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Abstract 1	

Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and 2	

professional sports, is associated with detrimental cardiovascular effects through redox-dependent 3	

mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 4	

weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic 5	

response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced 6	

the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in 7	

cardiac performance.  8	

We wanted to determine whether short-term ND administration could affect the oxidative redox 9	

status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment 10	

schedule, ND may have a double-edged sword effect.  11	

Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat 12	

plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in 13	

animals exposed to restraint stress, whereas no increase in marker levels was noted in animals 14	

pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative 15	

damage. Furthermore, isolation and identification of proteins extracted from the left heart 16	

ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a 17	

prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among 18	

other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress 19	

response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated 20	

rats.  21	

In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant 22	

proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic 23	

heart performance. 24	

 25	

Keywords: anabolic-androgenic steroids; heart; proteomics; oxidative stress; restraint stress 26	

 27	

Introduction 28	

Anabolic-androgenic steroids (AASs), synthetic derivatives of testosterone, exert both androgenic 29	

and anabolic actions [1] through their binding to the androgen receptor, acting at both the genomic 30	

and non genomic levels. AAS abuse, because of their anabolic effects, is detrimental to health [2-5]; 31	

nonetheless, AASs are widely used by athletes to increase muscle mass and power or enhance 32	

physical endurance [6]. Human and animal studies have reported discordant results regarding the 33	

cardiac and metabolic complications of AAS abuse [5,7-11], with some suggesting that testosterone 34	
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improves myocardial lipid metabolism [12] and may act as a cardioprotectant and coronary 1	

vasodilator comparable to conventional anti-ischemic drugs [13,14]. 2	

In cardiovascular diseases, both protective and damaging mechanisms derive from redox 3	

conditions. For example, exercise protects the heart by increasing myocardial resistance to 4	

ischemia-reperfusion (I/R) injury [15,16]. Yet, as a consequence of I/R injury, myocardial redox 5	

status is altered because of increased reactive oxygen species (ROS) production . This effect can be 6	

counteracted by exercise, which improves antioxidant defenses and reduces infarct size [15-17].  7	

Nandrolone decanoate (ND), one of the most extensively studied AASs, may interfere with redox 8	

conditions [18] and its abuse can limit the cardioprotective effects of exercise. Indeed, chronic ND 9	

administration for 6 to 10 weeks at supraphysiological doses causes heart hypertrophy [19-21], 10	

increases cardiac susceptibility to I/R injury [17,22,23], activates the local renin-angiotensin system 11	

[24], and induces ventricular repolarization disturbances [25].  12	

In two previous studies we reported that subchronic treatment with high-dose ND (15 mg/kg for 14 13	

days) does not induce evident left ventricular hypertrophy but, paradoxically, improves cardiac 14	

postischemic response [26], whereas chronic ND treatment (10 weeks) significantly reduces the 15	

cardioprotective effect of postconditioning, with an increase in infarct size and decrease in cardiac 16	

performance [27]. We hypothesized that the double-edged sword effect of ND may be related to 17	

treatment schedule and redox conditions. To test this hypothesis, we investigated the effects of 18	

subchronic ND treatment on left heart ventricular tissue and on systemic and cardiac redox status in 19	

rats exposed or not to restraint stress. Experimental evidence supports the notion that stressful 20	

conditions produce oxidative damage and the rationale for using restraint to investigate alterations 21	

in redox activities in different tissues. Restraint conditions have been associated with impairment of 22	

antioxidant enzyme activity (e.g., superoxide dismutase) and depletion of reduced glutathione 23	

[28,29]. Moreover, we previously reported that restraint conditions induce downregulation of 24	

myocardial contractility response to isoproterenol stimulation which is reversed by ND pretreatment 25	

[30]. 26	

In this experimental model of subchronic ND treatment in modulating redox status, we measured 27	

two oxidative stress  markers in plasma and left heart ventricular tissue samples: malondialdehyde 28	

