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Abstract 

The resolution of necroinflammation and fibrosis remains a primary clinical target in nonalcoholic 

steatohepatits (NASH), the most common chronic liver disease and a major cause of end-stage liver 

disease.Our understanding of the basic  molecular mechanisms driving inflammation and fibrosis 

and their resolution in  obesity-related conditions, including NASH, have led to the proposal of a 

novel, tractable therapeutic paradigm involving specialized pro-resolving mediators (SPMs)— 

namely lipoxins (LXs), resolvins (Rvs), protectins (PDs) and maresins (MaRs) . Growing evidence 

from cellular and in vivo animal models, as well as observational human data, suggests that the 

therapeutic potential of SPMs and their synthetic mimetics may expand to the regression of hepatic 

necroinflammatory and fibrotic changes in NASH. We review preclinical and clinical evidence 

linking SPMs to the pathogenesis of inflammation and fibrosis in NASH, as well as potential 

therapeutic use of these new molecules for the resolution of steatohepatitis and of fibrosis in NASH. 
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Introduction: enhancing resolution of inflammation and fibrosis 

 Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease in the world,  

encompasses a histological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis 

(NASH), the latter characterized by necro-inflammation with variable degrees of fibrosis[1]. NASH 

can progress to cirrhosis and is projected to be the leading indication for liver transplantation, as a 

consequence of increasing disease occurrence and of the lack of an effective treatment[2]. As 

inflammation and fibrosis are central to the progression   of NASH to cirrhosis, their resolution is a 

major therapeutic target[1]. 

Our knowledge of the resolution of tissue inflammation and fibrosis has evolved dramatically in 

recent years [3]. Regarding  the inflammatory process, data from animal models  and from isolated 

human cells  showed  that resolution of acute inflammation is not a passive phenomenon, occurring 

via a dissipation of pro-inflammatory signals, but  an actively programmed biochemical process 

regulated by temporal  biosynthesis of novel bioactive mediators, which belong to four distinct 

families, namely lipoxins (LXs), resolvins (Rvs), protectins (PDs) and maresins (MaRs)[4], 

collectively named “specialized pro-resolving mediators”(SPMs).  

These SPMs are synthetized from omega-3 poly unsaturated fatty acids (PUFA) but, unlike their 

precursors eicosapentaenoic acid  (EPA) and docosahexaenoic acid, (DHA), which act at the 

micromolar to millimolar range, exert their biological actions in the picomolar to nanomolar range, 

with concentrations as low as10nM producing a 50 percent reduction in PMN transmigration in 

models systems[4](see Box 1). 

The production of these pro-resolving mediators is programmed early during the acute 

inflammatory response and primed by the synthesis ofProstaglandin E2 (PGE2) and PGD2, which 

at the site of infection upregulate the expression of 15-lipoxygenase (15-LOX)[5], that is required 

for the synthesis of pro-resolving  LXs(e.g. LXA4)),  Rvs and PDs, thereby switching the lipid 

mediator synthetic process from proinflammatory eicosanoids (prostaglandins, thromboxanes and 
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leukotrienes)  to pro-resolving mediators [3,4](Box 2). Growing data expand the findings from 

acute inflammation  to conditions characterized by chronic, low-grade inflammation like obesity 

and NASH[1],  raising the possibility that targeting the defective resolution of inflammation  could 

aid in the treatment of obesity-related liver disease metabolic  dysregulation, and eventually 

fibrosis[6].  

Parallel to the advances in inflammation, our knowledge of fibrosis has evolved from a paradigm of 

a static, irreversible condition to a dynamic process  that can be reversed if the underlying 

fibrogenic stimuli are corrected and adequate pro-resolving cellular programs are activated [7,8] 

(Box 3). These programs are activated by the same molecules that are involved in inflammation 

resolution.  

We will discuss the emerging role of these lipid molecules and pathways in regulating resolution of 

inflammation and fibrosis in NASH  and the potential therapeutic implications of their modulation.  

 

Biosynthetic pathways and receptors for SPMs 

The term “specialized pro-resolving mediators” was originally coined by Charles N. Serhan and his 

collaborators to define the families of chemically and functionally distinct anti-inflammatory and 

pro-resolving lipid molecules synthesized from from both omega-6- (i.e. LXs) and omega-3- (i.e. 

resolvins, protectins and maresins) PUFA[3,5]. Using a lipidomics-based approach that combined 

liquid chromatography and tandem mass spectrometry (LC-MS/MS) to study exudates  in in the 

murine dorsal air pouch model of inflammation, including zymosan sterile peritonitis, four families 

of SPMs were identified: lipoxins (LXs)[5]; resolvins (Rvs, derived from resolution phase 

interaction products), which were classified as either E-series Rvs (if derived from EPA) or D-series 

Rvs (if generated from DHA)[5]; protectins, and maresins (macrophage mediators in resolving 

inflammation), which also derive from DHA[9]. 

