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Abstract 

Landfill leachates are not adequately treated in traditional wastewater treatment plants, on account of their 

problematic peculiarities: i.e. dark colour, high concentration of recalcitrant pollutants and COD, and high 

toxicity. In this work, 19 biomasses (15 autochthonous and 4 allochthonous) were exploited in biosorption 

treatment for the remediation of a leachate (influent) and the effluent coming from the biological oxidation with 

activated sludge and nitrification-denitrification treatment. The effects of the initial pH, the biomass amount, and 

the medium for the biomass pre-culture were considered. The best configuration was: pH 5, 5 g L-1 biomass 

cultivated on STY medium. Eventually, the two most effective biomasses, Cunninghamella bertholletiae MUT 

2861 and Aspergillus fumigatus MUT 4050, were used in consecutive 2 h cycles in a batch biosorption 

experiment. The effectiveness of the treatment decreased in subsequent cycles in terms of decolourisation (31-

15%). COD, Cl-, SO4
2-, total N, and toxicity were removed mainly in the second cycle of treatment (up to -36%, 

-12%, -15%, -17% and -49%, respectively). The results suggest that the effluent toxicity was basically due to 

uncoloured substances, which were mainly removed after coloured molecules. 

 

Key Words: Biosorption, Ecotoxicity, Fungi, Landfill Leachate, Bioremediation. 

 

1 Introduction 

Landfill leachates are among the most polluting and difficult to treat wastewaters. In fact, besides the 

high concentration of ammonium and the high pH value, the presence of recalcitrant and toxic xenobiotics 

generally causes the failure of conventional treatments (Ellouze et al. 2009; Vedrenne et al. 2012). In particular, 

biological treatments are strongly affected by the low BOD/COD ratio (<0.5), typical of leachates from landfills 

in methanogenic phase, limiting the growth and the metabolic activity of heterotrophic bacteria in activated 

sludge (Gotvajn et al. 2009; Kurniawan et al. 2010; Renou et al. 2008; Schiopu and Gravrilescu, 2010). The 

treatment ineffectiveness turns in the persistence of the dark colour in effluents (Primo et al. 2012). These 

wastewaters have a deep impact on the water body in which they are discharged (Martínez-Graña et al. 2014). 

Besides, coloured organic substances reduce the effectiveness of UV disinfection treatments, aimed to the 

reduction of the sanitary impact of leachates (Zhao et al. 2013). As a consequence, effluents from the treatment 

of landfill leachates represent a dangerous source of biological pollution, on account of their high microbial load 

(Matejczyk et al. 2011; McDonald et al. 2010; Tigini et al. 2014). 
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Many alternative treatments have been explored, such as Fenton’s reaction, advanced oxidation 

processes, etc. (Schiopu and Gravrilescu, 2010). Although some physical and chemical methods are effective in 

the removal of high strength pollutants, the high cost per volume unit is their major drawback (Bareither et al. 

2013; Saetang and Babel, 2012). 

Biosorption can represent a valuable tool for the implementation of the wastewater treatment, on 

account of the wide range of target molecules, the cost-effectiveness and, in the case of dead biomasses, the 

irrelevance of the leachate toxicity (Mishra et al. 2016; Chen et al. 2013). Among different biosorbents, fungal 

biomasses are of particular interest for pollutant biosorption, thanks to the variety of structural components of 

their cell wall that ensures many different functional groups, which bind molecules to varying degrees (Gadd, 

2009; Tigini et al. 2012). Moreover, fungal byproduct biomasses could present several advantages with respect 

to other biomasses, since they are abundantly available from the fermentation industry (Prigione et al. 2012). 

In the present work, a total of 19 fungal biomasses were exploited in decolourisation experiments for the 

treatment of two real samples: a crude landfill leachate and the effluent coming from a traditional wastewater 

treatment plant (nitrification-denitrification treatment and oxidation by means of activated sludge). Four out of 

19 were allochthonous fungal biomasses, selected for their biosorption capability (Tigini et al. 2012, 2011) or for 

their availability as industrial byproducts. The other 15 biomasses originated from 7 autochthonous fungi 

selected in a previous decolourisation screening (Selbmann et al. 2013; Tigini et al. 2014). The effects of the 

initial pH, the biomass amount, and the medium for the biomass pre-culture were considered. Eventually, the 

experimental design (Sup 1) allowed the selection of the two most effective biomasses destined to a biosorption 

treatment performed in consecutive cycles. The effectiveness of the treatment was evaluated as the removal of 

colour, COD, Cl-, SO4
2-, total N, and toxicity. 

