV profile always 

shows a distinct broad peak distributed across the chromatogram, i.e. the so-called “unsolved hump” 

(K. Chira, Schmauch, Saucier, Fabre, & Teissedre, 2009; T. Esatbeyoglu & Winterhalter, 2010; Habib, 

Platat, Meudec, Cheynier, & Ibrahim, 2014; Kohler, Wray, & Winterhalter, 2008; Ky & Teissedre, 2015; 

Tarascou, Souquet, Mazauric, Carrillo, Coq, Canon, et al., 2010; Travaglia, Bordiga, Locatelli, Coisson, 

& Arlorio, 2011). This unresolved broad peak has been attributed to the diversification of their DP, 

subunits, linkages regio- and stereoisomers of grape seed polymeric tannins. In recent years, 

attempts have been made to apply normal phase/HILIC HPLC to explore the higher polymerized 

tannin molecules (Tuba Esatbeyoglu, Wray, & Winterhalter, 2015; Wen Ma, Waffo-Teguo, Jourdes, Li, 

& Teissedre, 2016; R. J. Robbins, Leonczak, Johnson, Li, Kwik-Uribe, Prior, et al., 2009; Rebecca J. 

Robbins, Leonczak, Li, Johnson, Collins, Kwik-Uribe, et al., 2012). Unfortunately, an unresolved broad 

peak was again present in the end of the chromatograms for grape tannins, so the composition and 

structure of the hump remain elusive. 

Mass spectroscopy (MS) is widely used for chemical analysis in viticulture and oenology. Coupled to 

liquid chromatography (LC) or gas chromatography (GC), it can efficiently identify complex 

compounds in grape and wine such as polyphenols, aromas and even pesticides (Flamini & TRALDI, 

2010). For the analysis of polydisperse polymeric tannins without LC separation, matrix-assisted laser 

desorption/ionization−time-of-flight (MALDI-TOF) mass spectrometry is a popular approach owing to 

its advantages of producing only a singly charged molecular ion, reducing fragmentation and allowing 

detection of high mass with precision (De Marchi, Seraglia, Molin, Traldi, De Rosso, Panighel, et al., 

2015; Monagas, Quintanilla-Lopez, Gomez-Cordoves, Bartolome, & Lebron-Aguilar, 2010; Yang & 

Chien, 2000). Molecular weight distribution of tannin fractions could also be assessed through 

MALDI-TOF MS analysis of protein-tannin complexes (Mane, Sommerer, Yalcin, Cheynier, Cole, & 

Fulcrand, 2007). Alternatively, ESI-MS/MS (electrospray ionization tandem mass spectrometry) has 

the advantages to identify tannins with more information of both their molecular ions and MS/MS 

fragment ions (Lin, Sun, Chen, Monagas, & Harnly, 2014). However, present together with oligomeric 

tannins in grape and wine samples, polymers are difficult to detect properly owing to not only 

ionization suppression in ESI-MS/MS but also low molar percentage for each isomeric compound 

(Fulcrand, Mané, Preys, Mazerolles, Bouchut, Mazauric, et al., 2008). Online two-dimensional LC 

(HILIC × RP) coupled to ESI-Q-ToF offered an efficient solution to well isolate polymeric tannins 

before MS analysis (Kalili, Vestner, Stander, & de Villiers, 2013). Nevertheless, there remains a 

challenge for high MW tannins due to not sufficient absolute concentration polymers injected in the 

second dimensional LC. 
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Centrifugal partition chromatography (CPC) is a one type of countercurrent separation apparatus, 

providing chemists with efficient ways to work with complex matrixes. Nowadays, it has been widely 

used in the separation or purification of various natural products (Bisson, Brunel, Badoc, Da Costa, 

Richard, Merillon, et al., 2016; Slaghenaufi, Marchand-Marion, Richard, Waffo-Teguo, Bisson, Monti, 

et al., 2013). With the suitable system, it easily gets the target fraction or compound with a 

preparative scale. The aim of the present work was to develop an original CPC fractionation 

methodology to disentangle the unresolved HPLC hump and enrich the targeted polymeric tannins. 