LXs 
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LXs are the first class of SPMs involved in the resolution phase of inflammation and include 

LXA4 and LXB4, both with potent antiinflammatory and pro-resolving activities. LXA4 is a 

trihydroxy-eicosatetraenoic acid generated by transcellular synthesis (i.e. through the cooperation of 

different cell types: a cell type synthesizes an intermediate that is further metabolized by a different 

nearby cell using their own enzymatic apparatus) from endogenous arachidonic acid(AA) through 

sequential LOX-LOX interactions[5](Figure 1). LXA4 biosynthesis is initiated from 15S-

hydroxyeicosatetraenoic acid (15S-HETE) (produced by cells bearing 15-LOX activity, which is 

induced by the proinflammatory PGE2[4] 15S-HETE that is rapidly converted to LXA4 by 

leukocyte 5-LOX[5]. Of note, LXA4 (as well as resolvin) biosynthesis might be dependent 

on the nuclear integral membrane protein 5-lipoxygenase activating protein, or FLAP[10].  

An alternative synthetic pathway for LXs  is initiated when COX-2 is acetylated by aspirin:  when 

aspirin inhibits PG formation in cells bearing the inducible COX-2, aspirin-acetylated COX-2 

converts arachidonic acid into 15R-HETE, rather than the 15S enantiomer, which is further 

transformed by 5-LOX into 15-epi-LXs, also called “aspirin-triggered” LXs[11]. 

(Figure 1).  

Overall, LXs act as “stop-signals” for inflammation and inhibit leukocyte chemotaxis, 

rolling, adhesion to and transmigration across endothelial monolayers in response to LTB4 

They act through binding to A$ Lipoxin/Formyl-peptide receptor type 2(ALX/FPR2) receptor, a G-

protein coupled receptor (GPCR) that together with GPR32 also signals for RvD1 and for the anti-

inflammatory, proresolving peptide Annexin A1[12]. 

Rvs 

The biosynthesis of the E-series resolvins is initiated when EPA is converted into 18Rhydro- 

EPE (18R-HEPE) by endothelial cells expressing aspirin-acetylated COX-2[13] (Figure 1). 18R-

HEPE is then transformed by transcellular biosynthesis in neighboring 5-LOXcontaining leukocytes 

into RvE1 (5S,12R, 18R-trihydroxy-EPA) and RvE2 (5S, 18R-dihydroxy-EPA)[13]. RvE3 (17S, 

18R dihydroxy-EPA) is generated via the 12/15-LOX pathway from 18RHEPE (Figure 1). 



 7 

Moreover, a novel series of 18S-RvE1 (5S,12R, 18S-trihydroxy-EPA) and 18SRvE2 (5S, 18S-

dihydroxy-EPA) derived from EPA have  been identified using chiral LC-MS/MS-based 

lipidomics[14]. Of interest, biosynthesis of E-series resolvins can occur in the absence of aspirin 

treatment through the activity of the CYP450 system which can synthesize 18R-HEPE from 

EPA(Figure 1). 

RvE1 signals through the GPCR ChemR23 and  is also an endogenous receptor antagonist 

for the LTB4 receptor, BLT1[15], which allows cell type-specific actions: as a BLT1 antagonist it 

inhibits Nuclear Factor(NF)-kB activation and PMN trafficking to sites of inflammation, and as a  

ChemR23 agonist on mononuclear and dendritic cells it enhances efferocytosis and resolution of 

inflammation[16]. Consistently, in BLT1 knockout mice, anti-inflammatory actions of RvE1 were 

reduced when given at low doses (100 ng i.v.), while when given  at higher doses (1.0 mg i.v.) 

RvE1significantly reduced PMN infiltration in a BLT1-independent manner[15].  