(MDA) and 4-hydroxynonenal (4-HNE), the aldehydes resulting from polyunsaturated fatty acid 29	

lipid peroxidation. Using a proteomic approach, we identified the protein profile signatures in the 30	

left heart ventricular tissues of rats pretreated or not with ND and exposed to acute restraint stress .  31	

 32	

Methods 33	

Animals and treatments 34	
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Treatment schedule: 70 two-month-old male Sprague–Dawley rats weighing 300 g (Harlan 1	

Laboratories, San Pietro al Natisone, Udine, Italy) were housed in groups of two in polycarbonate 2	

cages with ad libitum access to food and tap water and maintained in a controlled environment 3	

(12:12 light–dark cycle, room temperature 20-24° C, and humidity 50-60%). They were allowed 1 4	

week of acclimatization before the experiment began and were handled daily during this period. To 5	

avoid circadian variability, all tests were performed between 10:00 and 12:00, when plasma 6	

hormones levels are relatively low. Institutional ethical committee approval was obtained for this 7	

study; all experimental procedures were performed in accordance with EC Directive 86/609/EEC 8	

and Italian law regulating experiments on animals. 9	

One group of rats (n=32) received once a day for 14 days an intramuscular (i.m.) injection of 0.5 10	

mL of peanut oil (vehicle) containing 15 mg/kg of ND (DECA-Durabolin®, Organon), which is 11	

equivalent to the abuse dose of AAS in humans [31]. Sixteen of these rats (ND group) remained in 12	

their cages until sacrifice, and the 16 other animals were exposed to 1 h of restraint stress 24 h after 13	

the last injection and immediately before sacrifice (ND+S group) [32]. A second group (n=32) 14	

received 0.5 mL peanut oil i.m. injection once a day for 14 days. This group was divided into two 15	

subgroups: 16 were treated with the vehicle only (V group) and were sacrificed, and the 16 other  16	

animals were exposed to the same acute restraint stress protocol described above (V+S group). The 17	

control group (n=6) received i.m. injections of normal saline solution daily for 14 days to check for 18	

possible peanut oil effects. The experimental design is presented in Table 1. At the end of  14 days 19	

of treatment, all animals were sacrificed by decapitation and trunk blood was collected. The hearts 20	

were rapidly removed, rinsed with saline buffer solution, and dissected to collect the left heart 21	

ventricle. All samples were snap frozen and stored at -80° C until use.  22	

 23	

Oxidative stress marker measurement in plasma and left heart ventricles 24	

Plasma oxidative stress damage was determined by measuring the fluorescent adducts formed 25	

between lipid peroxidation-derived aldehydes and plasma proteins. Plasma samples were extracted 26	

in ethanol/ether (3:1 v/v) and then centrifuged at 1000 g for 10 min. Pellets were resuspended in 27	

ethanol/ether (3:1 v/v); this procedure was repeated three times. Protein adducts were dried under 28	

nitrogen and resuspended in a 5% SDS solution. Hydroxynoneal (4-HNE) protein adducts (355 nm 29	

excitation/460 nm emission) and malondialdehyde (MDA) protein adducts (390 nm excitation/460 30	

nm emission) were measured using a spectrofluorometer (SFM 25 Kontron Instruments AG, 31	

Zurich, Switzerland). Data are expressed as arbitrary unit fluorescence (AUF)/mg plasma proteins 32	

[33].  33	
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In the left heart ventricle lysates, free MDA levels were determined by measuring thiobarbituric 1	

acid-reactive substances [34]. Briefly, left heart ventricle tissues were disintegrated with a Mikro-2	

Dismembrator II (B. Braun, Melsungen, Germany) and dissolved in Tris-HCl buffer (0.1 M, pH 3	

7.4) using a Potter-Elvehjem homogenizer (Sigma-Aldrich, St. Louis, MO, USA) The MDA 4	

concentrations determined by the thiobarbituric acid reaction are expressed as nmol/g tissue.  5	