 

2 Materials and Methods 

2.1 Wastewaters 

The two samples came from a wastewater treatment plant located in Italy. One was the influent (crude 

landfill leachate) and the second one was the effluent (consisting of 70% v/v leachate and 30% v/v of other kinds 

of wastewater) previously treated by biological oxidation and nitrification-denitrification treatments. Both the 

samples were composite mixtures, consisting of the wastewaters daily sampled for a period of 15 days. Both the 

samples were dark coloured and had a high content of ammonium and salts. Details of their chemical features, 

provided by the owner of the wastewater treatment plant, were already described in a previous publication 
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(Tigini et al. 2014). All parameters exceeding the legal threshold values are reported in the supplementary 

material (Sup 2).  

 

2.2 Allochthonous biomasses 

Two byproduct biomasses, biomass A and biomass W, were obtained from ACS Dobfar spa (Tribiano, 

Italy) and Wetlands Engineering sprl (Louvain La Neuve, Belgium), respectively. The biomass A came from a 

pharmaceutical fermentation process aimed to the production of antibiotics. The biomass W one is a mix of 

different fungal biomasses coming from several fermentation processes. 

Moreover, Cunninghamella bertholletiae Stadel (MUT 2861) (previously cited as Cunninghamella 

elegans Lendner MUT 2861, and recently renamed after been subjected to molecular analyses) was obtained 

from the Mycotheca Universitatis Taurinensis (MUT, University of Turin, Department of Life Sciences and 

Systems Biology). This strain was selected and patented for its capability to adsorb organic and inorganic 

pollutants (Tigini et al. 2012, 2011). The fungus was inoculated as a conidial suspension (1·105 conidia mL-1) in 

an optimised STY medium (20 g L-1 potato starch, 20 g L-1 double tomato concentrate, 5 g L-1 yeast extract), 

developed by Actygea srl (Puracqua project supported by Lombardia Region, Italy). The biomass was grown for 

7 days in stirred conditions (130 rpm) at 30 °C, then it was sieved (150 µm pore) and rinsed several times with 

water to minimise the residual medium. Then, it was inactivated by autoclaving at 121 °C for 30 min, and 

collected in non-sterile conditions. Besides, a part of MUT 2861 biomass was lyophilised, as already described 

(Tigini et al. 2011). 

 

2.3 Autochthonous biomasses 

Seven out of fifty-one autochthonous fungi were selected from a miniaturised screening among the most 

effective in the colour removal from the leachate and the effluent (Tigini et al. 2014). The strains were A. 

fumigatus MUT 4050, A. tubingensis MUT 1288, A. sydowii MUT 1290, Arthrinium sphaerospermum MUT 

777, Penicillium brevicompactum MUT 793, P. corylophilum MUT 784, and Bjerkandera adusta MUT 765. 

They were cultivated in three different liquid media: CSL (20 g L-1 Corn Steep Liquor), STY, and EQ (20 g L-1 

glucose, 2 g L-1 ammonium tartrate, 2 g L-1 KH2PO4, 0.5 g L-1 MgSO4·7H2O, 0.1 g L-1 CaCl2·2H2O, 10 mL 

mineral stock solution), to assess the effect of the medium composition on the biosorption effectiveness. The 

biomasses were grown for 7 days in stirred conditions (130 rpm) at 30 °C. Then, they were sieved (150 µm pore) 
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and rinsed several times with water to minimise the residual medium, inactivated by autoclaving at 121 °C for 30 

min, and collected in non-sterile conditions. 

 

2.4 Biosorption experiments 

2.4.1 First step: selection of suitable pH with allochthonous biomasses 

Each allochthonous biomass was weighed and an amount of biomass was placed in 50 mL Erlenmayer 

flasks containing 30 mL of wastewater to reach 10 g L-1 ratio (dry weight). Both wastewater samples were used 

as such (pH 8.5) and after pH modification by means of hydrochloric acid (pH 7, pH 6, pH 5, pH 3). The flasks 

were incubated at 25 °C in stirred conditions (130 rpm). Each trial was performed in triplicate. Samples without 

biomass were used as abiotic controls to assess the decolourisation due to other causes than biosorption (e.g. 

photobleaching or complexation). 

