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Abstract 27 

Growing evidence points to an association between timing of food intake and obesity in humans, raising the 28 

question if when to eat matters as much as what and how much to eat. Based on the new definition of obesity 29 

as a chronobiological disease, an unusual or late meal timing represent a circadian chronodisruption, leading 30 

to metabolic impairments.  31 

Preliminary data from cross-sectional and experimental studies suggest that changes in meal timing can 32 

influence obesity and success of weight loss therapy, independently from total energy intake, dietary 33 

composition and estimated energy expenditure. 34 

A systematic review of observational and experimental studies in humans was conducted to explore the link 35 

between time of food ingestion, obesity and metabolic alterations. Results confirm that eating time is relevant 36 

for obesity and metabolism: observational and experimental studies found an association between meal 37 

timing, weight gain, hyperglycemia and diabetes mellitus with benefits deriving from an early intake of food 38 

in the day in a wide range of individuals. Herein clinical, future perspectives of chronoprevention and 39 

chronotherapy of obesity and type 2 diabetes are also provided. 40 

In conclusion, meal timing appears as a new potential target in weight control strategies, and therapeutic 41 

strategies should consider this contributor in the prevention of obesity. 42 

 43 

 44 

1. Introduction 45 

In the last decade, a new relevant question has arisen: when to eat [1-3]. In addition to what and how much 46 

to eat, food timing represents a novel issue in our 24-h modern society, characterized by more exposure to 47 

artificial light, later food intake and bedtimes. Food is a major synchronizer of peripheral circadian clocks, and 48 

delayed feeding due to prolonged night-time wakefulness leads to desynchrony between central circadian and 49 

peripheral clocks [4]. 50 
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Growing evidence points to an association between timing of food intake and obesity in humans, suggesting 51 

that changes in meal timing can influence obesity and success of weight loss therapy [1]. Also in animals, 52 

weight regulation is affected by the timing of food ingestion [5, 6]. 53 

On this basis, obesity could now represent a “chronobiological disease” [7]. Differently from the time-54 

restricted feeding pattern unintentionally practiced by our ancestors for thousands of years, the current trend 55 

is to shift most of the caloric intake later in the day [8]. In a few cross-sectional studies, an increased risk of 56 

overweight and obesity was found when a greater daily caloric intake was consumed in the evening [9-12], 57 

while a reduced risk was observed when consuming a larger proportion of calories at lunch or breakfast [9, 58 

11, 13]. 59 

Even though the association between evening eating and body weight was not confirmed in a prospective US 60 

cohort, it was present in specific subgroups (smoking men, physically active men, inactive women) [14]. 61 

Another prospective study showed that late-night eaters had an increased coronary heart disease risk [15]. 62 

The clinical relevance of meal timing appears to be supported by its role in weight loss strategies. In a 20-week 63 

intervention study, as compared with early lunch eaters, late lunch eaters lost less weight independently from 64 

self-reported 24-h caloric intakes [16]. In overweight and obese women with metabolic syndrome, a 12-week 65 

weight-loss program with high caloric breakfast was more effective in reducing weight and waist 66 

circumference than an isocaloric diet with high caloric intake at dinner [17]. 67 

Aside from body composition and weight regulation, timing of food intake seems to have a negative impact 68 

also on metabolism. Eating lunch later in the day was associated with poorer insulin sensitivity assessed by 69 

HOMA-IR (Homeostasis-Model Assessment-Insulin Resistance) index [16]. Experimental studies showed a 70 

higher decrease in HOMA-IR after a high caloric breakfast vs dinner in women with metabolic syndrome [17] 71 

and polycystic ovary syndrome [18]. Late lunch eating was associated with decreased pre-meal resting energy 72 

expenditure, lower pre-meal carbohydrate utilization, and decreased glucose tolerance after mixed-meal test 73 

[19]. In another study exploring food-induced thermogenesis in the morning and evening, the same meal 74 

consumed in the evening determined a lower after-meal resting metabolic rate and increased, delayed 75 

concentrations of glucose and insulin [20]. 76 
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These preliminary data suggest that consuming a larger proportion of total daily energy in the morning, as 77 

opposed to later in the day, might be more beneficial for weight loss.  78 

 79 

The aim of this study was to perform a systematic review of observational and experimental studies comparing 80 

the effect of different food timing on body weight and metabolic outcomes in adults. The possibility to 81 

undertake a meta-analysis of the effects of the interventions on at least some of the outcomes was evaluated 82 

too. 83 

 84 

2. Material and Methods 85 

This article is structured according to the preferred items for Systematic Reviews and Meta-Analyses (PRISMA) 86 

guideline [21]. 87 

 88 

2.1 Literature search strategy 89 

The following electronic databases were queried using a combination of search terms: PubMed (National 90 

