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Abstract

The purpose of this paper is to study harmonic spinors defined on a 1-parameter
family of Einstein manifolds which includes Taub-NUT, Eguchi-Hanson and P 2(C)
with the Fubini-Study metric as particular cases. We discuss the existence of and
explicitly solve for spinors harmonic with respect to the Dirac operator twisted
by a geometrically preferred connection. The metrics examined are defined, for
generic values of the parameter, on a non-compact manifold with the topology of C2

and extend to P 2(C) as edge-cone metrics. As a consequence, the subtle boundary
conditions of the Atiyah-Patodi-Singer index theorem need to be carefully considered
in order to show agreement between the index of the twisted Dirac operator and the
result obtained by counting the explicit solutions.

1 Introduction

Einstein 4-manifolds play an important rôle in mathematical physics. They arise as

Euclidean continuations of solutions of Einstein equations in general relativity [16, 17],

as moduli space of solitons [25, 11], as particle models in the geometric models of matter

framework [7, 15]. Particularly important examples are the Taub-NUT (TN), Eguchi-

Hanson (EH), Atiyah-Hitchin (AH) manifolds and the Fubini-Study (FS) metric on

P 2(C).

Interestingly, two known 1-parameter families of Einstein metrics interpolate between

these examples. Both families are initially defined on a non-compact manifold, but

admit a conformal compactification as metrics with an edge-cone singularity along an

embedded 2-surface. Both are half-conformally-flat, have non-negative scalar curvature

and are rotationally symmetric, that is, admit an isometric SO(3) or SU(2) action. The

first family, introduced in [22], is defined on S4 \P 2(R) and extends to a family of edge-

cone metrics of positive scalar curvature on S4 with cone angle 2π
k−2 along P 2(R). The

parameter k is an integer ≥ 3 For k = 3 one obtains the smooth round metric on the

4-sphere. For k = 4 the metric admits a double cover isometric to P 2(C) with the FS

metric. For k → ∞ the metric converges to the AH metric.

The second family was introduced in [1]. It depends on a real parameter β ∈ [0, 2],

has positive scalar curvature for β ∈ (0, 2) and, for β 6= 0, extends to a 1-parameter

family of edge-cone metrics on P 2(C) with cone angle 2π β along an embedded S2. For
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β = 1 one obtains the smooth FS metric. For β = 2, a Z2 quotient of the metric gives

the Ricci-flat EH metric on TS2. For β → 0 one obtains the Ricci-flat TN metric.

Harmonic spinors are solutions of the twisted (massless) Dirac equation /DAψ = 0.

From the mathematical viewpoint, studying the spectrum of Dirac operators and in

particular whether or not they admit zero eigenvalues, and therefore harmonic spinors,

is an interesting problem both per se and in connection with index theorems [23, 8, 10,

9, 5].

In the physical literature, solutions of the Dirac equation are known as (fermionic)

zero modes and twisting of the Dirac equation is often called minimal coupling (to

a gauge field). Fermionic zero modes on a non-trivial background have been studied

e.g. in connection with fractionalisation of fermionic charge [26], non-perturbative effects

in supersymmetric gauge theories [35, 3, 2], superconducting cosmic strings [37].

In this paper we study harmonic spinors defined on the second family of Einstein man-

ifolds described above. From the physical viewpoint, we are concerned with fermionic

zero modes on an Einstein background coupled to an Abelian gauge field. In particu-

lar, we will see that the kernel of the non-twisted Dirac operator is trivial. However,

the manifolds admit a geometrically preferred 2-form which is closed, self-dual (hence

harmonic), L2 and rotationally invariant. For β = 0, β = 2 this 2-form is the (up to

scale) unique harmonic L2 2-form F on TN and EH [24], predicted by Sen’s S-duality

conjecture [36], while for β = 1 it becomes the Kähler form of the FS metric. Considered

on the compactified manifold, which has the topology of P 2(C), F generates the middle

dimension cohomology group and corresponds to the Poincaré dual of the non-trivial

2-cycle.

Interpreting F as a curvature form, we consider the kernel of the Dirac operator

twisted by the corresponding Abelian connection. In this case, non-trivial left-handed

harmonic spinors exist. In fact, we show that the kernel of the Dirac operator decomposes

as a direct sum of all the irreducible SU(2) representations up to a dimension determined

by the spinor charge and the parameter β. Thanks to the rotational symmetry of the

problem, the harmonic condition reduces to an ODE which can be integrated, so we

explicitly obtain all the solutions.