 6	

Tissue damage evaluation 7	

Tissue damage was evaluated by measuring two cytotoxic markers, lactate dehydrogenase (LDH) 8	

(Abbott Laboratories, Abbott Park, IL, USA, 2P56-21) and creatine kinase MB isozyme (CK-MB) 9	

(Abbott, 6K25-30), in blood samples according to the manufacturer’s instructions with the aid of a 10	

clinical chemistry analyzer (Abbott, Architect C8000 Plus). 11	

 12	

Protein sample preparation  13	

Frozen left heart ventricular tissue samples were disintegrated with a Mikro-Dismembrator II and 14	

lysed in RIPA buffer (20 mM HEPES, 150 mM NaCl, 5m M EDTA, 1 mM DTT, 1% Triton X-100, 15	

10% glycerol, 1 µg/mL leupeptin, 1 µg/mL aprotinin, 1 µg/mL phenylmethyl–sulfonyl fluoride, 1 16	

mM sodium orthovanadate) at 4° C. The lysates were then spun-down to remove insoluble cellular 17	

debris. Protein concentration was measured by the Lowry method [35]. 18	

 19	

Two-dimensional gel electrophoresis (2-DE) 20	

Two-dimensional gel electrophoresis (2-DE) was performed according to the manufacturer’s 21	

instructions (GE Healthcare, Milan, Italy) with slight modifications. Samples containing 0.125 mg 22	

proteins were in-gel rehydrated for 12 h onto 7-cm immobilized non-linear pH gradient strips (pH 23	

3-10), electrofocused at 200 V, 500 V, and 1000 V each for 1 h (step-N-hold), 1000-5000 V 24	

(gradient) for 30 min, and 5000 V (step-N-hold) for 3 h using an IPGphor system (GE Healthcare). 25	

The strips were then reduced for 30 min in SDS equilibration buffer (50 mM Tris-HCl pH 8.8, 6 M 26	

urea, 30% glycerol, 2% SDS) containing 1% (w/v) DTT, followed by 30 min alkylation in the same 27	

equilibration buffer with 2.5% (w/v) iodoacetamide instead of DTT. Electrophoresis was run on an 28	

Ettan DALT II system (GE Healthcare). The gels were stained with colloidal Coomassie Blue G250 29	

(Bio-Rad, Hercules, CA, USA), scanned using image scanner and the gel images were analyzed  30	

with ImageMaster 2D Platinum 6.0 software (GE Healthcare). 31	

 32	

Mass spectrometry and protein identification 33	
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Protein spots were excised and in-gel trypsin (Sigma-Aldrich) digested according to the 1	

manufacturer’s instructions. Aliquots of 1 µL of each sample were mixed with an equal volume of 2	

matrix (α-cyano-4-hydroxycinnamic acid), saturated in 50% acetonitrile (Sigma Aldrich), and the 3	

mixture was dropped onto the metal target plate of a Microflex LRF MALDI-TOF mass 4	

spectrometer (Bruker Daltonics, Germany). Mass spectrometry analysis was carried out in reflector 5	

mode. The adrenocorticotropic hormone (2464.1989 m/z) and the angiotensin II fragments 6	

(1045.5423 m/z) were used for internal mass calibration to maximize mass accuracy. The peptide 7	

mass fingerprint spectra were searched against the MASCOT (Matrix Science) and National Center 8	

for Biotechnology Information (NCBI, www.ncbi.nlm.gov) protein databases. 9	

 10	

Western blot analysis (WB) 11	

Total cellular proteins (25 µg) were resolved by 10% SDS-PAGE and transferred onto 12	

nitrocellulose membrane (Hybond™ ECL™, GE Healthcare) for immunoblotting. The membranes 13	

were probed with the following antibodies: rabbit polyclonal anti-glutathione-S-transferase (GST) 14	