Library of Medicine), Trip database and The Cochrane Library, until 01 March 2017. The construction of the 91 

search strategy was performed using database specific subject headings and keywords. The search terms 92 

included combinations of “timing meal” or “timing meals” or “timing of food” or “food timing”, and Body Mass 93 

Index (BMI), obesity, weight, hyperglycemia, glycemia, insulin, insulin-resistance and type 2 diabetes mellitus 94 

(free-term and MESH as possible) (Appendix 1). 95 

These search strategies were supplemented by hand searching the bibliographies of all the included studies. 96 

Searches were limited to randomized controlled trials, parallel or cross-over, and observational studies in 97 

healthy volunteers or patients (e.g. individuals with obesity/overweight, polycystic ovary syndrome, metabolic 98 

diseases or other underlying diseases). We excluded studies performed in children. 99 

 100 

2.2 Study selection 101 
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We included studies reporting comparisons of different timing meal interventions or habits (early eaters/late 102 

eaters or different timing of daily energy intake distribution) to reduce weight, insulinemic and glycemic areas-103 

under-the-curve values and other metabolic variables. 104 

Two review authors (SB, CM) independently scanned the abstract, title, or both, of every record retrieved, to 105 

determine which studies should be assessed further. All potentially relevant articles were investigated as full 106 

text. Any discrepancy about inclusion was resolved by discussing with a third review author (GB). 107 

 108 

2.3 Data collection and extraction 109 

For the trials that fulfilled the inclusion criteria, two authors independently abstracted key participant 110 

characteristics and reported data on efficacy outcomes using standard data extraction templates.  111 

From each included study, information was extracted on: 112 

 Characteristics of study participants (type of population, age, BMI); 113 

 Type of intervention; 114 

 Outcomes: 115 

 Anthropometric variables (BMI, weight, waist circumference, total body fat, etc.); 116 

 Metabolic variables (blood glucose values, triglycerides, total cholesterol, HDL and LDL-117 

cholesterol, etc.); 118 

 Hormonal variables (blood insulin, progesterone, testosterone, etc.); 119 

 Calorimetric variables (fasting or after-meal resting metabolic rate, fasting or after meal 120 

respiratory quotients, etc). 121 

 122 

2.4 Risk of bias assessment 123 

The validity of each study was independently assessed by two authors (SB, GB) using two tools: a) the 'Risk of 124 

bias' tool developed by The Cochrane Collaboration for RCT [22], and b) the 'Risk Of Bias in Non-randomized 125 

Studies of Interventions' (ROBINS-I) tool for evaluating risk of bias in estimates of the comparative 126 

effectiveness of interventions from studies not using randomization to allocate units (individuals or clusters of 127 
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individuals) to comparison groups [23]. As they were familiar with the literature, review authors were not 128 

blinded with respect to the study authors, institution or journal. We resolved possible disagreements by 129 

consensus, or with consultation with a third review author (AE). 130 

We could not undertake a meta-analysis of the effects of the interventions due to the great variability in 131 

outcome assessment and reporting, and in the type of interventions. 132 

 133 

3. Results 134 

3.1 Flow and characteristics of included studies 135 

With the initial literature search, 926 articles were found (Figure 1). Fifteen records were identified and 136 

carefully assessed for eligibility, after excluding non-original articles, duplicates, and articles not meeting the 137 

inclusion criteria. Only 10 studies satisfied all the inclusion criteria and were selected for the systematic review, 138 

including a total number of 6401 subjects (Table 1). The largest study recruited 4243 subjects [24] while the 139 

smallest one only 6 subjects [25]. Included studies were conducted in Spain [16, 19, 24, 26], Israel [17, 18], 140 

Japan [27], UK [25], and Italy [20, 28], between 2001-2014. Participants were: healthy individuals [19, 20, 25, 141 

27], general population [24, 28], overweight/obese subjects [16, 17], post-bariatric surgery patients [26], 142 

women with polycystic ovary syndrome [18]. In one case participants were paid [27]. The demographic and 143 

clinical characteristics of the included studies are shown in Table 1.  144 

Five of the included studies were trials: randomized cross-over [19, 20, 25, 27] and randomized controlled 145 

trials [17, 18], respectively, while four were observational prospective studies [16, 24, 26, 28]. The duration of 146 

the observational period was respectively: 6 years [26, 28], 3.5 years [24], and 20 weeks [16]. 147 

The interventions of the trials varied from the acute consumption of one or more meals a day at different 148 

hours [20, 25, 27] to early eating vs late eating the greater amount of kcal/day for 2 weeks [19] or 12 weeks 149 

[17, 18]. 150 

Observational studies divided participants according to the timing of the main meal (lunch before or after 151 