At regular intervals, 300 µL of sample were taken from each flask, centrifuged at 14,000 rpm for 5 min, 

to remove mycelial fragments, and examined with a spectrophotometer TECAN Infinite M200 (Austria) to 

acquire the absorbance spectrum from 360 to 790 nm. The decolourisation percentage (DP) was calculated as the 

extent of decrease of the spectrum area, with respect to that of the abiotic control. The significance of differences 

(P≤0.05) among DP values achieved by different strains was calculated by the Mann-Whitney test (SPSS inc., 

2000). 

 

2.4.2 Second step: selection of suitable biomass/wastewater ratio with two allochthonous biomasses 

Two allochthonous biomasses, selected in the previous step, were used in four different ratios of 

biomass dry weight per wastewater volume: 10 g L-1, 5 g L-1, 2.5 g L-1 and 1 g L-1. The biomasses were placed in 

50 mL Erlenmayer flasks containing 30 mL of wastewater samples at the pH selected in the previous step. Then, 

the experiments and the elaboration of the obtained data were performed as previously described. 

 

2.4.3 Third step: selection of suitable biomass pre-culture with autochthonous biomasses 

Each autochthonous biomass (in biomass /wastewater ratio selected in the previous step) was placed in 

50 mL Erlenmayer flasks containing 30 mL of wastewater, at initial pH selected in the first step. Then the 

experiments and the elaboration of the obtained data were performed as previously described. 

 

2.4.4 Fourth step: biomass reuse in consecutive biosorption cycles 
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The two best biomasses, one among the autochthonous and one among the allochthonous, were placed 

in 30 mL of wastewater, at initial pH selected in the first step, and with the biomass/wastewater ratio selected in 

the second step. The incubation and the monitoring of the DP were performed as previously described, for a 

period of 2 hours for each cycles. At the end of each cycle, the content of the flasks was centrifuged and the 

supernatant was replaced with a new wastewater to be treated. The experiment ended after the third cycle. At the 

end of the experiment, the treated supernatants and the untreated controls were subjected to ecotoxicity and 

chemical analyses. 

 

2.4.5 Ecotoxicity and chemical analyses 

Before and after the biosorption treatment, the sample ecotoxicity was evaluated by means of the test with the 

alga Raphidocelis subcapitata (Korshikov) Nygoard, Komárek, J. Kristiansen & O.M. Skulberg (UNI EN ISO 

8692:2005). This target organism was selected as the most sensitive one towards this kind of wastewaters (Tigini 

et al. 2014). The COD, Cl-, SO4
2-, and total N, were determined using Hach-Lange’s cuvettes, after sample 

filtration (filter 0.45 µm). 

 

3 Results and Discussion 

3.1 Effect of pH and selection of allochthonous biomasses 
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The decolourisation percentages achieved by the biomasses (10 g L-1) at different initial pH values are 

reported in Figure 1.

 

 

Figure 1. Effect of pH on the decolourisation process by means of fungal byproduct biomasses (A and W) 

and MUT 2861 biomasses. The decolourisation obtained at time 0 is due to the pH adjustment. 

 

The treatment (pH adjustment followed by biosorption) caused an overall decolourisation ranging 

between 5% and 80% with respect to the unmodified wastewaters, with the best results obtained at pH 3 (Figure 
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1). In particular the effluent treated with lyophilised C. bertholletiae MUT 2861 biomass complied the Italian 

legal limit for the colour (not visible at 1:20 dilution). 

The pH adjustment brought to the precipitation of a part of coloured substances present in both samples, 

causing a decolourisation proportional to the acidification of the samples, up to 59% and 38% (DP values at 0 h 

in Figure 1) for the leachate and the effluent at pH 3, respectively.  

 The pH strongly affected the biosorption process, too. The decolourisation due to biosorption onto the 

biomass was generally proportional to the sample acidification up to pH 5, than it decreased at pH 3 (Table 1). 

 

Table 1. Decolourisation percentages of the samples due to biosorption treatment (the values are 

normalised accordingly to the decolourisation achieved after the pH modification at 0h). 