(1:2000, Alpha Diagnostic International, San Antonio, TX, USA, GSTM11-S), rabbit monoclonal 15	

anti-CRYAB (1:5000, GeneTex, Irvine CA, USA, GTX62094), rabbit monoclonal anti-PRDX6 16	

(1:1000, GeneTex GTX62281), mouse monoclonal anti-alpha tubulin (TUB) (1:10000, Santa Cruz 17	

Biotechnology, Dallas, TX, USA, SC-23948) and goat polyclonal anti-vinculin (VCL) (1:1000, 18	

Santa Cruz Biotechnology sc-7649). The blots were then incubated with their appropriate secondary 19	

antibodies. Protein signals were detected using enhanced chemiluminescence ECLTM WB detection 20	

reagents (GE Healthcare). WB images were analyzed using ImageJ software 21	

(http://imagej.nih.gov/ij/). CRYAB and PRDX6 were quantified by normalizing them against TUB 22	

selected as the reference housekeeping protein; GST was normalized using VCL.  23	

 24	

Statistical analysis 25	

All data are presented as the mean and the median as a central measure and interquartile range 26	

(IQR) as a measure of spread. The Shapiro-Wilk test was applied to check the normality 27	

assumption. Since the MDA concentrations in the left heart ventricular tissue samples had skewed 28	

distribution, natural log transformation was applied to achieve normality assumption for standard 29	

parametric analysis. Two-way analysis of variance (ANOVA) and Tukey’s post hoc test were 30	

carried out in the event of a significant F ratio. Statistical significance was set at  p < 0.05. Analyses 31	

were performed using R version 3.02 (www.r-project.org). 32	

 33	

Results 34	
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Nandrolone prevents HNE and MDA accumulation  1	

We measured HNE and MDA adducts in plasma and MDA in its free form in left heart ventricular 2	

specimens. Since HNE is quickly metabolized to less cytotoxic compounds in many tissues, and 3	

thus scantly detectable by photometric methods, we measured in left heart ventricular tissue 4	

samples the protein expression levels of GST, an enzyme involved in its detoxification. Indeed, 5	

through GST, HNE is rapidly and covalently conjugated to GSH, giving rise to GSH-HNE, which is 6	

more water soluble and thus more easily excreted. 7	

A significant increase in the plasma levels of both HNE and MDA adducts was observed in the rats 8	

exposed to restraint stress (Fig. 1 and Table 2; p=0.04 and p=0.02, respectively). The aldehyde-9	

protein adduct levels were lower in the ND+S group than in the V+S group, suggesting that ND 10	

may prevent against restraint-induced stress effects. However, two-way ANOVA found no 11	

significant interaction (Table 2). MDA in its free form in the left heart ventricular tissues was 12	

increased in the vehicle-treated group exposed to restraint stress (V vs V+S, p=0.002), whereas the 13	

stress-induced MDA increase was significantly lower in the ND+S group (Fig. 2).  14	

Western blotting indicated a significant increase in GST protein levels after ND treatment in the left 15	

heart ventricular tissue samples from animals exposed or not  to restraint stress, as compared to the 16	

tissues from animals that had not received ND (V and V+S groups) (Fig. 3). 17	

The MDA levels in the control group and the V group were similar (data not shown). 18	

 19	

Nandrolone treatment impairs blood LDH and CK-MB activity levels  20	

HNE and MDA are highly toxic side products of lipid peroxidation. To determine whether these 21	

catabolites might have damaged or altered heart muscle viability, we evaluated the activity of 22	

lactate dehydrogenase (LDH), a classic indicator of tissue cytotoxicity, and creatine kinase MB 23	

isozyme (CK-MB), a cardiac-specific cytotoxicity marker. LDH and CK-MB levels were increased 24	

in the control group exposed to restraint stress as compared to the unstressed group (V vs. V+S 25	

groups), though the difference between-groups was not statistically significant. Interestingly,  LDH 26	

and CK-MB levels were significantly lower in both ND-treated groups than in the control group 27	

exposed to restraint stress (V+S) (Fig. 4). Overall, these data strengthen the hypothesis that the 28	

changes in oxidative stress after exposure to restraint stress did not damage heart muscle integrity. 29	