Furthermore, the target compounds were available to be characterized by UHPLC-ESI-Q-TOF. 

2. Methods 

2.1 Reagents and materials 

All the organic solvents (acetonitrile, methanol, glacial acetic acid, chloroform, ethyl acetate, ethanol 

and acetone) for extraction and separation were of analytical grade (Prolabo-VWR, Fontenays/Bois. 

France). Deionized water was purified with a Milli-Q water system (Millipore. Bedford. MA. USA). All 

the solvents for UHPLC-Q-TOF analysis were obtained from Fisher Scientific (Geel. Belgium). They 

were water (Optimal® LC/MS), methanol (Optimal® LC/MS) acetonitrile (Optimal® LC/MS) and formic 

acid (Optimal® LC/MS).  

The grape sample was harvested in 2014 at the stage of ripening from the vineyard of appellation 

Saint-Emilion located in the Bordeaux vine growing region France. The grape variety was Vitis vinifera 

L. cv. Cabernet Sauvignon. 

2.2 Preparation of polymeric tannins from grape seeds 

Grape seeds were first removed from grape berries and lyophilized. Next, the samples ground in the 

grinder. 10 g sample powder was loaded into an ASE 350 accelerated solvent extraction system 

(Dionex Corporation. Sunnyvale. CA) with the cell of 34 mL. It was extracted with eight consecutive 

solid/liquid extractions (acetone/water = 80:20, v/v). Then, the extract was solubilized in 250 mL of 

water/ethanol (95:5, v/v) and extracted three times with chloroform (v = 250 mL) to remove 

lipophilic material. Finally, the aqueous phase was extracted three times with ethyl acetate (v = 250 

mL) to obtain two phases. The organic and water fractions represented the oligomeric and polymeric 

tannins, respectively (Kleopatra Chira, Lorrain, Ky, & Teissedre, 2011). The crude extract used in the 

present study was the grape seed polymeric tannins located in the water fraction. 

2.3 Purification of target compound 

2.3.1 CPC apparatus 

The CPC apparatus was an FCPC 200 provided by Kromaton Technologies (Saintes-Gemmes-sur-Loire, 

France). It consisted of a rotor (20 circular partition disks; total column capacity of 204 mL; 1320 

partition cells), a binary high-pressure gradient pump (Gilson 321-H1), a high-pressure injection valve 

(20 mL sample loop, Rheodyne) and a Kromaton UV–Vis detector. Fractions were collected by a 

Gilson 204 fraction collector. 

2.3.2 CPC solvent system selection 
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A small quantity of each CPC solvent candidate was prepared. For each candidate, 2 mg of polymeric 

tannins were dissolved in 1 mL of each of the two phases and vortexed. Then, an aliquot (200 μL) of 

the upper and lower phase was taken individually, evaporated, dissolved in 1 mL of H2O/MeOH 

(50:50, v/v) and analyzed by UHPLC-ESI-Q-TOF. The partition coefficient KD was calculated by the 

ratio of peak area between the two phases of extracted ion chromatograms. 

2.3.3 CPC separation conditions and procedures 

Polymeric tannins were separated by the two-phase system ethyl acetate: acetone: water (2:2:1, 

v/v/v). For each injection, 500 mg of extract were dissolved in 10 mL of the upper and lower phases 

(50:50, v/v) of the system and 0.45 μm filtered. Experiments were carried out in descending mode 

at 1000 rpm with a flow rate of 3 mL/min. The fraction collector was set to 3 min/tube. An aliquot 

(200 μL) from the targeted tubes was taken, evaporated, dissolved in 1 mL of H2O/MeOH (50:50, v/v) 

and analyzed by UHPLC-ESI-Q-TOF. When grouping the tubes, samples presenting the similar HPLC 

profiles were pooled together, evaporated in vacuo, suspended in water and freeze-dried. Nine 

fractions were obtained. 