15:00) [16, 26], the timing of the consumption of the larger amount of calories [24] or the tertiles of the 152 

percentage of total daily caloric intake from dinner [28]. 153 
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The following outcomes were evaluated: variation on anthropometric variables [16-19, 24, 28], energy 154 

expenditure by indirect calorimetry [19, 20, 27] or equations [16, 26], metabolic parameters [16-20, 25-28], 155 

sleep pattern [16, 19, 26], body temperature [19], carbohydrate absorption [27], satiety [17], hormonal 156 

assessments [18, 19], and other blood variables, such as inflammatory parameters and liver enzymes [28]. 157 

 158 

3.2 Risk of bias assessment 159 

Most of the analyzed trials provided insufficient information about randomization procedures (Table 2). If 160 

blinding of participants was not feasible owing to the nature of the interventions, data about blinding of the 161 

personnel who performed the laboratory or statistical analyses was often unknown. In one study about 20% 162 

of participants dropped out [17]. Most trials appeared to be free of selective outcome reporting and of other 163 

sources of bias. 164 

The risk of bias for the observational studies is reported in Table 3. Most of the evaluated risks of bias were 165 

low/moderate. Ruiz-Lozano classified post-bariatric surgery patients by their weight-loss pattern after surgery 166 

and compared the timing of meals among groups [26]. The three groups, however, significantly differed for 167 

age and gender: older male patients were more frequently poor responders. Hermengildo studied the risk of 168 

weight gain by the distribution of energy intake throughout the day, but weight gain was self-reported both 169 

at baseline and at the end of the follow-up [24]. 170 

 171 

3.3 Effect of timing of food intake on changes in weight and other anthropometric parameters 172 

Observational studies showed that late lunch-eaters (after 15:00) were 2-fold more frequent in poor-weight 173 

loss responders to bariatric surgery, independent of dietary macronutrient composition [26]; the OR of gaining 174 

weight (>3kg) was 0.79 (95% CI 0-63-0.99), 0.82 (95% CI 0.64-1.04) and 0.62 (95% CI 0.47-0.80) respectively in 175 

the second, third and the highest quartile of percent energy intake at lunch, when compared to the lowest 176 

quartile, in a multivariate logistic regression analysis (p for trend=0.001) [24]; being in the highest tertile of 177 

daily percent caloric intake at dinner was significantly associated with an increased risk of incident obesity 178 
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(OR=2.33, 95%CI 1.17-4.65) [28]; late lunch eaters lost less weight than early lunch eaters (7.7 vs 9.9kg) after 179 

a 20-week weight-loss intervention [16]. 180 

Apart from two observational studies [24, 28], the nutritional composition of meals was not different between 181 

the groups of early or later-eaters. This finding strongly reinforces the role of meal timing on the studied 182 

outcomes. 183 

The evaluated randomized trials reported: a significantly higher weight loss in the “more calories at breakfast” 184 

group when compared to the “more calories at dinner” group (-8.7±1.4 vs -3.6±1.5 kg, p<0.001) after 12-weeks 185 

of a hypocaloric diet in overweight/obese women [17]; no significant change in weight between two groups 186 

with the same distribution of calories as above reported, after 12 weeks of a maintenance diet in women with 187 

the polycystic ovary syndrome. 188 

A few studies evaluated other indices of body fat [16-18]. No difference in waist circumference values and 189 

total body fat, as measured by bioelectrical impedance, were evident at baseline among early vs late lunch 190 

eaters, but these data were not available at follow-up [16]. Individual eating “more calories at breakfast” 191 

showed greater waist circumference reduction compared to the “more calories at dinner” group after a 192 

weight-loss 1400 kcal diet [17]; this difference was not confirmed after a 1800-kcal maintenance diet in women 193 

with polycystic ovary syndrome [18]. Only in 3 studies, waist circumference was described with the same 194 

methods and at the same time (baseline, follow-up); therefore, we could not undertake a meta-analysis 195 

because of the low number of individuals, not representative of the complete review [16-18]. 196 

 197 

3.4 Effects of timing of food intake on glucose and insulin blood values 198 

At baseline, late lunch eaters when compared to early lunch eaters showed increased values of Homeostasis 199 

Model Assessment-Insulin Resistance (HOMA-IR) index, but fasting glucose and insulin blood concentrations 200 

were similar between the two groups; no data at follow-up were available [16]. Individuals in the highest tertile 201 

of percent daily caloric intake at dinner showed an increase risk of incident type 2 diabetes (2.26; 95%CI 0.89-202 

5.75) [28]. 203 
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The trials evaluating the acute consumption of one or more meals/day reported that: a) glucose responses 204 

were greater after consuming the majority of energy load in the evening than in the morning, while insulin 205 

responses and post-prandial insulin resistance seemed to be mainly affected by the quality of carbohydrates 206 