 30	

Left heart ventricular tissue from V+S and ND+S animals displays different proteomic 31	

signatures 32	

To gain further insights into the molecular components involved in triggering differential responses 33	

to ND treatment in the animals exposed to restraint stress, 2-DE was performed on lysates of left 34	



8	
	

heart ventricular tissue samples from both groups (V+S and ND+S). Representative images are 1	

shown in Fig.5. Comparison between the two groups  showed a higher number of protein spots in 2	

the ND+S than in the V+S samples (282 spots in ND+S vs  201 spots in V+S), especially within the 3	

range of 20-45 kDa. Eighty-five visible spots were manually excised from the gels and subjected to 4	

MALDI-TOF-MS analysis to identify the corresponding proteins. The spots unambiguously 5	

identified via MALDI-TOF-MS are numbered in Fig. 5 and the proteins identified (together with 6	

their relative scores, sequence coverage, and functional categories) are reported in Table 3. Several 7	

spots were identified by MALDI-TOF-MS analysis as being either different isoforms of the same 8	

protein or the same protein that migrated differently in other cases, suggesting post-translational 9	

modifications. Functional category analysis highlighted that the proteins involved in energy 10	

metabolism were the major components detected. 11	

 We identified three non-overlapping spots detectable only in the protein profile of the left heart 12	

ventricular tissue samples from the ND+S group. Mass spectrometry analysis identified these spots 13	

as succinyl–CoA transferase, alpha B-crystallin (CRYAB), and peroxiredoxin 6 (PRDX6), the last 14	

two of which are involved in cellular response to oxidative stress [36,37]. Indeed, CRYAB is a 15	

chaperone protein that prevents apoptosis induced by OS and PRDX6 protects against oxidative 16	

injury through its peroxidase activity. 17	

These data were corroborated  by WB analysis carried-out onof left heart ventricular tissue  samples 18	

from the four groups (V, V+S, ND, ND+S). The comparison showed that PRDX6 expression levels 19	

were higher in both ND-treated groups, whether exposed to restraint stress or not, whereas CRYAB 20	

expression was increased in the two groups exposed to restraint stress, with a greater increase in the 21	

ND-treated group (Fig. 6). 22	

 23	

Discussion 24	

Our findings indicate that restraint stress impacts on oxidative stress and that ND administration can 25	

alter the oxidative status of cardiac tissue in rats exposed to restraint stress. Previous experimental 26	

evidence has shown that short-term ND pretreatment can protect against pro-oxidant conditions, 27	

such as I/R injury [26]; therefore, we hypothesized that it may exert a protective action against 28	

oxidative stress. To settle this issue, and because stressful conditions have been found to cause 29	

oxidative damage in diverse tissues, we employed an in vivo model in which rats were exposed to 30	

restraint stress [28,29,38,39].  31	

Our assumption seems to contrast with that of authors reporting a ND-mediated impairment of 32	

exercise-induced cardioprotection [17,24,22,40]. A possible explanation for the protective effect of 33	
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ND we observed in left heart ventricular tissue is that ND exerts a differential effect in relation to 1	

duration of treatment (14 days in our study vs 6 to 8 weeks in those mentioned above). 2	

With the present study, we report that oxidative stress marker levels in plasma and left heart 3	

ventricular tissues are increased in rats exposed to restraint stress. Although ND per se does not 4	

directly modify oxidative stress markers, it appears to prevent an increase in free MDA in the left 5	

heart ventricular tissue of restrained animals and that it enables HNE detoxification by means of 6	

increased levels of GST. This observation is shared by  previous results reporting that ND enhances 7	