With all the solutions at hand, we can compute the index of the twisted Dirac

operator and compare it with the result obtained via the Atiyah-Patodi-Singer (APS)

index theorem [8]. In order to avoid dealing with the edge-cone singularity, we work on

the non-compact manifold with boundary obtained by truncating our space at some finite

radius r0 and then take the limit r0 → ∞. In typical applications of the APS theorem to

non-compact spaces [33, 27, 28], the manifold under consideration has infinite volume.

Square-integrable spinors need then to decay asymptotically and the subtle boundary

conditions of the APS index theorem are automatically satisfied. Instead, the space we

consider has, for 2 6= β 6= 0, finite volume and agreement between counting of the explicit

solutions and the APS index theorem is only recovered once boundary conditions are

taken into proper account.

The paper is structured as follows. In Section 2 we recall some basic facts about
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Bianchi IX spaces, that is 4-manifolds admitting an isometric SU(2) action with (gener-

ically) 3-dimensional orbits. We then write down the twisted Dirac operator on a generic

Bianchi IX space, generalising previous work [27] in that we do not assume the curvature

tensor to be (anti) self-dual. In Section 3 we introduce the 1-parameter family of Ein-

stein metrics [1], following the presentation recently given in [6], and review some of its

properties. In Section 4 we show how, as a consequence of Lichnerowicz’s formula, the

non-twisted Dirac operator admits no non-trivial harmonic spinors, and discuss twisting

by the geometrically preferred connection with curvature F . In Section 5 the various

ingredients come together as we explicitly solve for harmonic spinors, comment on their

properties, and compare the results with those obtained via the APS index theorem.

2 The Twisted Dirac Operator on Bianchi IX Spaces

2.1 Metric and Connection Form

In terms of the left-invariant 1-forms on SU(2),

η1 = sinψ dθ − cosψ sin θ dφ,

η2 = cosψ dθ + sinψ sin θ dφ,

η3 = dψ + cos θ dφ,

(1)

for θ ∈ [0, π], φ ∈ [0, 2π), ψ ∈ [0, 4π), a Bianchi IX metric has the form

gIX = f2dr2 + a2η21 + b2η22 + c2η23 (2)

with a, b, c, f functions of the transverse coordinate r only.

The right (respectively left) action of SU(2) on itself, generated by the left-invariant

vector fields {Xi} (right-invariant vector fields {Zi}), given in Appendix B, induces a

right (left) action on a Bianchi IX space. The left SU(2) action is an action by isometries.

A Bianchi IX metric for which a = b, known as bi-axial, admits an additional U(1)

isometry group, generated by the left-invariant Killing vector field X3 = ∂/∂ψ, and given

by translation along the circles parametrised by ψ. The generic orbit of the right SU(2)

action on a Bianchi IX space has the topology of S3. By restricting ψ to [0, 2π) in (1) one

obtains the left-invariant 1-forms on SO(3) and the generic orbit of the corresponding

right SO(3) action on a Bianchi IX space has the topology of P 3(R).

For the time being we make no further assumption on gIX. We define the proper

radius R by dR = fdr, denote differentiation with respect to r by a prime ′, and with

respect to R by a dot ˙ . We take the orthonormal coframe

e1 = aη1, e2 = bη2, e3 = cη3, e4 = −fdr = −dR. (3)

In our conventions Latin indices vary in the range {1, 2, 3} and Greek indices vary in

the range {1, 2, 3, 4}. The Einstein summation convention is enforced but, since we are
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working with an orthonormal coframe, we do not distinguish upper indices from lower

ones. We denote the orthonormal frame dual to {eµ} by {Eµ}. Note that

E1 = a−1X1, E2 = b−1X2, E3 = c−1X3, E4 = −f−1∂r = −∂/∂R, (4)

where

X1 = sinψ ∂θ +
cosψ

sin θ
(cos θ ∂ψ − ∂φ) ,

X2 = cosψ ∂θ −
sinψ

sin θ
(cos θ ∂ψ − ∂φ) ,

X3 = ∂ψ

(5)

are the left-invariant vector fields on SU(2) dual to the forms {ηi}.
Defining the conformally invariant quantities

A =
b2 + c2 − a2

2bc
, B =

c2 + a2 − b2

2ca
, C =

a2 + b2 − c2

2ab
, (6)

the non-vanishing components of the Levi-Civita connection form ω are given by

ω12 =−Cη3, ω23 =−Aη1, ω31 = −Bη2, (7)

ω34 = −ċη3, ω14 =−ȧη1, ω24 = −ḃη2. (8)

The corresponding curvature form Ω is

Ω12 =−Ċ dR ∧ η3 +(C − ȧḃ−AB) η1 ∧ η2,
Ω23 =−ȦdR ∧ η1 + (A− ḃċ−BC) η2 ∧ η3,
Ω31 =−Ḃ dR ∧ η2 +(B − ċȧ− CA) η3 ∧ η1,

Ω14 = −ädR ∧ η1 +
(

ȧ− ḃC − ċB
)

η2 ∧ η3,

Ω24 = −b̈dR ∧ η2 +
(

ḃ− ċA− ȧC
)

η3 ∧ η1,

Ω34 = −c̈dR ∧ η3 +
(

ċ− ȧB − ḃA
)

η1 ∧ η2.