  Leachate Effluent 

M
U

T 
28

61
 b

io
m

as
s 

 0 hour 1 hour 2 hours 24 hours 0 hour 1 hour 2 hours 24 hours 

pH 3 0,0 18.0 19.1 25.2 0.0 31.9 34.0 33.4 

pH 5 0.0 19.4 25.0 44.0 0.0 26.2 31.2 56.0 

pH 6 0.0 4.1 5.0 3.5 0.0 10.0 14.1 25.5 

pH 7 0.0 13.1 10.8 8.4 0.0 16.9 18.1 20.2 

pH 8.5 0.0 6.1 6.2 5.5 0.0 9.9 8.8 10.3 

M
U

T 
28

61
 

ly
op

hi
lis

ed
 

bi
om

as
s 

pH 3 0.0 15.7 16.5 21.2 0.0 32.0 31.1 34.5 

pH 5 0.0 35.7 40.1 52.8 0.0 51.1 55.8 66.9 

pH 6 0.0 16.7 15.5 9.9 0.0 32.5 36.0 43.5 

pH 7 0.0 15.2 12.7 17.4 0.0 27.8 24.2 23.7 

pH 8.5 0.0 6.5 6.5 4.9 0.0 18.7 16.1 9.6 

B
io

m
as

s A
 

pH 3 0.0 17.7 18.3 16.1 0.0 31.1 30.2 31.6 

pH 5 0.0 51.1 54.6 58.4 0.0 64.0 66.4 65.8 

pH 6 0.0 11.5 14.3 12.4 0.0 36.1 36.2 37.0 

pH 7 0.0 11.1 19.92 19.3 0.0 29.6 24.7 19.8 

pH 8.5 0.0 5.3 5.1 6.7 0.0 13.0 11.6 11.0 

B
io

m
as

s 

W
 

pH 3 0.0 -24.5 -23.4 -26.4 0.0 0.7 -1.5 2.2 

pH 5 0.0 21.0 21.2 18.0 0.0 15.6 16.7 20.5 
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pH 6 0.0 5.6 4.5 3.9 0.00 3.72 3.94 5.92 

pH 7 0.0 16.1 14.4 14.5 0.0 11.2 12.6 16.4 

pH 8.5 0.0 7.0 7.7 3.9 0.0 1.7 0.8 3.4 

 

Hence pH 5 was selected for the further experiment on biomass/wastewater volume ratio. 

The biomass of C. bertholletiae MUT 2861 confirmed its high potential in the wastewater 

decolourisation by means of biosorption (up to 56% decolourisation for the leachate and 44% for the effluent, 

Table 1). The lyophilisation did not significantly increase the decolourisation at the end of the experiment. 

Nevertheless, it improved the decolourisation yields during the first 2 hours, in particular for initial pH 5 and 6 

(Table 1). The same result was already observed towards textile wastewaters, however in that case the effect of 

the biomass lyophilisation was more evident (Tigini et al. 2011). Since any biomass pre-treatment causes costs 

increase, this should be motivated by a significant improvement of biosorption yields (Gadd, 2009). In the 

present work, the decolourisation yields did not justify the cost of the biomass lyophilisation. 

 The byproduct biomasses gave opposite results. Biomass W was quite always ineffective, and caused 

the increase of absorbance spectrum of leachate at pH 3 (Figure 1). Probably, in this case the solubilisation of 

coloured substances occurred after the contact with biomass W. An optimisation of biosorption parameters, such 

as physical and chemical pre-treatments of the biomass, could improve the biosorption effectiveness. However, 

it is important to underline that the advantage associated to the use of a low cost industrial biomass is maintained 

when the biosorbent is ready to use (Gadd, 2009). Thus, the financial impact of a biomass pre-treatment on the 

biosorption treatment should be deeply investigated. 

 On the contrary, the biomass A was very effective in the colour removal (up to 66%) from both 

samples. This biomass showed to be competitive with respect to the selected strain MUT 2861 in terms of  

colour removal, as already shown with textile wastewaters (Prigione et al. 2012). The exploitation of byproduct 

biomasses in wastewater remediation represents a double advantage: it gives new life to a waste, which has high 

disposal costs, and wastewaters can be properly treated. Moreover, the use of byproduct biomasses is a 

prerequisite for a financially sustainable process (Michalak et al. 2013). The critical point is to find an industrial 

process, which continuously generates byproduct biomasses, independently from the seasonality of the market. 

The pharmaceutical industry reasonably ensure a continuous production. 

 On account of the present results, untreated MUT 2861 biomass and the biomass A were selected for 

the further experiment, aimed to the optimisation of biomass/wastewater volume ratio. 
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3.2 Effect of biomass/wastewater ratio 

Decolourisation yields were generally proportional to the biomass amount (Figure 2). 