[25]; b) the efficiency of digestion and absorption of dietary carbohydrates consumed at breakfast was higher 207 

if the previous supper was later (at 23:00) than under usual conditions (at 18:00) and, accordingly, after-208 

breakfast glucose values were increased until 3 hours in case of previous late suppertime [27]; c) the same 209 

meal consumed in the evening determined delayed and larger increases in glucose and insulin blood 210 

concentrations and significant increases in the corresponding areas-under-the curve [20]. 211 

The study protocol 1 of Bandin showed increased post-prandial glucose responses in late lunch eaters with a 212 

46% higher glucose area-under-the curve than in early lunch eaters [19]; women eating “more calories at 213 

breakfast” showed greater reduction in fasting glucose, insulin and insulin resistance evaluated by the HOMA-214 

IR index and, similarly, reduced glycemic and insulinemic responses both to the oral glucose tolerance test and 215 

to a meal challenge when compared to the “more calories at dinner”, after 12 weeks of isocaloric 1400-kcal 216 

diet [17]; in lean women with polycystic ovary syndrome, a high caloric intake at breakfast resulted in 217 

significantly reduced glucose and insulin areas-under-the-curve and an improvement in insulin sensitivity than 218 

consuming a high caloric intake at dinner [18].  219 

 220 

4. Discussion 221 

New, intriguing contributors to the epidemic of obesity have been lately recognized, such as meal frequency 222 

and patterns [29, 30], as well as sleep duration and quality [31]. Emerging evidence sounds the alarm on the 223 

role of meal timing and questions whether when to eat matters as much as what and how much to eat. 224 

Few cross-sectional studies tried to answer this question, finding that later timing of meals or eating more 225 

calories later in the day has a negative impact on body weight and metabolism [9-13]. 226 

Our systematic review of observational and experimental studies, including both healthy individuals [19, 20, 227 

24, 25, 27, 28] and patients with different dysmetabolic conditions [16-18, 26] confirms the health benefits of 228 

early eating, with positive effects on body weight, weight loss success, and glucose metabolism. 229 
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 230 

4.1 Timing of food intake and obesity 231 

Experimental studies show that animal models fed at unusual feeding time develop obesity, even without 232 

change in activity or total energy intake [5, 32]. High-fat meal at the end of the active phase leads to increased 233 

weight gain [33]. When challenged with a high-fat diet, chronodisrupted mice were more likely to be obese 234 

[34]. 235 

The pathophysiologic basis of these findings relies on the new definition of obesity as a chronobiological 236 

disease [7]. Unusual feeding time can represent a circadian disruption leading to clock gene functional 237 

alterations and uncoupling between the central and peripheral oscillators, circadian variations of peripheral 238 

clocks, gene expression, satiety hormones, and digestive processes [1]. Among mechanisms promoting 239 

obesity, diet-induced thermogenesis is lower at night [35], and the reduced thermic effect of glucose in obesity 240 

is likely related to the nocturnal insulin resistance [36]. Additionally, reduced fat oxidation has been observed 241 

during nighttime eating [37, 38]. 242 

Also in humans, cross-sectional studies suggest that eating time is relevant for obesity. Particularly, consuming 243 

a greater daily caloric in the evening is associated with higher risk of overweight and obesity [9-12], while 244 

eating more calories at lunch or breakfast appears to be protective against overweight/obesity [9, 11, 13]. 245 

The observational studies included in the present systematic review showed a positive association between 246 

meal timing and body weight [16, 24, 26, 28], that remained significant also after controlling for many 247 

counfunding factors involved in the obesity development, such as physical activity and sleep time [16, 24, 26, 248 

28]. Even though short sleep duration is a well know, independent risk factor for obesity, self-reported data 249 

on sleep time appear similar among the different weight loss patterns [16, 26] and therefore probably did not 250 

mediate the observed outcomes. The association between meal timing and body weight was supported also 251 

by a causal direction described in the included experimental studies [17-20, 25, 27]. Furthermore, the benefits 252 

were evident in a wide range of individuals: post-bariatric surgery patients [26], women with metabolic 253 

syndrome [17], overweight/obese subjects attending nutrition clinics [16, 26] and general population [24, 28]. 254 

Specifically, in post-bariatric surgery patients, left ventricular mass was decreased one year after procedure; 255 
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this improvement correlated only with the decrease in leptin levels [39], postulating a cardiovascular 256 

protection from weight loss also mediated by hormonal changes. 257 

This key message has a clear practice implication, and should be considered by clinicians when drawing up a 258 

nutritional scheme. 259 

 260 

4.2 Timing of food intake and hyperglycemia 261 

Circadian misalignment is known to result in adverse metabolic and cardiovascular consequences [40, 41]. 262 