(9)

2.2 Spherically Symmetric Self-dual 2-forms

Knowledge of the spherically symmetric self-dual 2-forms on a Bianchi IX space will be

needed in Section 4 where we discuss twisting of the Dirac operator. Any spherically

symmetric 2-form on a Bianchi IX space is locally of the form dA, with

A = Ai ηi, Ai = A(Xi). (10)

Since

dA =
Ȧ1

a
e1 ∧ e4 − A1

bc
e2 ∧ e3 + Ȧ2

b
e2 ∧ e4 − A2

ca
e3 ∧ e1 + Ȧ3

c
e3 ∧ e4 − A3

ab
e1 ∧ e2, (11)
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dA is self-dual with respect to the volume form

vol = e1 ∧ e2 ∧ e3 ∧ e4 = fabcdr ∧ η1 ∧ η2 ∧ η3 = fabc sin θ dr ∧ dψ ∧ dθ ∧ dψ (12)

if and only if

Ȧ1 = − a

bc
A1, Ȧ2 = − b

ca
A2, Ȧ3 = − c

ab
A3. (13)

Clearly, the functions Ai are determined up to a multiplicative constant.

2.3 The Dirac Operator

Let {γµ}, µ = 1, . . . , 4, be Clifford generators,

γµγν + γνγµ = −2δµνI4, (14)

where I4 is the 4× 4 identity matrix. We take the generators in the chiral form

γa =

(

0 σa

−σa 0

)

, a = 1, 2, 3, γ4 =

(

0 −i1
−i1 0

)

, (15)

where 1,0 are the 2 × 2 identity and null matrices and {σa} the Pauli matrices. Dirac

spinors which are eigenvectors of the chirality operator −γ1γ2γ3γ4 with eigenvalue +1

(respectively −1) are called left-handed (right-handed). In the chiral representation (15),

the third and fourth (first and second) components of a left-handed (right-handed) Dirac

spinor vanish.

The twisted Dirac operator /DA associated to the orthonormal coframe {eµ}, its dual
frame {Eµ} and the Abelian real-valued connection A is, see e.g. [30],

/DA = γµ

[

(

Eµ + iA(Eµ)
)

I4 −
1

8
[γρ, γσ ]ωρσ(Eµ)

]

. (16)

The non-twisted Dirac operator /D is obtained by setting A = 0.

We rewrite (16) in the form

/DA = γ4

[(

E4 + iA(E4) +
1

2
ωk4(Ek)

)

I4 +

(

−1 0

0 1

)

BA

]

(17)

in order to isolate the contribution of the Dirac operator BA induced by /DA on a

hypersurface of large radius [19]. Making use of the commutation relations

[γi, γj ] = −2i ǫijk

(

σk 0

0 σk

)

, [γ4, γi] = 2i

(

σi 0

0 −σi

)

, (18)

we calculate

−1

8
[γρ, γσ ]ωρσ(Eµ) =

(

1 0

0 1

)

i

4
ǫijk ωij(Eµ)σk +

(

1 0

0 −1

)

i

2
ωk4(Eµ)σk. (19)
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Using (7), (8) and the relations

γa = iσaγ4

(

−1 0

0 1

)

, γµ

(

1 0

0 −1

)

i

2
ωk4(Eµ)σk =

1

2
γ4ωk4(Ek), (20)

we rewrite (16) as

/DA = γ4

{

[

E4 + iA(E4) +
1

2
ωk4(Ek)

]

I4+

+

[

iσa (Ea + iA(Ea))−
1

4
ǫijkωij(Ea)σaσk

](

−1 0

0 1

)

}

.

(21)

Therefore,

BA = iσa (Ea + iA(Ea))−
1

4
ǫijkωij(Ea)σaσk. (22)

Since

−ωk4(Ek) =
ȧ

a
+
ḃ

b
+
ċ

c
, −1

2
ǫijkωij(Ea)σaσk =

A

a
+
B

b
+
C

c
, (23)

setting

Di = Xi + iA(Xi), (24)

we get

/DA = γ4

{[

−∂r
f

+ iA(E4)−
1

2

(

ȧ

a
+
ḃ

b
+
ċ

c

)]

I4 +

(

−1 0

0 1

)

BA

}

, (25)

BA = i

(

σ1D1

a
+

σ2D2

b
+

σ3D3

c

)

+
1

2

(

A

a
+
B

b
+
C

c

)