GST activity [41]. A similar trend was observed for the accumulation of HNE and MDA adducts in 8	

the plasma samples. The lack of significant differences between the oxidative stress marker levels 9	

in the plasma samples may be due to several reasons; indeed, it cannot be ruled out that oxidative 10	

stress varies in different tissues of the body. Two data sets indicate restraint stress-induced lipid 11	

peroxidation: the increased HNE and MDA levels and the appreciable, though statistically not 12	

significant, blood accumulation of LDH and CK-MB detected in the V+S group. 13	

 Overall, the data indicate that, albeit restraint stress led to oxidative damage, it apparently does not 14	

affect tissue viability. Interestingly, the opposite behavior of the oxidative stress and cytotoxic 15	

markers detected in the ND+S group suggests that ND plays a protective role against the negative 16	

effects of oxidative stress. 17	

The effects of ND on oxidative stress in the animals exposed to restraint stress may be related to its 18	

effect on the corticosterone (CORT) response to stressful conditions. In a previous study, we 19	

reported that in rats that received ND treatment identical to the schedule used in the present study 20	

CORT levels were reduced in both basal condition and after stress exposure [42]. Indeed, 21	

glucocorticoids may affect the redox status of different tissues (e.g., endothelial cells and brain) via 22	

different mechanisms, including an increase in superoxide cell production and impairment of tissue 23	

antioxidant capacity [43,44]. Therefore, one can assume that the increase in the two oxidative stress 24	

markers in the V+S group is a consequence of the high CORT levels induced by stress and because 25	

ND decreases the CORT levels in plasma after stress, it could conceivably exert a protective action 26	

against oxidative stress.  27	

We identified two additional novel players implicated in oxidative stress response to subchronic ND 28	

pretreatment: CRYAB and PRDX6. These two proteins, which were expressed at higher levels in 29	

the ND+S as compared to the V+S samples, are both involved in oxidative response. PRDX6, a 30	

class of thiol-specific antioxidant enzymes, exerts peroxidase activity against a broad range of 31	

peroxides [36,45-47]. CRYAB is activated by phosphorylation during oxidative stress, thus 32	

protecting cells from apoptosis induced by oxidative damage [48-50]. Previous studies have shown 33	

that transgenic mice that ubiquitously overexpress CRYAB have increased tolerance to I/R injury 34	
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[51], whereas CRYAB/HSPB2-null mouse hearts display poorer functional recovery, a higher cell 1	

death rate [52], increased stiffness, and, hence, poor myocardial relaxation following I/R injury [53] 2	

as compared with wild-type controls. Of note, we previously observed an improvement in 3	

postischemic diastolic and systolic cardiac functions after subchronic ND treatment [26].  4	

To elucidate to what extent the effect on PRDX6 and CRYAB expression was due to ND 5	

administration by itself or ND coupled to stress, we compared their expression in samples from the 6	

four groups (V, V+S, ND, ND+S) by WB analysis. ND treatment alone was enough to induce up-7	

modulation of both PRDX6 and  CRYAB.  8	

We previously reported that subchronic ND treatment improves systolic function induced by 9	

postconditioning cardioprotection via β2-adrenoreceptor activation [26] and probably, via the same 10	

pathway, prevents the decrease induced by restraint stress in heart contractile response to 11	

isoproterenol [30]. These findings appear to be in line with results from studies on other antioxidant 12	

substances [54,55]. Vitamin C is known to enhance the positive inotropic response to the β1-13	

adrenoreceptor agonist dobutamine in the presence of high levels of reactive oxygen species [54] 14	

and, in the same condition, the free radical scavenger N-acetylcysteine was found to strengthen the 15	

inotropic effect of dobutamine in isolated heart tissue [55]. In our experimental conditions, it is 16	

unlikely that ND had a direct antioxidant action. ND-pretreatment affects the protein expression 17	

patterns, as revealed by 2-DE mapping.  18	

In conclusion, our study provides further evidence for an enhanced oxidative response in animals 19	