Concerning DHA-derived SPMs, the biosynthesis of D-series resolvins is initiated by 15-

LOX which transforms DHA into 17S-hydro(peroxy)-DHA (17S-H(p)DHA), which is further 

transformed by leukocyte 5-LOX into 7-hydroperoxy-17S-HDHA, and then converted into 7S, 

8S-epoxide and finally hydrolyzed to either RvD1 (7S,8R, 17Strihydroxy-DHA) or RvD2 (7S,16R, 

17S-trihydroxy-DHA)[3](Figure 1). Reduction of the 5-LOX derived hydroperoxide intermediate 

via a peroxidase also leads to the formation of RvD5 (7S, 17S-dihydroxy-DHA). Alternatively, 

lipoxygenation at the C-4 position by the enzyme 5-LOX forms 4-hydroperoxy-17SHDHA that is 

subsequently converted to RvD3 (4S,11R, 17S-trihydroxy-DHA), RvD4 (4S,5S, 17S-trihydroxy-

DHA) and RvD6 (4S, 17Sdihydroxy-DHA). Endothelial cells expressing COX-2 acetylated by 

aspirin also transform DHAinto 17R-HDHA which is further converted by 5-LOX into the 

corresponding aspirin-triggered (AT)-resolvins[3]. RvD1 signals on the GPCR ALX/FPR2, while 

RvD2 binds GPR18. 

PDs and MaRs 
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DHA can also be transformed by 15-LOX into a dihydroxy-containing DHA derivative 

named protectin D1 (PD1) (10R, 17S-dihydroxy-DHA) via an intermediate epoxide  (Figure 1). 

Furthermore, lipoxygenation of DHA by 12-LOX originates  a 14S-hydroperoxy-DHA intermediate 

that can be converted by epoxidation and/or hydrolysis into maresin (MaR) 1 (7R, 14Sdihydroxy- 

DHA) and MaR2 (13R, 14S-dihydroxy-DHA)[17] (Figure 1).  MaR1 is slightly more potent at 1 

nM than Resolvin D1 (RvD1) in stimulating Macrophage efferocytosis. Importantly MaR1 also 

accelerates surgical regeneration in planaria, increasing the rate of head reappearance. Indicating 

MaR1 is a potent SPM not only  regulating noto only inflammation resolution  but also tissue 

regeneration[18].  

 A novel family of sulfido-conjugated components that share the biosynthetic pathway with 

maresin through the oxygenation of DHA at carbon 14 have been identified [19].Called maresin-

conjugate in tissue regeneration (MCTR), they display potent wound repair and tissue regeneration 

properties. Similarly, novel 17-series sulfido-conjugated pathways, namely protectin sulfido-

conjugates and resolvin sulfidoconjugates, were also identified in mouse and human spleens, self-

resolving infectious exudates, human phagocytes and human sepsis plasma[20]. More recently, 

bioactive molecules derived from DPA, a third omega-3-PUFA standing between EPA and DHA, 

have been identified and called 13-series resolvins (RvTs), consist of four different compounds 

derived from DPA with a characteristic 22-carbon backbone with five double bonds[21]. 

 

NASH as a pro-resolution defective disorder 

Adipose tissue dysfunction plays a key pathogenic role for liver injury in NASH [22], which 

encompasses a range of functional abnormalities ranging from unrestricted flow of lipotoxic free 

fatty acids from insulin resistant adipose tissue to the liver, to unbalanced pro-/anti-inflammatory 

adipokine and chemokine secretion, with prevalent secretion of pro-inflammatory Interleukin (IL)-

1, Tumor Necrosis Factor(TNF)-α, Interleukin(IL)-6 and Monocyte Chemoattractant Protein 

(MCP)-1 and blunted secretion of anti-inflammatory adiponectin and IL10[1]. The effect of these  
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molecules on the liver causes the whole spectrum of functional and pathologic injury in NASH, 

including hepatic insulin resistance, hepatocyte apoptosis with the release of pro-inflammatory 

signalling molecules named damage-associaed molecular patterns (DAMPs), and Kupffer cell 

activation[1,23]. 

Activated  Kupffer cells, which release proinflammatory and pro-fibrogenic cytokines[24]; 

and chemokines including CCL2, which promotes hepatic accumulation of bone marrow-derived, 

“classically activated” pro-inflammatory M1-polarized monocytes, and NKT cells[25]. Signals 

from Kupffer cells and injured hepatocytes, including reactive oxygen species (ROS) and 

Transforming Growth Factor(TGF)-ȕ1, activate hepatic stellate cells(HSCs) to myofibroblasts, 

which start fibrogenesis[1,7] (BOX 2). Adipocytes in nearby adipose tissue also secrete CCL2, 

which further expands the local macrophage pool and promotes HSC activation, liver fibrosis[26] 

and adipose tissue inflammation and dysfunction[27]. 