. (26)

Note that the operator /DA has the form

/DA =

(

0 T
†
A

TA 0

)

, (27)

with

TA =

[

i∂r
f

+A(E4) +
i

2

(

ȧ

a
+
ḃ

b
+
ċ

c

)]

1+ iBA (28)

=

[

i∂r
f

+A(E4) +
i

2

(

ȧ+A

a
+
ḃ+B

b
+
ċ+ C

c

)]

1− σ1D1

a
− σ2D2

b
− σ3D3

c
,

T
†
A =

[

i∂r
f

+A(E4) +
i

2

(

ȧ

a
+
ḃ

b
+
ċ

c

)]

1− iBA (29)

=

[

i∂r
f

+A(E4) +
i

2

(

ȧ−A

a
+
ḃ−B

b
+
ċ− C

c

)]

1+
σ1D1

a
+

σ2D2

b
+

σ3D3

c
.
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The operator T
†
A is the formal adjoint of TA. In fact, let ψ, φ be Dirac spinors.

Their L2 product induced by the volume element (12) is

〈φ,ψ〉 =
∫

φ† ψ vol, (30)

where † denotes the transpose conjugate. Integrating by parts and discarding boundary

terms we get
〈

φ,
i ∂rψ

f

〉

= i

∫

φ†
∂rψ

f
fabcdr ∧ η1 ∧ η2 ∧ η3

= −i
∫

[

∂rφ
†

f
ψ + φ†

(

ȧ

a
+
ḃ

b
+
ċ

c

)

ψ

]

fabcdr ∧ η1 ∧ η2 ∧ η3

=

〈

i ∂rφ

f
+ i φ

(

ȧ

a
+
ḃ

b
+
ċ

c

)

, ψ

〉

.

(31)

Moreover, up to boundary terms,

〈φ,X1ψ〉 =
∫

X1

(

φ†ψ fabc
)

dr ∧ η1 ∧ η2 ∧ η3 −
∫

X1(φ
†)ψ fabcdr ∧ η1 ∧ η2 ∧ η3

= −
∫

X1(φ
†)ψ fabcdr ∧ η1 ∧ η2 ∧ η3 = −〈X1φ,ψ〉 ,

(32)

having used the relation, valid for any function h,

Xa(h) ηa ∧ dr ∧ η2 ∧ η3 = d (hdr ∧ ηi ∧ ηj) . (33)

Hence 〈φ,σ1D1ψ〉 = −〈σ1D1φ,ψ〉 and similarly for the terms in D2,D3. Therefore, the

formal adjoint of TA is indeed (29).

3 A 1-parameter Family of Einstein Metrics

In Section 5 we will explicitly solve for harmonic spinors on a 1-parameter family of half-

conformally-flat Einstein metrics initially found in [1] which includes, for special values of

the parameter, celebrated metrics such as the Fubini-Study (FS), Eguchi-Hanson (EH)

and Taub-NUT (TN) metrics. Recently, this family has been obtained by conformal

rescaling of a hyperbolic analogue of the TN space [6]. We recall the construction here.

Consider the metric, introduced in [31],

ghTN = V gH3

L
+ V −1η23 . (34)

Here gH3

L
is the metric on hyperbolic 3-space of sectional curvature −1/(4L2),

gH3

L
= dr2 + 4L2 sinh2(r/2L)(η21 + η22), (35)
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V is the positive function

V =
1

L

(

1

β
+

1

er/L − 1

)

=
er/L + β − 1

βL(er/L − 1)
, (36)

β is a constant. The angles have range θ ∈ [0, π], φ ∈ [0, 2π), ψ ∈ [0, 4π), while r ∈ [0,∞).

The apparent singularity at r = 0 is a coordinate singularity, the topology is that of C2.

The geometry described by (34) is very similar to that of TN. The metrics of both

spaces are based on the Gibbons-Hawking ansatz and are of bi-axial Bianchi IX form.

The origin is a fixed point of the U(1) action generated by the Killing vector field X3,

and the space with the origin removed is a circle bundle over a 3-manifold. While for

TN the base of the circle bundle is Euclidean space, for (34) is hyperbolic space. In both

cases, the topology is that of C2. I will refer to C
2 with the metric (34) as hyperbolic

Taub-NUT (hTN).

It should be pointed out that there are also important differences between TN and

hTN: TN is a hyperkähler space, hence half-conformally-flat and Ricci-flat, while hTN

is half-conformally-flat but not Einstein. Its scalar curvature is given by

shTN = − 3

2L2 V
. (37)

A 1-parameter family of Einstein metrics can be obtained by conformally rescaling

ghTN [6]: For

Λ =

√

4L

β

1

(2− β) cosh(r/2L) + β sinh(r/2L)
, (38)

the metric

gβ = Λ2 ghTN (39)

is Einstein with Einstein constant

Cβ =
3

2

β2

4L2
(2− β). (40)

In order for gβ to be well-defined for all r ≥ 0, it is necessary to have β ∈ (0, 2].