 

 

Fig. 2 Decolourisation obtained by different amounts of biomasses A and MUT 2861 towards the 

unmodified wastewaters. The decolourisation obtained at time 0 is due to the pH adjustment 

 

The biomass A quite always obtained the best result with respect to C. bertholletiae MUT 2861 at the same ratio. 

It should be noted that biomass A has an excellent surface/volume ratio, on account of its creamy texture. 

Instead, MUT 2861 biomass has a more compact structure. As a consequence, only the outer part of the biomass 

was in direct contact with the wastewater; whereas, the inner part of the biomass probably never came into 

contact with the wastewater. In fact, at the end of the treatment, C. bertholletiae MUT 2861 showed not coloured 

areas. This hypothesis can be confirmed by the fast achievement the biosorpton equilibrium by the biomass A 

(no significantly difference among decolourisation percentage at 1, 2 and 24 h). On the contrary, C. bertholletiae 

MUT 2861 continued to absorb coloured substances, meanwhile the wastewater was permeating the biomass 

granules (Figure 2). 
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On the other hand, the effectiveness of the biomass A is to be balance with some drawbacks in the 

solid-liquid separation phase. The extremely fine texture of the biomass A implies a centrifugation after the 

treatment, whereas the biomass of C. bertholletiae MUT 2861 spontaneously settles within few minutes. This 

last feature can help in the scale-up of the process at industrial level indeed. Moreover, the exploitation in a 

repeated long-term application of a biomass, which remains suspended in the wastewater, is not commercially 

attractive, requiring a continuous biomass consume and additional treatments for its removal from the treated 

effluent (Gadd, 2009; Liu and Liu, 2008). On account of that, C. bertholletiae MUT 2861 was selected for the 

biosorption process in subsequent cycles experiment.   

Since it is important to mediate between the decolourisation yields and the amount of biomass, in order 

to obtain an effective treatment with a limited production of exhausted biomass, the biomass ratio selected for 

the further experiment was 5 g L-1. This biomass ratio did not show significant differences, with respect to 10 g 

L-1 ratio, in decolouration yields within 2 h treatment, which is a reasonable duration for biosorption treatment. 

Actually, DP was not proportionally improved by doubling the biomass amount. Moreover, 5 g L-1 is a biomass 

ratio comparable to other biosorption experiments in literature (El-Sayed, 2013; Jianget al. 2013).  

 

3.3 Autochthonous strains: effect of medium for cultivation and biosorption capability 

STY was generally the most productive medium (up to 5.4 g L-1 for MUT 1288), whereas EQ was the 

less productive one (up to 3.1 g L-1 for MUT 1288). The only exception was recorded with A. fumigatus MUT 

4050, for which CSL was the most productive medium (4.8 g L-1), whereas STY was the less productive one (3.4 

g L-1). Biomasses with a production lower than 0.5 g L-1 were not used for biosorption experiment (Figure 3). 
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Fig. 3 Productivity of different media for the cultivation of autochthonous fungi 

 

Thus, only 15 biomasses were used (5 g/L ratio) among the 21 overall produced. The results are 

reported in Figure 4. The culture medium significantly affected the decolourisation yields, when comparisons 

could be done (only one medium was used for MUT 765). Towards the leachate, 4 out 6 strains achieved the best 

results when cultivated in CSL medium (DP up to 51% for MUT 1290), with respect to the other culture media. 

The biomass of A. fumigatus MUT 4050 achieved the best result with STY (55% decolourisation), whereas 

biosorption effectiveness of MUT 777 was not affected by the culture medium (52% decolourisation with both 

CSL and STY) (Tigini et al. 2012). 

 

 

Fig. 4 Decolourisation after 24 h treatment with autochthonous biomasses pre-cultivated in different 

media 
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 The decolourisation yield towards the effluent followed a similar trend, with comparable DP. Three out 

of 6 strains achieved the best results when cultivated in CSL medium (up to 53% for MUT 784). A. fumigatus 

MUT 4050 and A. sphaerospermum MUT 777 achieved the best results with STY (up to 61%). Whereas, 

biosorption effectiveness of A. sydowii MUT 1290 was not significantly affected by the medium for biomass 

pre-culture. This is probably due to the fact that coloured molecules present in the leachate and the effluent 

similarly interact with the biomass functional groups. Thus, this indirectly indicates the recalcitrance of the 

leachate coloured molecules, which remains in the effluent, without changing their characteristics, after the 

activated sludge and nitrification-denitrification treatments. 