2.4 Identification of polymeric condensed tannins by high-resolution quadrupole time-of-flight mass 

spectrometry 

The UHPLC analyses of KD calculation and CPC fractions were carried out on a C18 UHPLC column (2.1 

× 50 mm, 1.8 μm, Agilent Zorbax Eclipse plus, France) at at a column temperature of 25 °C and a flow 

rate of 0.4 mL/min. The UHPLC-HRMS system used was an Agilent 1290 Infinity equipped with an ESI-

Q-TOF mass spectrometer (Agilent 6530 Accurate Mass). The mobile phases were water (Eluent A) 

and acetonitrile (Eluent B), both containing 0.1% formic acid. The gradient of solvent B was as follows: 

7% for 0.15 min; 7 to 14% for 1 min; 14 to 35% for 1.85 min; 35 to 50% for 0.3 min; 50 to 100% for 

0.1 min and 100% for 0.5 min. The UHPLC column was equilibrated for 3 min using the initial 

condition before the next injection. UV detection was carried out at 280 nm. 

The UHPLC analysis of polymeric tannins was performed on a C18 UHPLC column (2.1 × 150 mm, 1.8 

μm, Agilent Zorbax Eclipse plus, France) at a column temperature of 25 °C. The mobile phases were 

water (Eluent A) and acetonitrile (Eluent B), both containing 0.1% formic acid. The flow rate was at 

0.3 mL/min. The gradient of solvent B started at 4%, then went from 4 to 20% for 30 min, from 20 to 

35% for 15 min, and finally reached 100% at 46 min and lasted for 3 min. The UHPLC column was 

equilibrated for 3 min using the initial condition before the next injection. 

This UHPLC system was coupled to an ESI-Q-ToF-MS with an electrospray ion source with Agilent Jet 
Stream Technology. The mass spectrometer was operated in the extended dynamic range of 2 GHz 
(m/z 3200 Th). The nebulizer pressure and flow rate were set at 25 psi and 9 L/min, respectively. 
Drying gas temperature was 300°C. The sheath gas flow and temperature were set at 11 L/min and 
350°C. The fragmentation, skimmer, OCT and capillary voltage were at 150 V, 65 V, 750 V and 4000 V, 
respectively. All analyses were performed in negative mode. The collision energies used for MS/MS 
analysis were 25 V, 30 V or 35 V for the different compounds. Instrument calibration was achieved by 
infusion of a TOF ESI Tune Mix solution (standard mix G1969-85000, Supelco Inc.) containing 
compounds having the following m/z values for the negative ionization mode: m/z 112.985587, 
301.998139, 601.978977, 1033.988109, 1333.968947, 1633.949786, 1933.930624, 2233.911463, 
2533.892301 and 2833.873139. Mass calibration had residual error for the expected masses between 
±0.3 ppm. The data analysis was performed on Mass Hunter Qualitative Analysis software.  
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3. Results and discussion 

3.1 Fractionation of polymeric tannins by CPC 

According to our previous study (Wen Ma, Waffo-Teguo, Jourdes, Li, & Teissedre, 2016), the CPC 

solvent system ethyl acetate/ethanol/water (6:1:5, v/v/v) fractionates grape seed oligomeric tannins 

well according to their degree of polymerization (DP). In the case of polymeric tannins, a higher 

polarity index of the upper phase was required. Unfortunately, by increasing the proportion of 

ethanol in the ethyl acetate/ethanol/water mixture, we were unable to keep the two phases 

separate for CPC, so acetone was used instead. Several separation systems based on ethyl 

acetate/acetone/water (5:2:6; 3:1:3; 2:1:1; 2:2:1, v/v/v) were tested. The solvent ethyl 

acetate/acetone/water (2:2:1, v/v/v) was first excluded since this system was miscible. The partition 

coefficient KD, calculated as the ratio of the compounds extracted ion chromatogram area in each 

phase is listed in Table S1. Since the ideal KD ranges from 0.5 to 2, ethyl acetate/acetone/water (2:1:1, 

v/v/v) was chosen to be the CPC system in the present study. Since the targeted compounds were 

polymeric tannins with high polarity index, the descending CPC mode was used to fractionate the 

tannin products with the decrease in their DP. 