Note that for β = 1, making the substitution

1 +
v2

16L2
= exp

( r

L

)

, (41)

we obtain

g1 = lim
β→1

gβ =
dv2

(

1 + v2

16L2

)2 +
v2

4
(

1 + v2

16L2

)2 η
2
3 +

v2

4
(

1 + v2

16L2

)

(

η21 + η22
)

. (42)

This is the FS metric on P 2(C)\P 1(C) with Einstein constant 3/(8L2) [18]. The removed

P 1(C) corresponds to the asymptotic 2-sphere S2
∞ at v → ∞.
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The limiting cases β = 2 and β = 0 are particularly interesting. For β → 2, making

the substitution

r = 2L arcoth

(

w2

4L2

)

, (43)

we get

g2 = lim
β→2

gβ =
dw2

1−
(

2L
w

)4 +
w2

4

(

1−
(

2L

w

)4
)

η23 +
w2

4

(

η21 + η22
)

. (44)

This would be the metric on the EH space if ψ had range [0, 2π) rather than [0, 4π) as

in (44). It is therefore a metric on the branched double cover of the EH space and has

a conical singularity of excess angle 2π along the 2-sphere w = 2L.

The EH metric is usually defined on a space which is topologically the tangent bundle

TS2 of S2. In terms of the coordinates used in (44) the zero section of TS2 is obtained

for w = 2L. The double cover of TS2 is homeomorphic to P 2(C) \ {p} [6]. Adding a

point and removing the zero section we obtain the space C
2 over which g2 is defined. In

terms of the coordinate transformation (43), the zero section of TS2 has been pushed to

r → ∞, while w → ∞ corresponds to the point r = 0.

For β → 0, making the substitution

r = βu, (45)

we obtain

g0 = lim
β→0

gβ |r=βu =

(

1 +
L

u

)

(

du2 + u2 (η21 + η22)
)

+ L2

(

1 +
L

u

)−1

η23 , (46)

the metric on the TN space.

Asymptotically, setting µ = β exp
(

− r
2L

)

,

gβ =
4L2

β2

[

(η21 + η22)

(

1 +
µ2(3β − 4)

β2

)

+ µ2
(

dr2

β2L2
+ η23

)

+O
(

µ3
)

]

. (47)

For β 6= 0 a hypersurface of fixed r, which for r > 0 has the topology of a 3-sphere,

collapses in the limit r → ∞ to the 2-sphere S2
∞, the asymptotic boundary of Mβ.

The metric ghTN is defined on a space with the topology of C2. For β ∈ (0, 2], the

conformally rescaled metric gβ extends to P 2(C) = C
2 ∪P 1(C), where the added P 1(C)

is the asymptotic 2-sphere S2
∞ which has self-intersection number one in P 2(C). For

β 6= 1, the metric gβ has an edge cone singularity of deficit/excess angle 2π|1− β| along
S2
∞ [6]. From now on, for β ∈ [0, 2] we denote the space C

2 with the metric gβ by Mβ,

and, for β ∈ (0, 2], its compactification by P 2
β (C).

For the specific values of a, b, c, f of ghTN,

ahTN = bhTN = 2L
√
V sinh(r/2L), chTN = 1/

√
V , fhTN = −

√
V , (48)
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the volume element (12) becomes

volβ = −Λ4 a2hTNdr ∧ η1 ∧ η2 ∧ η3,

Λ4 a2hTN =
16L3

β3
exp(r/L)(exp(r/L)− 1)(exp(r/L) + β − 1)

(exp(r/L)− β + 1)4
.

(49)

It can be checked that for β 6= 0, 2, Mβ has finite volume, given by

∫

Mβ

volβ = −16π2
∫ 0

∞
Λ4a2hTN dr =

128L4π2

3

(4− β)

β3(β − 2)2
, (50)

where we integrate from ∞ to 0 since −Λ4a2hTN < 0. For β = 2 the volume of Mβ

diverges. The divergent contribution comes from r = 0, the portion of EH space usually

at infinity brought to finite distance by the transformation (43). In the limit β → 0

lim
β→0

volβ|r→βu = −Lu2
(

1 +
L

u

)

du ∧ η1 ∧ η2 ∧ η3, (51)

hence, as expected, the volume of TN also diverges.