Unfortunately, the reason of the difference in biosorption yields is not clearly explainable, for the lack 

of information about both the biosorption mechanism and the biomass composition. Starch and CSL are known 

to influence the polysaccharides amount in C. berthollethiae cell wall (Tigini et al. 2012). If these considerations 

could be true also for the tested autochthonous fungi, it can be hypothesized that for the strains MUT 4050 and, 

partially, MUT 777, the main cell wall components involved in biosorption process were polysaccharides, which 

are enhanced by starch in culture medium. On the contrary, for MUT 1290, MUT 793, MUT 1288 and MUT 

784, different functional groups could be involved, since CSL decreases acidic polysaccharides in C. 

berthollethiae cell wall (Tigini et al. 2012). Further experiments on the biomass composition of these 

autochthonous fungal strains are needed to confirm this hypothesis. 

Independently from the mechanism involved, the best DP was obtained by A. fumigatus MUT 4050 

biomass cultivated on STY. On the base of this result, this biomass was selected for the further part of the 

research. This fungal species is known to have good decolourisation capabilities though both biosorption 

(Kalaiarasi and al., 2012) and biodegradation (Karim et al., 2017) mechanisms and was patented previously 

(JPH0639392A). Moreover, since there was no significant difference between decolourisation percentage at 2 h 

and 24 h (data not shown), the further experiment was performed with 2 h cycles. 

 

3.4 Biomass reuse in consecutive biosorption cycles 

The decolourisation yields achieved by 5 g/L of allochthonous (MUT 2861) and autochthonous (MUT 

4050) biomasses selected in the previous experiments were comparable for all the experiment. After the first 2 h 

cycle the biomasses achieved 28-31% decolourisation of the effluent. In subsequent cycles, these biomasses 

halved their effectiveness, achieving up to 15-18% decolourisation of the effluent at pH 5 (Table 2). 
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Table 2. Chemical-physical and ecotoxicological parameters and their variation after biosorption 

treatment cycles with respect to the untreated effluent at pH 5. 

 

  MUT 2861 MUT 4050 

Parameter Cycle value at the 

end of the 

cycle 

Δ with 

respect to the 

control at T0 

value at the 

end of the 

cycle 

Δ with 

respect to the 

control at T0 

Colour I - -31% - -28% 

II - -18% - -16% 

III - -15% - -15% 

COD I 1925 mg L-1 -24% 1925 mg L-1 -24% 

II 1835 mg L-1 -28% 1610 mg L-1 -36% 

III 1980 mg L-1 -22% 2015 mg L-1 -20% 

Cl- I 3210 mg L-1 4% 4620 mg L-1 50% 

II 2730 mg L-1 -12% 2960 mg L-1 -4% 

III 3520 mg L-1 14% 3520 mg L-1 14% 

SO4
2- I 1048 mg L-1 -6% 864 mg L-1 -22% 

II 948 mg L-1 -15% 1052 mg L-1 -5% 

III 1132 mg L-1 2% 1068 mg L-1 -4% 

Total N I 389 mg L-1 -4% 401 mg L-1 -1% 

II 394 mg L-1 -3% 339 mg L-1 -17% 

III 348 mg L-1 14% 377 mg L-1 -7% 

Toxicity * I 22.68% -35% 22.15% -37% 

II 17.93% -49% 23.12% -34% 

III 11.12% -22% 10.46% -43% 
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* 25% dilution was considered for the comparison between the effluent before and after the 

treatments. 

 

Besides the colour variation, Cl-,  SO4
2, total N, and toxicity variations were monitored, too. The 

unmodified effluent was characterised by 2099 mg L-1 COD, 2550 mg L-1 Cl-, 801.7 mg L- SO4
2-, 514.1 mg L-1 

total N (Tigini et al. 2014). After the pH adjustment these values were 2532 mg L-1, 3090 mg L-1, 1112 mg L-1, 

and 406 mg L-1, respectively. Results about chemical and ecotoxicological analyses after biosorption treatment 

cycles are shown on Table 2. 