A key driver of adipose tissue dysfunction and liver injury in NASH is a state of low-grade 

adipose tissue inflammation: adipocytes secrete chemokines and other proinflammatory signals that 

recruit proinflammatory cells, mainly M1-activated macrophages but also lympocytes, to adipose 

tissue[1,28]. The relevance of  macrophage infiltration in the pathogenesis of NASH and adipose 

tissue inflammation is underscored by the finding that genetic or pharmacologic inhibition of the 

CCL2/CCR2 axis, which reduced the macrophage pool by 80% in the liver and by 40% in adipose 

tissue [29],  ameliorated steatohepatitis, fibrosis, adipose tissue dysfunction and insulin 

resistance[30] in experimental NASH.  

Mounting evidence places an inbalance between pro-inflammatory eicosanoids and SPM 

secretion/action in adipose tissue at the core of adipose tissue inflammation and dysfunction, and of 

resultant liver injury[6,31]: .white adipose tissue possesses all enzymes involved in eicosanoid 

synthesis, including phospholipase A2(PLA2), COX and 5-LOX, 5-LOX activating protein 

[FLAP], LTA4 hydrolase, and LTC4 synthase, as well as LT receptors (BLT-1, BLT-2, CysLT1, 

and CysLT2)   and can  produce and release eicosanoids, most prominently the COX product PGE2 
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and the 5-LOX product LTB4, which is the main LOX-derived  metabolite in this tissue[31]. 

Human and experimental data link excessive production/action of these two eicosanoids to NASH 

pathogenesis and progression, and suggest the antagonization of these two eicosanoids may be an 

effective therapeutic strategy for NASH. 

In methionine choline deficient (MCD) diet and  high-fat diet (HFD)-induced NASH models, 

hepatic and adipose COX-2  activity  is significantly upregulated, as a result of NF-κB and IL-1 axis 

activation, and  correlates with the severity of steatohepatitis[32, 33, 34]. Several lines of evidence 

suggest PGE2 is a central mediator of the effects of COX-2 activation on liver disease in NASH.  In 

cell cultures, PGE2 induces hepatocyte triglyceride accumulation and apoptosis, promotes Kupffer 

cell activation and adipocyte dysfunction [35, 36, 37, 38, 39]. In animal models of NASH,  PGE2 

promotes hepatic triglyceride storage[40], necro-inflammation and fibrosis by a variety of 

mechanisms: autophagy inhibition[41], enhancement of lipid droplet formation[42] and of 

adipogenesis[43], increased chemokine MCP-1 secretion and TGF-ȕ1-induced HSC activation[44].  

Finally, a tumor promoting role for PGE2 in obesity-related hepatocelular carcinoma and breast 

cancer has been recently proposed as a result of Prostaglandin E receptor 4(PTGER4)-mediated  

suppression of antitumor immunity and enhanced  transcription of CYP-19, CYP-181  and 

aromatase-catalyzed estrogen biosynthesis[45]. 

Potential strategies  to antagonize PGE2 action include inhibition of key enzymes involved in PGE2 

synthesis, including  PLA2 and COX-2, and PGE2 recentor antagonization. 

Genetic group IV PLA2α deletion protected from high fat diet(HFD)-induced obesity and 

steatohepatitis and group IV PLA2α pharmacological inhibition with the orally active small 

molecule compound ASB14780 reversed established NASH and fibrosis[40]. Two other small 

molecule cPLA2 inhibitors, the  ω3-PUFA derivatives AVX001 and AVX002, showed potent anti-

inflammatory activity in vitro, and AVX001 was safe and effective in patients with mild-to-

moderate psoriasis[46] but has not been evaluated in NASH. 

https://www-ncbi-nlm-nih-gov.offcampus.dam.unito.it/gene/5734
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Celecoxib, a selective COX-2 inhibitor, improved liver histology, adipose tissue inflammation and 

metabolic abnormalities in NASH[47, 48]. However, COX-2 inhibition might not be the safest and 

most effective strategy to treat chronic inflammation in NASH, for several reasons. First,  PGE2  is 

required to trigger  15-LOX-mediated synthesis of LXA4, a SPM which is central for  initiating 

inflammation resolution and   switching  macrophage phenotype from  pro-inflammatory M1-to 

pro-resolving M2 [49]. Secondly, COX-2 contributes to the synthesis of protective PGI2 in 

endothelium and kidney and it is still debated if COX-2 inhibition increases cardiovascular disease 

(CVD) risk[50]. Under this instance, it is noteworthy that the PGE2 receptor-3 antagonist L-798106  

improved adipose tissue pro-inflammatory gene activation,  inflammation, insulin resistance and 

glucose homeostasis to a similar extent as COX-2 inhibitor celecoxib in rodent models of obesity 

and in cultured adipocytes[48]. These findings confirm  that the effects of COX-2 activation on 

metabolic inflammation are largely PGE2-mediated and suggest that the off-target effects of COX-2 

inhibition may be theoretically overcome by selective PGE2 receptor antagonism.  