4 Twisting the Dirac Operator

The space Mβ admits no non-trivial harmonic spinors. In fact, by Lichnerowicz’s for-

mula, see e.g. [30], the square of the Dirac operator /D is given by

/D
2
= △ψ +

s

4
ψ, (52)

where s is the scalar curvature of the manifold, △ = ∇ ◦ ∇ is the connection Laplacian

and ∇ the covariant derivative associated to the spin connection ω. Suppose ψ is an L2

harmonic spinor on Mβ, (52) then gives

0 = 〈 /Dψ, /Dψ〉 = 〈∇ψ,∇ψ〉 + s

4
〈ψ,ψ〉. (53)

For β ∈ (0, 2) the scalar curvature s = 4Cβ of Mβ is strictly positive, see (40), hence the

non-twisted Dirac operator /D does not admit non-trivial harmonic spinors. For β = 0,

β = 2, s = 0 but Mβ has infinite volume. Since a non-compact manifold of infinite

volume admits no L2 covariantly constant spinors, the conclusion is unchanged.

Consider now /DA, the Dirac operator twisted by a connection A with curvature

F = dA, and the corresponding generalised Lichnerowicz’s formula,

/D
2
Aψ = △ψ +

s

4
ψ +

1

2
Fµνγµγνψ. (54)

If F is self-dual, the last term of (54) vanishes when ψ is a right-handed spinor. Hence

Mβ admits no non-trivial L2 right-handed harmonic spinors, that is, the kernel of T†
A is

trivial.
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As we have just seen, it is necessary to twist the Dirac operator in order to have

non-trivial harmonic spinors. To get an interesting problem, the connection A by which

we twist /D should not be arbitrary, but related to the geometry of Mβ . Since Mβ is

homeomorphic to C
2, its second de Rham cohomology group is trivial. However, as /DA

involves the metric gβ, harmonic, spherically symmetric L2 forms are natural candidates.

The easiest way to find harmonic forms on Mβ is to look for closed self-dual forms.

Self-duality is a conformally invariant condition, so self-dual forms on hTN are also

self-dual on Mβ. From (13), (48) we find

A1 = A2 = exp

(

r

βL
(1− β)

)

(

er/L − 1
)

, (55)

A3 = 1− β

er/L + β − 1
=
c2hTN

βL
. (56)

The curvatures dA1, dA2 are not L2 with respect to ghTN, hence, by the conformal

invariance of the Hodge operator in middle dimension, they are not L2 with respect to

gβ either. Instead, the self-dual 2-form

F3 = dA3 =
β

L

exp(r/L)dr ∧ η3
(exp(r/L) + β − 1)2

− (exp(r/L)− 1) η1 ∧ η2
exp(r/L) + β − 1

(57)

is L2 and exact, but not necessarily L2-exact as A3 is not L2 with respect to either ghTN

or gβ .

It is interesting to look at what F3 becomes in the special cases β = 0, 1, 2. For

β = 1, making the substitution (41), we have

F3|β=1 =
1

8L2







v
(

1 + v2

16L2

)2 dv ∧ η3 −
v2

2
(

1 + v2

16L2

) η1 ∧ η2






. (58)

This is the Kähler form of the FS metric, and the unique (up to a multiplicative constant)

harmonic 2-form on P 2(C).

For β = 2, making the substitution (43), we have

F3|β=2 = −4L2

w2

(

2

w
dw ∧ η3 + η1 ∧ η2

)

. (59)

This 2-form is invariant under ψ → ψ + 2π, hence descends to the unique L2 harmonic

form on EH [24].

In the limit β → 0, making the substitution (45), we have

lim
β→0

F3|r=βu = − u

u+ L
η1 ∧ η2 + L

(L+ u)2
du ∧ η3 = d

(

u

u+ L
η3
)

. (60)

This is the unique (up to a multiplicative constant) L2 harmonic 2-form on TN [24]. We

conjecture that F3 is the unique L2 harmonic form on Mβ for all β ∈ [0, 2].

11



Since Mβ is topologically trivial, the Abelian connection A takes value in the Lie

algebra of R, rather than that of U(1). Consider now, for β ∈ (0, 2], the conformal

compactification P 2
β (C) of Mβ . The form F3 is now topologically non-trivial: Since the

self-intersection number of S2
∞ in P 2(C) is one [6] and

∫

S2
∞

F3 = −4π, (61)

−F3/(4π) is the Poincaré dual of the boundary 2-sphere S2
∞. For p ∈ Z, i p2 A3 η3 can be

interpreted as a U(1) connection with first Chern number −p.
In the case β = 0, the TN metric g0 does not extend to P 2(C). Instead, P 2(C) arises

as the Hausel-Hunsicker-Mazzeo compactification of TN, a topological compactification

arising in the study of the harmonic L2 cohomology of gravitational instantons [20, 14].