Experimental studies explored the possible mechanisms supporting the circadian modulation of insulin 263 

secretion or action. Pathophysiological hypotheses of decreased insulin sensitivity later in the day [42] are 264 

represented by increased levels of triglycerides [43] and urinary epinephrine [44], fluctuation in cortisol serum 265 

concentrations [45] and higher morning ACTH plasma values [46], and/or a delayed peak in the counteracting 266 

activity of glucagon after evening meals [47]. Moreover, under late suppertime conditions, an increased 267 

efficacy of dietary carbohydrates absorption has been described [27]. Yet, increased evening meal emptying 268 

time seems to lead to evening delay in reaching peak plasma concentrations of the absorbed substances [48]. 269 

Metabolic consequences of experimental interventions occur rapidly and are already observed after an acute 270 

consumption of one or more meals a day at different hours [20, 25, 27]. 271 

 272 

4.3 Clinical prospective 273 

The success of weight loss therapy seems to be predicted by food timing; evening preference has a negative 274 

impact on metabolism, too. Even though not specifically design for food timing investigation, later chronotype 275 

individuals with type 2 diabetes, more likely characterized by later food ingestion, were characterized by a 276 

poorer glycemic control [49-52]. This observation raises the question whether meal timing intervention, with 277 

or without circadian phase changes, might be helpful in type 2 diabetes management; future studies are 278 

needed to verify this hypothesis. Indeed, The Academy of Nutrition and Dietetics has recently pointed up meal 279 

timing as a new potential target in weight control strategies [53], stating that consuming most of an 280 

individual’s energy earlier in the day may enhance weight loss and weight maintenance.  281 



12 
 

 

Among other clinical aspects of chronobiology in type 2 diabetes, it is worth considering that chronotherapy 282 

might apply not only to lifestyle but also to drug treatment. A prospective, randomized, open-label, blinded 283 

trial showed that blood pressure lowering drugs at bedtime reduced cardiovascular risk in type 2 diabetes 284 

patients with hypertension over a mean of 5.4 years, compared with the ingestion of drugs upon awakening 285 

[54]. Varying the time of day at which antihypertensive medications are taken is highly effective not only in 286 

diabetic but also non-diabetic subjects [55]. Like chronotherapy, also chronoprevention might apply to both 287 

lifestyle and drug treatment. In fact, in hypertensive patients without diabetes, administering ≥1 288 

antihypertensive medications at bedtime, particularly angiotensin receptor blockers and ACE inhibitors, 289 

compared with medications taken after awakening, reduced risk of incident diabetes during a 5.9-year median 290 

follow-up and improved blood pressure control with significant decrease of asleep blood pressure [56]. 291 

Another clinical application of food timing intervention might be represented by type 1 diabetes, even though 292 

it was not mentioned in the studies included in our systematic review. As type 1 diabetes in affected by 293 

increased mortality [57], it would be interesting to see whether optimal food timing and daily caloric 294 

distribution may improve short-term glycemic, endothelial dysfunction, inflammation and oxidative stress 295 

outcomes as cardiovascular risk markers. 296 

In consideration of the relevance of obesity- and type 2 diabetes- cardiovascular related diseases, it looks 297 

fundamental to search for efficient strategies for weight-loss and cardiovascular risk reduction. Future studies 298 

should verify whether well-known cardiovascular risk markers associated with obesity [39] and diabetes [58] 299 

may improve after chronotherapy intervention. 300 

 301 

4.4 Limitations 302 

The heterogeneity of the population studies and the evaluated outcomes has prevented us from performing 303 

a meta-analysis. The findings of the present systematic review do not allow to definitely prove the relationship 304 

between meal timing and the improvement of overweight and dysmetabolic conditions in humans. The 305 

heterogeneity of the included studies should be considered as a limitation, since either healthy individuals or 306 

patients with different dysmetabolic conditions have been enrolled. As another limitation, some studies 307 
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included in this analysis were not primarily designed to assess the effects of meal timing on weight or 308 

metabolic variables, suggesting a high risk of both publication and outcome reporting biases. The use of any 309 

drug was considered as exclusion criteria in most studies [16-20,27], but in 3 of the observational studies 310 

[24,26,28], data relative to pharmacological treatment were not reported; we therefore could not exclude 311 

that therapeutic regimens might have influenced weight loss dynamics or food intake timing in these studies. 312 

Finally, the number of trials and individuals included in the present review was small, which made it difficult 313 

to definitively assess the metabolic effect of meal timing, and required further investigations. 314 

Nevertheless, to the best of our knowledge, this is the first systematic review on this topic and could contribute 315 

to advancing knowledge and generating new studies in the field 316 

 317 

4.5 Conclusions 318 

Accumulating evidence summarized in this systematic review supports the negative impact of later meal 319 

timing and calories distribution on body weight and metabolism. High quality studies are needed to clarify the 320 

effectiveness of changes in eating time as an additional strategy for obesity and diabetes prevention and 321 

treatment in adults. 322 
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Table 1. Characteristics of the included studies 