Hence, polymeric tannins were subjected to CPC in descending mode using the separation solvent 

system ethyl acetate/acetone/water (2:1:1, v/v/v), and 44 tubes were collected. The application of 

CPC for polymeric tannin fractionation achieved a good yield, was not time-consuming and gave a 

high recovery thanks to the non-solid static phase. The composition in each tube was analyzed by 

UHPLC-Q-ToF and quantified with the extracted ion chromatogram area of each compound. The 

results are shown in Fig. 1. Nonamers were eluted first. Then, with the decrease in DP, octamers, 

heptamers, hexamers, pentamers, tetramers, trimers and dimers were eluted consecutively. As 

shown in Fig. 1B, monomers were eluted finally. The relative extracted ion chromatographic area of 

each compound in each tube indicated the ratio of chromatographic area in the present tube to the 

area of the most abundant tube. The relative areas of trimers and tetramers, with two peaks in tubes 

3, 9 and tube 4, 6, respectively, are likely due to the chemical characteristics of their isomers. 

As shown in Fig. 2., the reverse-phase UHPLC-UV profile of grape seed polymeric tannins (Fig. 2A) 

always showed a broad peak distributed across the chromatogram (retention time 2.4 mins-3.6 mins) 

as described in previous studies (T. Esatbeyoglu & Winterhalter, 2010; Kohler, Wray, & Winterhalter, 

2008; Travaglia, Bordiga, Locatelli, Coisson, & Arlorio, 2011). Based on their UHPLC-UV 

chromatographic profiles, nine fractions were obtained by grouping some tubes together. After 

fractionation, sharp peaks were found in fraction 9 (Fig. 2B), fraction 8 (Fig. 2C), fraction 7 (Fig. 2D), 

fraction 6 (Fig. 2E) and fraction 5 (Fig. 2F). Monomers, dimers and trimers were mainly present in 

fraction 9, fraction 8, fraction 7, fraction 6 and fraction 5 (Table S2). Fraction 4 and fraction 3 were 

principally comprised of tetramers, pentamers and hexamers. Their UHPLC-UV chromatographic 

profiles proved to be obscure (Fig. 2G, Fig. 3H), perhaps owing to the diversities of polymeric tannins, 

involving isomers, subunits and subunit linkages. A broad peak around 3.7 mins appeared in the UV 

chromatograms of fraction 2 (Fig. 2I) and fraction 1 (Fig. 2K). The main products of fraction 2 (105.9 

mg, 32.09%) were hexamers, heptamers, octamers, trimers and their galloylated derivatives. The first 

fraction was comprised of nonamers, decamers, undecamers and their galloylated derivatives, which 

represented most of the products (206.3 mg, 62.52%). Briefly, the CPC separation method 
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successfully separated grape seed polymeric tannins according to their DP and nine fractions were 

obtained. 

3.2 Mass spectroscopic analysis of condensed tannins  

Mass spectrometry is widely used to identify compounds by the ions of their molecules and 

fragments. High-resolution mass spectrometry (HRMS) provides more accurate information about 

the mass. The molar mass of condensed tannins derived from grape and wine can vary with the 

degree of polymerization, galloylation, glycosylation, B-ring trihydroxylation and linkages between 

flavan-3-ols (Fig. 3) (K. Chira, Schmauch, Saucier, Fabre, & Teissedre, 2009; Delcambre & Saucier, 

2012). Their isomeric structures also vary with both the regioisomeric (order of linkage for the flavan-

3-ols) and stereoisomeric (stereostructure of each flavan-3-ols subunit) forms. 