The COD constantly decreased after each biosorption cycle (up to 36% after the II cycle with MUT 

4050). Since the decolourisation decreased in subsequent cycles, it can be hypothesized that biomass 

increasingly adsorbed uncoloured organic substances, i.e. organochlorine compound, phthalates, solvents, which 

are often detected in landfill leachates (Jiang et al. 2013). On the contrary, humic and fulvic molecules, that are 

the main responsibles of leachate dark colour (Teuten et al. 2009), are probably removed in the first cycle. 

A significant change in Cl- was recorded after the first treatment cycle with biomass of A. fumigatus 

MUT 4050 (+50%). In subsequent cycles with both biomasses, Cl- ranged from -12% to 14%.  

Sulphates quite always decreased (up to 22%), in particular after the first 2 cycles. However, after each 

treatment cycle, the removal percentage was reduced (only 5% of removal after the III cycle). The decrease of 

salts was already recorded exploiting C. berthollethiae MUT 2861 in the biosorption treatment of textile 

wastewaters (Tigini et al., 2010). On the contrary, their increase can not be intuitively explained. Chlorides and 

SO4
2- variation due to the fungal biomasses release was assessed by an additional test with a cycle of 2 hours 

treatment with the two biomasses put in contact with distilled water. At the end of the experiment, biomasses 

released a little amount of ions, since there were 26.2 mg L-1 Cl- and 44.4 mg L-1 SO4
2- with A. fumigatus MUT 

4050, whereas there were 45.4 mg L-1 Cl- and 47.8 mg L-1 for C. berthollethiae MUT 2861. However, the 

amount of ions released by biomasses does not justify the increase of Cl- recorded after treatment of biosorption. 

Some changes in solubility of these ions may be occurred due to biosorption treatment. It must be underlined 

that the pH always increased up to 5.5-6 after biosorption treatment. It can be hypothesized that the hydrochloric 

acid, used for the pH change, caused the precipitation of NH4Cl, which was again partially solubilised when pH 

increased. 

The total N was subjected to weak fluctuations: after the first 2 cycles decreased up to -17% (MUT 

4050), whereas after the third cycle it increased up to +14% (MUT 2861).  
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In order to estimate the toxicity variation with respect to the control at pH 5, the 25% dilution was 

considered for the comparison between samples, since this was the maximum testable dilution in common to all 

samples. All biomasses caused the reduction of wastewater toxicity, up to 49% reduction for MUT 2861. The 

toxicity reduction was not proportional to the DP and the variation of chemical parameters. Actually, the third 

cycle, which turned in the minimum removal of colour, salts, and ammonium, resulted in the maximum toxicity 

decrease for MUT 4050 (Table 2). Probably, in this case the effluent toxicity was basically due to uncoloured 

substances, which could be mainly removed after coloured molecules.  

 

4 Conclusions 

In this study, the best configuration for biosorption treatment with fungal biomasses was: pH 5, 5 g L-1 biomass 

cultivated on STY medium. The most effective biomasses, Cunninghamella bertholletiae MUT 2861 and 

Aspergillus fumigatus MUT 4050, were used in consecutive 2 h cycles in a batch biosorption experiment. The 

effectiveness of the treatment decreased in subsequent cycles in terms of decolourisation (31-15%). On the 

contrary, COD, Cl-, SO4
2-, total N, and toxicity were removed mainly in the second cycle of treatment (up to -

36%, -12%, -15%, -17% and -49%, respectively). The results suggest that the effluent toxicity was basically due 

to uncoloured substances, which could be mainly removed after the saturation of binding sites active towards 

coloured molecules. 

The optimised biomass of an autochthonous strain, A. fumigatus MUT 4050, showed a comparable 

sorption capacity with the biomass of the allochthonous strain, C. bertholletiae MUT 2861, selected and patented 

for its capability to adsorb dyes, salts and surfactants. 

Despite the very good results, the biosorption treatment was not enough to comply the legal threshold 

limits about the colour and the tested ions. However, it can be considered a valid tool aimed to the improvement 

of the influent treatability in traditional wastewater treatment plants. In fact, the biosorption with fungal biomass 

potentially lead to a double advantage: the reduction of recalcitrant COD and toxicity, which could turn in the 

increase of the activated sludge efficiency. Moreover, the colour removal could improve the efficiency of UV 

disinfection processes by decreasing the absorbance of the wastewaters. 

The implementation of biosorption in a recirculating stream could potentially bring to an improvement 

of the activated sludge efficiency. Further studies should be performed in this direction. 
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