Observational studies 

Author(year
) 

[ref] 

Methods Participants Intervention Outcomes Changes in outcomes 

Ruiz Lozano 
(2016) 

[26] 

Observational 
prospective 
study 

(2006-2011) 

N=270 patients treated 
with bariatric surgery 
(Roux-en-Y gastric 
bypass and sleeve 
gastrectomy) 

 

Early eating vs Late eating 
according to the timing of 
main meal (before and after 
15.00) 

Anthropometry measures: weight, BMI, 
postoperative weight loss 

Energy and dietary intake before/during/after 
bariatric surgery: 4-days food record 

Morningness/eveningness questionnaire 

Weight change: 70% of 
late eaters in poor 
weight-loss responders 
vs 42% in secondarily 
poor weight-loss 
responders and 37% in 
good weight-loss 
responders (p=0.01) 

Hermenegild
o Y (2016) 

[24] 

Observational 
prospective 
study 

(2008-2012)  

N=4243 adults from a 
population-based 
cohort 

Inclusion criteria: ≥18y, 
living in Spain, alive at 
follow-up 

Exclusion criteria: 
institutionalized, 
unable to give valid 
data about diet, cases 
with missing data on 
the evaluated variables 

Quartile of energy intake by 
different meals (breakfast, 
mid-morning meal, lunch, 
mid-afternoon meal, 
dinner, snacking) 

Anthropometry measures: weight gain (>3 kg) Weight change: compared 
with those in the lowest 
quartile of % energy 
intake at lunch, the 
multivariate OR of 
gaining >3kg was 0.79 
(95% CI 0.63-0.99) in the 
second quartile, 0.82 
(0.64-1.04) in the third 
quartile and 0.62 (0.47-
0.80) in the highest 
quartile (Ptrend=0.001) 

Bo S 

(2014) 

Observational N=1245 adults from a 
population-based 
cohort 

Tertiles of the percentage of 
total daily caloric intake 
from dinner 

Anthropometric measures: weight, height, BMI, 
waist circumference 

Incidence of obesity: from 
the lowest to the highest 
tertiles of total % daily 
caloric intake at dinner, 
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[28] prospective 
study 

(2001-2008) 

Inclusion criteria: age 
45-64y from 6 general 
practitioners, 
Caucasian, living in Asti 
(North-Western Italy) 

Exclusion criteria: 
obesity and/or 
diabetes mellitus at 
baseline, died during 
follow-up 

Metabolic parameters:  blood glucose, glycated 
hemoglobin, cholesterol, HDL-cholesterol, 
LDL-cholesterol, triglycerides, HOMA-IR index 

Other blood parameters: C-reactive protein, 
alanine aminotransferase, γ-glutamyl 
transferase 

the incidence rate of 
obesity increased (from 
4.7 to 11.4%, p<0.01). 
The increased obesity 
risk for subjects in the 
highest tertile was 
confirmed in a multiple 
regression model 
(OR=2.33; 95% CI 1.17–
4.65; p=0.02). 

Incidence of diabetes: 
individuals in the highest 
tertile of dinner % daily 
caloric intake showed an 
increase risk of incident 
type 2 diabetes (2.26; 
0.89-5.75) 

Garaulet M 
(2013) 

[16] 

Observational 
prospective 
study  

(2007-2008)  

N=420 
obese/overweight 
individuals 

Exclusion criteria: 
special diet, weight-
loss drugs, diabetes 
mellitus, chronic renal 
failure, hepatic 
diseases, cancers, any 
nutrition program 
within 2-y 

Early eaters (lunch before 
15:00) and late eaters 
(lunch after 15:00)  

All subjects received a 60-
min educative program 
(once/week) with 
nutritional and exercise 
recommendations and a 
cognitive-behavioral 
approach 

 

Anthropometric measures: weight, height, 
BMI, total body fat, waist circumference 

Metabolic parameters:  blood glucose, 
cholesterol, HDL-cholesterol, LDL-cholesterol, 
triglycerides, HOMA-IR index, leptin, ghrelin 

Energy intake before/during treatment: 1-day 
dietary recall 

Energy expenditure: estimated by equations 

Morningness/eveningness questionnaire 

Sleep duration: evaluated by questionnaire  

Weight change: early 
lunch eaters lost more 
weight than late eaters 
during the 20-weeks of 
intervention (9.9±5.8 vs 
7.7±6.1 kg, p=0.008). The 
weight loss, expressed as 
% of initial weight was 
respectively: 11.3±5.8 vs 
9.0±7.1 (p=0.006) 

Randomized cross over/ controlled studies 
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Author(year
) 

[ref] 

Methods Participants Intervention Outcomes Changes in outcomes 

Bo S (2015) 

[20] 

 

Cross-over 
randomized 
trial 

 

N=20 healthy 
volunteers 

Inclusion criteria: age 
20-35y, BMI 19-26 
kg/m2, habitual 
moderate exercise 
level, <10 
cigarettes/day. 