As described in equation (1), the molecular mass (M) and molecular formula of condensed tannins 

can be calculated according to their DP (n), number of galloyl groups (a), number of glycosyl groups 

(b), number of (epi)gallocatechins (c) and number of A-type bonds (d). The following equation could 

be widely used for condensed tannins derived from grape and wine. In the present study, only the 

tannin molecules with diversified DP, galloyl groups and linkages were discovered in cabernet 

sauvignon seeds. 

M tannins = n × Mcatechin ‒ 2× (n-1) × Mhydrogen + a × Mgalloyl group  

                 + b × Mglycosyl group + c × Moxygen - 2× d× Mhydrogen                                                                                                             (1) 

Molecular formula = C15n+7a+6b H12n+4a+10b-2d+2 O 6n+4a+5d+c                                                                                                                 (2) 

Results showed that with the increase in the DP of tannins, the peak signals of single-charged 

deprotonated ions ([M-H]-) usually weakened and finally became mixed with the background noise in 

the mass. Nevertheless, more double- and triple-charged polymer ions ([M-2H]2-, [M-3H]3-) were 

found in the mass spectra. For tannins with even values of DP (such as 4, 6, 8, 10 etc.), it has been 

reported that the peak signal of double-charged tannin ions ([M-2H]2-) and single-charged tannin ions 

with half of the DP ([M/2-H]-) are usually unsolved owing to overlapping by adjacent intense[M-2H]2- 

ions (Hayasaka, Waters, Cheynier, Herderich, & Vidal, 2003). As shown in Fig. 4 (A), the ion peak at 

m/z 577.1329 corresponds to a single-charged B-type dimer (B-type-DP2, [M-H]-). Another nearby ion 

peak at m/z 576.1243 was found to be a double-charged B-type tetramer (B- type-DP4, [M-2H]2-). By 

examining the distance between the 12C and 13C isotope ions, the single/double- charged 

deprotonated molecular ion peaks were determined. Normally, [M-H]- have a distance of 1.00 amu 

between their isotopic ions, while a distance of 0.50 amu indicates the presence of [M-2H]2- ion. The 

ion peak at m/z 578.1371 and m/z 576.6241 was consistent with the isotopic single-charged B-type 

dimer (ISO-B-type-DP2, [M-H]-) and the double-charged B-type tetramer (ISO-B-type-DP4, [M-2H]2-), 

respectively. Another ion peak at m/z 575.1201 was consistent with the molecular mass of the 

proposed A-type dimer (A-type-DP2, [M-H]-, error =1 ppm), which was located around 2 amu from 

the B-type dimer. Its isotopic ion peak overlapped with the double-charged B-type tetramer (B-type-

DP4, [M-2H]2-). Moreover, a weaker ion peak signal at m/z 579.1526 is proposed to correspond to 

two monomers with a single charge ([2M-H]-). Hence, in the range between m/z 575 and 580, four 

compounds including B-type-DP2, B-type-DP4, A-type-DP2 and B-type-DP4 were determined. 
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Similarly, an example of tannin molecules with both even DP and even DG is shown in Fig. 4 (B). The 

ions of the molecules A-type-DP2-2G, B-type-DP4-4G, B-type-DP2-2G and 2 × (B-type-DP1-G) were 

identified. Furthermore, attributed to the isotopic ion peak signal at m/z 879.6745, the ion peak at 

m/z 879.1737 is proposed to correspond not only to the single-charged A-type-DP2-2G but also to 

the double-charged A-type-DP4-4G. In addition, Fig. 4 (C), Fig. 4 (D) and Fig. 4 (E) show the 

corresponding molecules with their even (6, 8 and 10) and half values of DP (3, 4 and 5) in different 

states of charge. 