Similarly to PGE2, a key proinflammatory role has been demostrated for 5-LOX-mediated LTs 

in the liver and adipose tissue. Hepatic Kupffer cells constitutively express 5-LOX and 

synthesize LTB4 and cysteinyl-LT, the latter being also produced by hepatocytes through 

transcellular metabolism of LTA4 secreted by Kupffer cells[51]. 5-LOX-derived leukotrienes act 

in both paracrine and autocrine fashion to promote Kupffer cell viability and growth and HSC 

activation. A similar role for adipocyte 5-LOX in mediating adipose tissue inflammation has been 

found in experimental models of obesity-related NASH, where the adipose tissue and liver  showed 

increased expression of  5-LOX and its  products[Errore. Il segnalibro non è definito.].  In 

humans, the progression from healthy liver to NASH is paralleled by an increased formation of 5-

lipoxygenase products[52]. 

In support of a causal role of 5-LOX/LT axis activation in liver injury, genetic deletion of 5-LOX 

protected from HFD-induced obesity and NASH[53, 54], and pharmacolicical inhibition of the 5-

lOX or  selective LTB4 receptor BLT-1 antagonism induced AMPK activation,  down-regulated 
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NF-kB axis activation and reduced proinflammatorry cytokine/chemokine secretion and FFA 

release from adipose tssue, thereby improving  hepatic and adipose insulin resistance, steatosis and 

necroinflammatory changes in NASH[Errore. Il segnalibro non è definito.,55]. On this basis,  

MN-001 (tipelukast),  an orally available small molecule 5-LOX inhibitor,  which acts also as 

LTD4 receptor antagonist and phosphodiesterases (PDE) 3/4 inhibitor,  reduced inflammation and 

fibrosis and down-regulated expression of proinflammatory and profibrogenic genes in an advanced 

NASH model[56] and was FDA-approved for a Phase IIa RCT in NASH patients with advanced 

fibrosis[57]. 

Beside increased pro-inflammatory eicosanoid formation, new data suggest the increased formation 

of pro-inflammatory eicosanoids is accompanied by insufficient SPM levels in adipose tisue and in 

other metabolically active tissues, including the liver and skeletal muscle, thereby indicating that 

impaired tissue inflammation resolution ability is a generalized defect in obesity-related conditions 

like NASH[58]. In inflamed adipose tissue from genetically and diet-indced obese mice and  from 

obese insulin resistant patients, the formation of SPM including  RvD1, PD1, 17-HDHA and 18-

HEPE was impaired, and the ratio between pro-inflammatory eicosanoids LTB4 and PGE2) and 

SPM levels, rather than the absolute levels of these mediators, correlated with the severity of 

inflammation and functional reregulation[59,60,61,62](Table 1). 

Further corroborating a pathogenic role of SPM deregulation in obesity-related disorders, including  

NASH,  decreased serum LXA4 levels and increased abdominal visceral fat area are independent 

predictors in a  cohort of individuals at risk of developing metabolic syndrome[63].  

 

Potential therapeutic role of SPMs for the treatment of inflammation and 

fibrosis in NASH 

Based on the above-mentioned data, the restoration of normal proresolving ability could represent a 

novel therapeutic target for the treatment and reversal of inflammation and fibrosis in NASH. 

javascript:;
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Growing preclinical data support this perspective. RvD1 was the first SPM evaluated in cultured 

cells and in rodent models of diet-induced NASH. In cultured hepatocytes, pretreatment with RvD1 

attenuated ER stress-induced apoptosis, Sterol Regulatory Element Binding Protein(SREBP)-1 

expression and triglycerides accumulation[64], and in high fat diet-induced NASH, the addition of 

RvD1to calorie restriction reversed established steatohepatitis[65], reduced liver macrophage 

infiltration and shifted macrophages from an M1 to an M2 phenotype, and normalized the pro-

inflammatory adipokine pattern in adipose tissue. These effects were accompanied by specific 

changes in hepatic miRNA signatures, suggesting these small, noncoding RNAs may mediate the 

proresolution activity of RvD1 at the post-transcriptional level[62], and  were absent in 

macrophage-depleted precision-cut liver slices, indicating a crucial role of these cells in mediating 

RvD1 actions[62].  