Exclusion criteria: Any 
acute or chronic 
diseases, menopause, 
any drugs or 
supplementations, any 
alimentary restrictions 
or specific diets, being 
a shift or night 
workers, unable to give 
a written informed 
consent 

The same meal at 8:00 and, 
7 days after at 20:00 or vice 
versa 

Each experiment lasted 
about 2-h 

Calorimetric evaluation: fasting RMR, after-
meal RMR, DIT, fasting RQ, after meal RQ, RQ 
difference 

Metabolic parameters: blood glucose, insulin, 
FFA, triglycerides every 30 min after each 
meal for 180 min 

 

Metabolic variables: 
delayed and larger 
increases in glucose and 
insulin concentrations 
were found after the 
evening meals. 
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Bandin C 
(2015) 

[19] 

Cross-over 
randomized 
trial 

 

Protocol 1 

Each 
experiment 
lasted 2 weeks, 
after 1 week 
wash out 

Protocol 2 

Each 
experiment 
lasted 2 weeks, 
after 1 week 
wash out 

N=32 healthy women 

Exclusion criteria: 
endocrine, renal, 
hepatic, psychiatric 
disorders, any drugs 
(other than oral 
contraceptives) 

 

Protocol 1: N=10 

Protocol 2: N=22 

Early eating (lunch at 
13:00) vs late eating (lunch 
at 16:30) for 2 weeks. 

 

Specific measurements to protocols: 

Protocol 1 

Calorimetric evaluation:  fasting RMR, after-
meal RMR, fasting RQ, 

after meal RQ, carbohydrate oxidation  

Metabolic parameters: Mixed meal test for 
glucose tolerance  

Protocol 2 

Wrist temperature 

Hormonal assessments: salivary cortisol 

Metabolic variables: late-
eating lunch individuals 
showed significantly 
increased post-prandial 
glucose areas-under-the-
curve than early eaters 
(102.6±30.8 vs 70.0±32.9 
mmol/l×h; p=0.002) 

Jacubowitz 
D,a (2013) 

[17] 

Randomized 
controlled trial 

N=93 overweight and 
obese women. 

Inclusion criteria: age 
20-65y, BMI 25-37 
kg/m2, non-diabetic 
OGTT, presence of the 
metabolic syndrome 

Exclusion criteria: 
abnormal thyroid, liver 
or kidney function, 
cardiovascular disease, 

Subjects were randomized 
to one of the following 
1400 kcal weight-loss diet 
for 12 weeks:  

-breakfast group (700 kcal 
breakfast, 500 kcal lunch, 
200 kcal dinner; N=46) 

-dinner group (200 kcal 
breakfast, 500 kcal lunch, 
700 kcal dinner; N=47)  

Anthropometric measures: height, weight, BMI, 
waist circumference 

Metabolic parameters: blood glucose and 
insulin after an OGTT, total cholesterol, LDL-
cholesterol, HDL-cholesterol, triglycerides, 
ghrelin, HOMA-IR and HOMA-b, ISI  

Appetite: evaluated by questionnaires 

 

Weight change: the 
breakfast group showed 
the greater weight loss 
after the intervention  

(-8.7±1.4 vs -3.6±1.5 kg;  

p<0.001) 

Metabolic variables: % 
changes in fasting glucose 
(-11.5 vs -4.2%), insulin  

(-51 vs -29%) and HOMA-IR 
(-57 vs -32.5%) significantly 
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cancer, hypoglycemic 
drugs  

decreased in the breakfast 
group. Similarly, OGTT test 
led to a greater decrease 
of glucose and insulin in 
the breakfast group  

Jacubowitz 
D,b (2013) 

[18] 

Randomized 
controlled trial 

N=60 women with 
polycystic ovary 
syndrome 

Exclusion criteria: 
BMI>24.9 kg/m2, on 
any diet, any drugs 
affecting weight, 
changing in weight >4.5 
kg or in physical 
activity within the last 
6 months 

Subjects were randomized 
to one of the following 
1800 kcal maintenance diet 
for 12 weeks:  

-breakfast diet (980 kcal 
breakfast, 640 kcal lunch, 
190 kcal dinner; N=29) 

-dinner diet (190 kcal 
breakfast, 640 kcal lunch; 
980 kcal dinner; N=31)  