In agreement with a previous report (Hummer & Schreier, 2008), most of the polymeric tannin 

molecules were assigned as multiple charged ions in the present study. Multiply charged ions offered 

us the possibility to explore the condensed tannins with a higher DP. Therefore, the negative 

ionization mode was chosen in this study since it produces more multiply charged ions than the 

positive mode (Mouls, Mazauric, Sommerer, Fulcrand, & Mazerolles, 2011). As illustrated in Fig. S1, 

multiply charged ions (m/z 1296.7842 and 864.1895) of nonamers were observed. The doubly 

charged and triply charged ions were diagnosed by carbon isotope ion spaces of 0.5 amu (Fig. S1C) 

and 0.33 amu (S Fig. S1B), respectively.  

After molecular ion identification, the condensed tannins were further characterized by assigning 

their MS/MS fragments. Quinone methide fission (QM), retro-Diels–Alder fission (RDA, -152 Da) and 

heterocyclic ring fission (HRF, -126 Da) are three main fragmentation pathways of proanthocyanins 

(Li & Deinzer, 2007). Depending on the ion lost from the extension unit (-288 Da) or the terminal unit 

(-290 Da), quinone methide fission can be classified as QMe or QMt, respectively. The condensed 

tannin with DP14+5G may be considered as an example, its MS/MS fragment spectrum with the 

precursor m/z 1597.9748 ([M-3H]3-) being demonstrated in Fig 5. Several common fragments of 

condensed tannin were observed. QM cleavage led to the MS/MS fragment ions at m/z 287.0604 

(DP1), 575.1171 (DP2), 729.1480 (DP2+G), 863.1814 (DP3), 1015.1728 (DP3+G), 1151.2510 (DP4) and 

1303.2646 (DP4+G). RDA was another important fragmentation pathway of tannins, like m/z 

423.0658 corresponding to the RDA fragment of the dimer. Nevertheless, since the loss of mass of 

both RDA and the galloyl group were m/z 152, some QM could be interpreted as the loss of 

fragments of QM and RDA, such as m/z 575.1171 (DP2+G), 863.1814 (DP3+G), 1151.2510 (DP4+G) 

and 1303.2646 (DP4+2G). The ions of m/z 413.0941 and 449.0888 corresponded to the HRF fission of 

the dimer. Furthermore, m/z 125.0231 often appeared in the fragments of tannins in negative ion 

mode, which corresponds to phloroglucinol formed from the fission. 

3.3 Identification of polymeric tannins by UHPLC-ESI-Q-ToF 

A better resolution of ion peaks in mass spectra was attributed to both the enrichment of the 

targeted molecules by CPC fractionation and the accuracy of the high-resolution mass spectrometry. 

The first fraction of CPC was injected into UHPLC-ESI-Q-ToF and the result was presented in Table 1. 

Molecular mass and formula were calculated by equation 1 and equation 2, respectively. The 

molecular identification was achieved by the “find compounds by formula” tool in the Agilent mass 

hunter qualitative analysis software.  

All of the detected polymeric tannin molecular ion peaks were multiply charged (doubly, triply or 

quadruply), the monocharged ions were hardly observed. By applying ESI-Q-ToF, it was accessible to 

detect the multiple individual isotopic ions (Fig. 5). However, the most abundant ions were not 

always the monoisotopic ones. The recorded mass was referred to the isotopic mass detected with 
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the lowest mass value. The ppm differences between the measured and theoretical isotopic masses 

were under 9, which was higher than the oligomeric tannins we studied before.  

The MS/MS fragment ions were recorded and assigned to various fragmentation pathways in Table 1. 