Other SMPs have also yielded interesting results in diet-induced NASH: LXA4, RvE1, 

Protectin D1 (PD1) and Maresin D1(MaR1)  improved adipose tissue inflammation and insulin 

resistance  and hepatic fat infiltration and insulin resistance and  reduced hepatocyte ER stress-

induced apoptosis through Akt and AMPK activation and c-Jun N-terminal kinase (JNK) inhibition;  

and PD1 and MaR1 increased expression of adiponectin, a key anisteatotic, anti-inflammatory and 

antifibrogenic adipokine to a similar extent as thiazolidinediones[66, 67, 68 ,69 70].  

In HFD-induced rodent models of NASH and in cultured primary hepatocytes  Kupffer cells 

and adipocytes, MaR1 administered at physiological, nanomolar concentrations prevented 

palmitate- and hypoxia-induced ER stress and apoptosis by inducing a specific miRNA signature 

and enhanced Kupffer cell phagocytosis[71]. 

Collectively, these mechanisms underlied the improvement in steatosis and steatohepatitis 

observed with SPM administration in diverse diet-induced models of NASH[63-69]. 

Beside attenuating inflammatory response, SPMs expedited its resolution by enhancing 

monocyte migration,  macrophage polarization into a pro-resolving M2 phenotype[72], promoting 

macropage autophagy[73] and clearance of apoptotic hepatocytes and cellular debris 
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(efferocytosis). Collectively, these properties of SPM converged to restore a normal hepatic and 

adipose tissue architecture and homeostasis.Importantly, SPM demostrated also potent anti-fibrotic 

properties preclinically: Resolvin D1, Resolvin E1, Protectin DX and Maresin 1 atenuated fibrosis 

progression and, more intriguingly,  also attenuated established fibrosis in diverse preclinical 

models  of hepatic, renal and pulmonary fibrosis[74, 75, 76], at least in part through suppressing 

and reversing TGF-ȕ1/Smadβ/γ-induced epithelial-to-mesenchimal transition (EMT) of epithelial 

cells, which provide up to 40% of extracellular matrix-deposing myofibroblasts, and restoring a 

normal tissue levels of Matrix metalloproteinase(MMPs), which contribute to ECM 

resorption[76,77,78,79.] 

The antifibrotic potential of SPMs in NASH remains unexplored to date. Furthermore, the 

optimal pharmacological strategy to ensure pharmacological concentrations of these SPMs in target 

tissues needs to be defined, as SPMs are rapidly inactivated by eicosanoid oxidoreductases. Several 

pharmacological strategies  to prolong  SPMs biological activity  and enhance selective delivery of 

SPMs to target organs, are being investigated.  

Benzo-diacetylenic-17R-RvD1-methyl ester (BDA-RvD1) is a synthetic, oxidoreductase-resistant 

RvD1 analogue which showed a 3.5-fold higher potency than natural compound in protecting lungs 

from ischemia-reperfusion injury[80],  

Nanomedicine techniques yielded the  incorporation of  SPMs into liposomes (Lipo-RvD1)[81], 

which are cleared by macrophages and may therefore accumulate in the liver, and SPM 

encapsulation in poly-lactic-co-glycolic acid(PLGA) microparticles[82],  in order to preserve their  

biological  activities and provide controlled release.Treatment with  LXA4 encapsulared  in PLGA  

microparticles accelerated wound healing of dorsal rat skin  ulcers[82], while a RCT evaluating 

safety and efficacy of RX10045, a synthetic RvE1 analog, on dry eye disease, has been completed 

(ClinicalTrials.gov Identifier:: NCT00799552). 

 

Concluding Remarks 

http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0ahUKEwjtmsqZt4bVAhULbBoKHflXDeQQFggiMAA&url=http%3A%2F%2Fwww.auventx.com%2Fauven%2Fproducts%2FRX10045.php&usg=AFQjCNHBNUP4TGqDC6eGaYuvwtSpqv6QIw


 15 

The resolution of necroinflammation and fibrosis remains a primary clinical target in NASH, the 

most common chronic liver disease and a major cause of end-stage liver disease. Our evolving 

understanding of lipotoxicity[83] the basic  molecular mechanisms driving inflammation and 

fibrosis[84] and their resolution in  obesity-related conditions, including NASH,, have led to the 

proposal of a novel, tractable therapeutic paradigm i.e. SPM-promoted resolution. As growing 

evidence from cellular and in vivo animal models, as well as observational human data,  suggest that 

the therapeutic potential of SPMs and their synthetic mimetics may expand to the regression of 

hepatic necroinflammatory and  fibrotic changes in NASH. Further issues remain (see Outstanding 

Questions).  