In the next Section, we will explicitly find harmonic spinors for the Dirac operator

on Mβ twisted by the connection

A =
p

2
A3 η3 =

p

2

η3
βLV

, (62)

where p ∈ R is a constant having the physical interpretation of the spinor charge.

5 Harmonic Spinors

We are now going to explicitly solve the equation /DAψ = 0 on Mβ for A given by (62).

Since gβ is bi-axial, that is a = b⇒ A = B, and only A(E3) 6= 0, (28), (29) become

TA = i

[(

∂r
f

+
ȧ

a
+

ċ

2c

)

1+BA

]

, (63)

T
†
A = i

[(

∂r
f

+
ȧ

a
+

ċ

2c

)

1−BA

]

, (64)

BA = i

(

D3/c X−/a
X+/a −D3/c

)

+

(

A

a
+
C

2c

)

1, where X± = X1 ± iX2. (65)

We now substitute

a = Λ ahTN, c = Λ chTN, f = Λ fhTN, A =
chTN

2ahTN
, C = 1− c2hTN

2a2hTN

, (66)

D3 = X3 + iA(X3) = X3 +
ip

2

1

βLV
, (67)

where ahTN, chTN, fhTN are given by (48) and Λ by (38). Setting

λ =
[

2LV sinh
(

r
2L

)]−1
, p̃ = p(βLV )−1, (68)

we obtain BA = (
√
V λ/2Λ)PA, with

PA =

(

λ−1(2iX3 − p̃) 2iX−

2iX+ −λ−1(2iX3 − p̃)

)

+

(

λ2 + 2

2λ

)

1. (69)
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5.1 The Dirac Operator on the Squashed 3-sphere

It is worth pausing to consider the eigenvectors of PA, which will be needed in Section 5.3

to calculate the index of /DA via the APS index theorem. The operator PA is essentially

the twisted Dirac operator on the squashed 3-sphere, which has been considered in [34].

Its non-twisted version, which can be obtained setting p̃ = 0, has been studied in [23].

Other useful references include [32, 27, 28]. In order to make the paper self-contained,

we give a short treatment here.

Because of the spherical symmetry of the problem, the operators /DA, PA commute

with the scalar Laplacian on the round 3-sphere

△S3 = −(X2
1 +X2

2 +X2
3 ), (70)

hence we can restrict PA to an eigenspace of △S3 . The eigenvectors of △S3
are given

by the irreducible representations Vj ⊗ Vj of sl(2,C) ⊕ sl(2,C), where 2j ∈ Z and Vj
is the irreducible representation of sl(2,C) of dimension 2j + 1. We use the shorthand

notation |j,m,m′〉 for the element |j,m〉 ⊗ |j,m′〉 ∈ Vj ⊗ Vj. Let

{|j,m,m′〉 : 2m ∈ Z, 2m′ ∈ Z, −j ≤ m ≤ j, −j ≤ m′ ≤ j} (71)

be a basis of Vj ⊗Vj consisting of simultaneous eigenvectors of △S3
and iX3. The action

of △S3 , iX3, iX± on |j,m,m′〉 is given by

△S3 |j,m,m′〉 = j(j + 1)|j,m,m′〉, iX3|j,m,m′〉 = m|j,m,m′〉,

iX+|j,m,m′〉 =
{

√

(j −m)(j +m+ 1)|j,m + 1,m′〉 −j ≤ m < j,

0 m = j,

iX−|j,m,m′〉 =
{

√

(j +m)(j −m+ 1)|j,m − 1,m′〉 −j < m ≤ j,

0 m = −j.

(72)

Take the ansatz υ = (C1|j,m,m′〉, C2|j,m+1,m′〉)T , with C1, C2 constants. Acting

with PA on υ we find, for −j ≤ m ≤ j − 1,





[

2C2

C1

√

(j −m)(j +m+ 1) + 1
2λ

(

2(2m− p̃) + 2 + λ2
)

]

C1|j,m,m′〉
[

2C1

C2

√

(j −m)(j +m+ 1) + 1
2λ

(

−2(2m+ 2− p̃) + λ2 + 2
)

]

C2|j,m + 1,m′〉



 ,

hence υ is an eigenvector provided that

C1

C2
=

1

λ

[

2m+ 1− p̃±
√

(2m+ 1− p̃)2 + 4λ2(j −m)(j +m+ 1)

2
√

(j −m)(j +m+ 1)

]

. (73)

Therefore, for −j ≤ m ≤ j − 1, PA has eigenvalues

λ

2
± 1

λ

√

(2m+ 1− p̃)2 + 4λ2(j −m)(j +m+ 1). (74)
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For m = j,

PA

(

|j, j,m′〉
0

)

=

[

2j − p̃

λ
+
λ2 + 2

2λ

](

|j, j,m′〉
0

)