The space between QMt and QMe fragments was always 2 amu, as with the fragments of monomer 

(m/z 289 and 287), galloylated monomer (m/z 441 and 439), dimer (m/z 577 and 575), single 

galloylated dimer (m/z 729 and 727); trimer (m/z 865 and 863); single galloylated trimer (m/z 1017 

and 1015) and tetramer (m/z 1153 and 1151). Meanwhile, RDA fission and neutral loss of molecule 

H2O (18 Da) often occurred with QM, which led to fragments like m/z 425 [M-H-152]-, 423 [(M-H-

152)-, 407 [M-H-152-H2O]-, 405 [M-H-152-H2O]-, 695 [M-H-152-H2O]-, 1151 [M-H-152]-, 1015 [M-H-

152]-, 1303 [M-H-152]-. Similarly, HRF fission and the neutral loss of molecule H2O (18 Da) interpreted 

the fragment ions of 451 [M-H-126]-, 449 [M-H-126]-, 433 [M-H-126-H2O]-, 431 [M-H-126-H2O]-, 415 

[M-H-126-2 × H2O]-, 413 [M-H-126-2 × H2O]-, 739 [M-H-126]-, 737 [M-H-126]-. The fragment ions at 

437 [M-H-122-H2O]-, 417 [M-H-122-2 × H2O]-, 419 [M-H-122-2 × H2O]-, 1013 [M-H-122- H2O]-, 1029 

[M-H-122-H2O]-, 1605[M-H-122-H2O]- were attributed to benzofuran-forming (BFF) fission with the 

loss of m/z 122. Eventually, 50 molecules were identified with molecular mass ranging from 1730 to 

6067. Their DP and DG ranged from 6 to 20 and from 0 to 11, respectively.  

4. Conclusions 

The broad peak of grape seed polymeric tannins routinely found with HPLC-UV was dissembled by an 

original CPC separation methodology with the solvent system of ethyl acetate/acetone/water (2:2:1, 

v/v/v). The polymeric tannins from Vitis vinifera L. cv. Cabernet Sauvignon were fractionated 

according to their DP. Thanks to polymer enrichment in the CPC fraction, polymeric tannins were 

characterized by UHPLC-Q-ToF. The condensed tannins present in Cabernet Sauvignon seed extract 

have a broad range of DP and DG up to 20 and 11, respectively. The largest molecule mass reached 

6067. To our knowledge, this is the first report to offer an insight into the broad peak found with 

grape seed polymeric tannins on HPLC and to characterize the grape tannins on the basis of HRMS 

and MS/MS data.  
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Figure captions 

Fig. 1. Relative extracted ion chromatographic areas of condensed tannins in CPC collector tubes (* 

Relative extracted ion chromatographic area of each compound is percentage ratio of 

chromatographic area in present tube to the area of the most abundant tube.) 

Fig. 2. HPLC-UV chromatograms of grape seed polymeric tannins and its fractions separated by CPC 

(Absorbance: 280 nm) 
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Fig. 3. Structures of dimeric condensed tannins present in grape and wine (R1 = H/OH; R2 = 

H/glycosyl group/galloyl group) 

Fig. 4. Mass spectra to illustrate A/B type, isotopic and ion charge state distributions for (A) dimers 

and tetramers, (B) dimer-O-gallate, tetramer-di-O-gallate and monomers-O-gallate, (C) trimers and 

hexamers, (D) tetramers and octamers, (E) pentamers and decamers 

Fig 5 MS/MS fragment spectrum of polymeric tannin with DP14 and 5G 

Table 1 HRMS data for polymeric condensed tannins found in first CPC fraction  

(Mass values in bold represent precursor of MS/MS analysis; *MW was calculated by referring to 

equation 1. Accurate masses of carbon, hydrogen and oxygen were 12.0000, 1.0078 and 15.9949, 

respectively; ** Doubly charged ions) 
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Highlights 

 

- A fractionation method was developed to disentangle the HPLC hump of 
seed tannins.  

- UHPLC-Q-ToF was used to characterize polymeric tannins by HRMS and 
MS/MS data. 

- Identified grape seed tannins have a range of polymerization degree up 
to 20. 

- Identified grape seed tannins have a range of galloylation degree up to 
11. 

 

 

 