The reason for reduced SPM levels in obesity-related NASH needs also to be elucidated,  

Several potential underlying causes may underlie such deficit. The most obvious factor is a reduced 

tissue PUFA content resulting from Western diet-induced deregulated  hepatic and adipose tissue 

Δ5- and Δ6-desaturase activity and desaturation capacity, resulting in an unbalanced  ω-6 to ω-3 

PUFA ratio[85, 86]. Furthermore, an accelerated SPM inactivation in obesity may also contribute: 

consitently, 15-PG-dehydrogenase/eicosanoid oxidoreductase, a key enzyme in SPM inactivation, 

and soluble epoxide hydrolase (sEH), the enzyme that hydrolyzes omega-6 and omega-3 epoxides  

into inactive  diols, are  up-regulated in obese adipose tissue[60, 87]. Elucidating the dominant 

mechanism of SPM inactivation may have important therpeutic implications, sos blocking 

genralized SPM catabolism may be more effective than single SPM supplementation. 
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Figure legends 

 
Figure 1 Pathways for SPMs biosynthesis 

Omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) are released from membrane 

phospholipids mainly by phospholipase A2 (PLA2) activity. Cyclooxygenase (COX) 1 and 2 

convert the omega-6-PUFA arachidonic acid (AA) into prostaglandins (PGs) such as PGE2, while 

5-lipoxygenase (5-LOX) interacting with 5-LOX activating protein (FLAP) generate the unstable 

epoxide intermediate leukotriene (LT) A4, which is further converted into LTs such as LTB4, from 

AA. 

LTA4 is also converted by 12-LOX into lipoxin (LX) A4. The coordinated activities of 15-LOX, 

which produces 15S-hydroxyeicosatetraenoic acid (15S-HETE), and 5-LOX also give rise to 

LXA4. Alternatively, formation of 15R-HETE by aspirin (ASA)-acetylated COX-2 results in the 

biosynthesis of 15-epi-LXA4. On the other hand, the omega-3-PUFA docosahexaenoic 

acid (DHA) is converted by 15-LOX into 17S-hydroxy-DHA (17S-HDHA), which is subsequently 

transformed by 5-LOX into resolvins of the D series. Additionally, 17S-HDHA can be 

converted by epoxidation hydrolysis into protectin D1 (PD1). Moreover, DHA is transformed by 

12-LOX into 14S-hydroxy-DHA (14S-HDHA), the precursor of maresin (Mar) 1 and 2. 

The omega-3-PUFA eicosapentaenoic acid (EPA) can also be converted by either ASA-acetylated 

COX-2 or CYP450 activities into 18R-hydroxy-EPE (18R-HEPE), which is subsequently 

transformed by 5-LOX into RvE1and RvE2. Conversion of 18R-HEPE via 15-LOX gives rise to 

RvE3. Lipid mediators generated from AA, DHA and EPA exert autocrine and paracrine 

actions by binding to specific G-protein coupled receptors present in the surface of the cell 

membrane. 

 
 
Figure 2.  

Panel A 
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Eicosanoids and Specialized Pro-resolving Mediators(SPMs) derived from arachidonic acid(AA), 

eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA). 

AA is metabolized by cyclooxygenases (COX) 1/2 to prostaglandins(PGs) and thromboxanes(TXs) 

and by 5-lipoxygenase (5-LOX) to leukotrienes (LTs) which are involved in the initiation of the 

inflammatory response (red colour).  

Hydroxyeicosatetraenoic acids (HETEs) and lipoxins are also synthesized from  

arachidonic acid by 5-, 12- and 15-LOX and cytochrome (Cyt) P450.  

Eicosapentaenoic acid is metabolized to 3-series PGs by COX and 3-series TXs by 5-LOX (weak 

pro-inflammatory properties, orange colour) and to   E-series resolvins (anti-inflammatory and pro-

resolving actions, green colour) by CYP450 and 5-LOX.  

Resolvins of the D-series, protectins and maresins are derived from docosahexaenoic acid.  

Lipoxins, resolvins, protectins and maresins have anti-inflammatory and pro-resolving actions.  