Anthropometry measures: BMI, waist 
circumference 

Metabolic parameters:  blood glucose, insulin, 
HOMA-IR, HOMA-b 

Hormonal assessments: blood progesterone 
level, free and total testosterone, SHBG, 17-OH 
estradiol, DHEA-S, 17OHP, FAI, leuprolide 
stimulation test 

Weight change: after the 
maintenance diets, 
weights did not change in 
the breakfast and dinner 
groups  

 

Metabolic variables: in 
the breakfast group, % 
changes of fasting glucose 
(-8 vs +2%), fasting 
insulin (-53 vs 0%), 
HOMA-IR (-56 vs +1%), 
HOMA-b (-35 vs -7%), ISI 
(+135 vs +2%), and 
glucose (-20 vs 0%) and 
insulin (-49 vs -7%) 
areas-under-the-curve 
were significantly higher 
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Morgan LM 
(2012) 

[25] 

Cross-over 
randomized 
trial 

 

N=6 healty volunteers  Subjects were randomized 
to one of the following 
2000 kcal diets by cross-
over: 

-Low glycemic index with 
big breakfast (1200 kcal) 
and small dinner (400 kcal) 

-Low glycemic index with 
big dinner (1200 kcal) and 
small breakfast (400 kcal) 

-High glycemic index with 
big breakfast (1200 kcal) 
and small dinner (400 kcal) 

-High glycemic index with 
big dinner (1200 kcal) and 
small breakfast (400 kcal) 

Metabolic parameters:  Blood glucose and 
insulin every 30 min after each meal for 120 
min, post-prandial HOMA-IR, interstitial 
glucose by a continuous glucose monitoring 
system applied the day before each test 

Metabolic variables: 
interstitial glucose and 
insulin areas-under-the 
curve were significantly 
higher after consuming a 
big dinner rather than a 
big breakfast at the same 
glycemic index 

Tsuchida Y 
(2013) 

[27] 

Cross-over 
random trial  

12 females (paid 
participants) 

Inclusion criteria: 
university students 

Exclusion criteria: 
smoking, current 
antibiotic use 

Two experimental 
conditions:  

a meal at usual suppertime 
(18:00) 

a meal at late suppertime 
(at 23:00), performed in 
different days 

 

Metabolic parameters: blood glucose every 30 
min after each supper and after the breakfast 
of the next day for 180 min, unabsorbed 
carbohydrates by breath hydrogen test 

Calorimetric evaluation: RQ 

Metabolic variables: a late 
suppertime meal 
determined significantly 
increased glucose values 
at 30, 60, 120, 150 and 
180-min after the 
breakfast consumed the 
day after, with respect to 
the usual suppertime 
meal 

Abbreviations: 17-alpha Hydroxyprogesterone (17OHP), Body Mass Index (BMI), Dehydroepiandrosterone-Sulfate (DHEA-S), Diet-Induced Thermogenesis (DIT), 
Free Androgen Index (FAI), High Density Lipoprotein (HDL), Homeostasis model Assessment-Insulin resistance (HOMA-IR), Homeostasis model Assessment-beta 
cell function (HOMA-b), Insulin Sensitivity Index (ISI), Low Density Lipoprotein (LDL), Oral Glucose Tolerance Test (OGTT), Respiratory Quotient (RQ), Resting 
Metabolic Rate (RMR), Sex Hormone-Binding Globulin (SHBG). 
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Table 2 Risk of bias assessment in the trials included in the systematic review 

Study Random 

sequence 

generation 

Allocation 

concealment 

Blinding Incomplete outcome data Selective reporting Free of other bias 

Bo (2015) L U L L L L 

Bandin (2015) L U U L L U 

Jacubowitza (2013) U U H H L L 

Jacubowitzb (2013) U U U L L L 

Tsuchida (2013) U U U U L L 

Morgan (2012) U U U L L U 

 
Criteria defined for quality assessment are based on the Cochrane guidelines. 
Abbreviations: H, high risk of bias; L low risk of bias; U unclear or unrevealed risk of bias 
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Table 3 Risk of bias assessment in the observational studies included in the systematic review 
 

Study Ruiz Lozano (2016) Hermenegildo (2016) Bo 

(2014) 

Garaulet 

 (2013) 

Domain     

Bias due to confounding Serious Moderate Moderate Moderate 

Bias in selection of participants into study Moderate Low Moderate Moderate 

Bias in classification of interventions Moderate Moderate Moderate Moderate 

Bias due to departure from intended 

interventions 

Low Low Low Low 

Bias due to missing data Moderate Low Low Low 

Bias in measurement of outcomes Low Serious Low Low 

Bias in selection of the reported results Moderate Low Low Moderate 

Overall* Serious Serious Moderate Moderate 

*Overall assessment derived from the seven domains of ROBINS-I (Risk Of Bias In Non-randomized Studies -of Intervention scale) tool  

 

 