exposed to restraint stress and reports the novel observation that subchronic ND-pretreatment limits 20	

myocardial redox response induced by restraint via the modification of anti-oxidant protein 21	

expression. These effects may explain the amelioration of postischemic heart performance observed 22	

after ND administration [26]. It can be argued that ND acts as a double-edged sword, with positive 23	

or negative effects on the heart depending on the treatment schedule.  24	

  25	
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Fig. 1 Restraint stress increases plasma HNE and MDA adduct levels. The boxes indicate the lower 1	

and upper quartiles, and the central line is the median. The dashed line represents the mean. The 2	

whiskers above and below the boxes indicate a distance of 1.5 IQR. *p<0.05. 3	

HNE denotes 4-hydroxynoneal; MDA malondialdehyde; IQR interquartile range. 4	

 5	

Fig. 2 Free MDA levels in left heart ventricle are lowered by ND treatment upon restraint stress. 6	

Box plot of MDA levels in left heart ventricular tissue (log(nmol/g)) in ND-treated and control 7	

animals. The boxes indicate the lower and upper quartiles, and the central line is the median. The 8	

dashed line represents the mean. The whiskers above and below the boxes indicate a distance of 1.5 9	

IQR. Two-way ANOVA and post hoc Tukey test showed significant differences between ND and 10	

ND+S (p=0.027), V and V+S (p=0.002), ND+S and V+S (p=0.001). 11	

MDA denotes malondialdehyde; ND nandrolone decanoate; V vehicle-treated group; V+S vehicle-12	

treated group exposed to restraint stress; ND nandrolone-treated group; ND+S nandrolone-treated 13	

group exposed to restraint stress; IQR interquartile range.  14	

 15	

Fig. 3 Increased GST protein levels in left heart ventricular tissue samples from ND-treated animals. 16	

Representative Western blot image showing quantification of GST protein levels.  17	

Fig. 4 Measurement of  blood LDH and CK-MB activity. Box plot of LDH (panel A) and CK-MB 18	

isozyme (panel B) activity levels (U/L). The boxes indicate the lower and upper quartiles. The 19	

central and the dashed lines represent the median and the mean values, respectively. The whiskers 20	

above and below the boxes indicate a distance of 1.5 IQR. Two-way ANOVA and post hoc Tukey 21	

test showed significant differences between the V+S vs ND groups and the V+S vs ND+S 22	

groups.Fig. 5 Two-dimensional gel electrophoresis (2-DE) displaying different patterns in the 23	

lysates obtained from left heart ventricular tissue samples from the two groups exposed to restraint 24	

stress (V+S and ND+S). Proteins from V+S (panel A) and ND+S (panel B) left heart ventricular 25	

tissues were separated by isoelectric focusing on 7-cm strips with a non linear 3 to 10 pH gradient 26	

and subjected to SDS-polyacrylamide gel electrophoresis. Gels were stained with Coomassie Blue 27	

(G250). The numbers indicate the spots analyzed by mass spectrometry. Molecular size markers are 28	

indicated on the left. 29	

 30	

Fig. 6 Immunoblots of PRDX6 and CRYAB proteins in left heart ventricular tissue. Histograms 31	

show the relative concentrations of the proteins normalized to the house-keeping protein tubulin 32	

(TUB).  33	
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PRDX6 denotes peroxiredoxin 6; CRYAB alpha B-crystallin; V vehicle-treated group; V+S 1	

vehicle-treated group exposed to restraint stress; ND nandrolone-treated group; ND+S nandrolone-2	

treated group exposed to restraint stress. Two-way ANOVA and post hoc Tukey test showed 3	

significant differences between the groups. PRDX6 *p<0.05 vs V and V+S, n=3; CRYAB *p<0.05 4	

vs V; #p<0.05 vs V+S, n=3.  5	

The immunoblots are from one representative experiment.	6	

 7	

	8	