 

Panel B.  

The receptors for eicosanoids and SPMs. 

Prostaglandins, Thromboxanes and Leukorienes elicit a proinflammatory response by binding and 

activating their receptors, including Prostaglandin E2 receptor type 2,3 and 4 (EP2/3/4), B-

leukotriene 1 and “ receptor(BLT1/2) and Cysteinyl leukotriene 1 and 2(CysLT1/2) receptors. 

 

LXA4 is a central switching signal for inflammation, as is stops LTB4-induced leukocyte 

chemotaxis by binding   CysLT1 and BLT1 receptors and inhibiting LT-induced intracellular 

Calcium influx,  and it initiates inflammation  resolution  by binding  A$ Lipoxin/Formyl-peptide 

receptor type 2(ALX/FPR2) receptor, a G-protein coupled receptor (GPCR) that together with 

GPR32 also signals for RvD1 and for the anti-inflammatory, proresolving peptide Annexin A1. 

Other known GPCRs for SPMs include GPR32 for RvD1, ChemR23 for RvE1 and FPR18 for 

RvD2. 
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Table 1. Main SPMs and molecular targets and cellular effects 

Series Mediator Receptor Cellular pathway Biological effect 

A4-series 

LXs 

LXA4 

15-epi-

LXA4 

ALX/FPR2 Macrophage: 

MAPK/HSP 27 activation↑ 

IL10 

 

Anti-inflammatory & Pro-

resolving 

E-series 

Resolvins 

RvE1, 

RvE2, 

RvE3 

ChemR23 Adipocyte:  

↑ AMPK  phosphorylation 

↑ adiponectin expression 

↑ PPAR-Ȗ expression 

↑ IRS-1/IRS-2  

↑ GLUT-2/-4 

Epithelium:  

↓EMT transition 

Macrophage: 

↑PIγK/Akt and  Raf/ERK 
signaling pathway 

Anti-inflammatory & Pro-

resolving  

↑ insulin sensitivity 

 

 

 

 

↓ fibrogenesis 

 

 

↑efferocytosis and shift to Mβ 

pro-resolving phenotype 

  BLT1(antag

onist) 

Neutrophil: 

[ NF-kB activation 

↓ PMN recruitmen 

D-series 

resolvins 

RvD1, 

RvD2, 

RvD3, 

RvD4, 

RvD5, 

RvD6 

ALX/FPR2 

GPR32 

Adipocyte:  

↑ AMPK  and Akt 

phosphorylation 

↑ PPAR-Ȗ expression  

↑ adiponectin expression 

Hepatocyte: 

↓ ER stress-induced JNK 

activation ↓ apoptosis and Tg 

accumulation 

Epithelium:  

↓EMT transition 

↑MMP-9 secretion↓ECM 

resorption 

Anti-inflammatory & Pro-

resolving 

↑ adipose and hepatic insulin 

sensitivity 

↓ steatohepatitis 

 

Protectins PD1 ? Adipocyte:  ↑ insulin sensitivity 
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↑ AMPK  phosphorylation 

↑ adiponectin expression 

↑ PPAR-Ȗ expression  

↑ IRS-1/IRS-2  

↑ GLUT-2/-4 

Epithelium:  

↓EMT transition 

↑MMP-9 secretion  

↓ ECM resorption 

Anti-inflammatory & Pro-

resolving 

Maresins 

 

MaR1 

MaR2 

? Hepatocyte:  

 ↑ anti-ER stress and anti-

apoptotic miRNA signature 

Kupffer cells: 

↑ palmitate- and hypoxia-

induced phagocytosis 

Adipocyte:  

↓ palmitate- and hypoxia-

induced ER stress 

↑ AMPK  and Akt 

phosphorylation 

↑ PPAR-Ȗ expression  

↑ adiponectin expression 

↓ lipolysis 

↑ autophagy 

Epithelium:  

↓EMT transition 

↑MMP-9 secretion↓ECM 

resorption 

 

↑ insulin sensitivity 

Anti-inflammatory & Pro-

resolving  

↓ fibrosis 

Protectin 

D 

  Macrophage: M2 phenotype 

shift 

anti-inflammatory & Pro-

resolving 

 

 

Abbreviations: SREBP-1c:  sterol regulatory element-binding protein 1c; ChREBP:  carbohydrate 

response element binding protein; JNK: c-Jun N-terminal kinase;  
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ransporter 2; POMC: proopiomelanocortin; TGF: transforming growth factor; AMPK: 
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