, (75)

hence the eigenvalue is
2j + 1− p̃

λ
+
λ

2
. (76)

For m = −j − 1,

PA

(

0
|j,−j,m′〉

)

=

[

2j + p̃

λ
+
λ2 + 2

2λ

](

0
|j,−j,m′〉

)

. (77)

In summary, the eigenvectors and eigenvalues of PA are

Eigenvector Eigenvalue

(

C1|j,m,m′〉
C2|j,m+ 1,m′〉

)

λ

2
± 1

λ

√

(2m+ 1− p̃)2 + 4λ2(j −m)(j +m+ 1), −j ≤ m ≤ j − 1

(

0
|j,−j,m′〉

)

λ

2
+

1

λ
(2j + 1 + p̃), m = −j − 1

(

|j, j,m′〉
0

)

λ

2
+

1

λ
(2j + 1− p̃), m = j

with C1/C2 satisfying (73). All the eigenvalues have multiplicity 2j+1 coming from the

“right” sl(2,C) representation which has been hidden in the notation.

To examine the large r behaviour of the eigenvalues of PA we set

µ = β exp
(

− r

2L

)

. (78)

Since λ = µ+O(µ3), p̃ = p+O(µ2), we obtain

Eigenvector Eigenvalue

(

C̃1|j,m,m′〉
C̃2|j,m+ 1,m′〉

)

± 1

µ
|2m+ 1− p|+O(µ), −j ≤ m ≤ j − 1, p 6= 2m+ 1

(79)

± 2
√

(j −m)(j +m+ 1) +O(µ), −j ≤ m ≤ j − 1, p = 2m+ 1

(

0
|j,−j,m′〉

)

1

µ
(2j + 1 + p) +O(µ), m = −j − 1

(80)
(

|j, j,m′〉
0

)

1

µ
(2j + 1− p) +O(µ), m = j

(81)
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with C̃1, C̃2 constants satisfying the relation

C̃1

C̃2

=







±1 +O(µ) if p = 2m+ 1,

1
µ

(

2m+1−p±|2m+1−p|

2
√

(j−m)(j+m+1)

)

+O(µ) otherwise.
(82)

Note that

BA =
β

4L
PA +O(µ2), (83)

hence in the limit µ→ 0 the eigenvalues of PA and BA differ by an inessential constant

rescaling.

5.2 Explicit Determination of the Harmonic Spinors

Let us go back to solving the equation /DAψ = 0. By Equation (27), writing

ψ =

(

Ψ
Φ

)

, (84)

with Ψ,Φ 2-component Weyl spinors, the equation /DAψ = 0 is equivalent to

T
†
AΦ = 0 = TAΨ. (85)

As shown in Section 4, T†
A has trivial kernel, hence we set Φ = 0. Write

Ψ =

(

K1

K2

)

h(r) |j,m,m′〉, (86)

with K1, K2 arbitrary constants, h a radial function to be determined below and

|j,m,m′〉 an eigenvector of the operator PA considered in Section 5.1.

Since

ȧ

a
+

ċ

2c
=

1

2LΛ
√
V

[

−LV
′

2V
− coth

( r

2L

)

+
3

2

(

(2− β) sinh
(

r
2L

)

+ β cosh
(

r
2L

)

(2− β) cosh
(

r
2L

)

+ β sinh
(

r
2L

)

)]

,

iBA =
1

4LΛ
√
V

iPA

sinh
(

r
2L

) ,

(87)

Equation (63) becomes

TA =
i

2LΛ
√
V

[(

−2L∂r −
LV ′

2V
− coth

( r

2L

)

+
3

2

(

(2− β) sinh
(

r
2L

)

+ β cosh
(

r
2L

)

(2− β) cosh
(

r
2L

)

+ β sinh
(

r
2L

)

))

1

+
PA

2 sinh
(

r
2L

)

]

.

(88)
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The equation TAΨ = 0 has non-trivial solutions only for

K2 = 0, X+|j,m,m′〉 = 0 ⇒ m = +j, (89)

or

K1 = 0, X−|j,m,m′〉 = 0 ⇒ m = −j. (90)

If K2 = 0, m = j, substituting in (88) the eigenvalue (76) of PA, given by

λ

2
+

2j + 1− p̃

λ
=

1

4LV sinh
(

r
2L

) + 2[(2j + 1)LV − p/β] sinh
( r

2L

)

, (91)

the equation TAΨ = 0 reduces to the ODE

−2Lh′ +

[

− LV ′

2V
− coth

( r

2L

)

+
3

2

(

(2− β) sinh
(

r
2L

)

+ β cosh
(

r
2L

)

(2− β) cosh
(

r
2L

)

+ β sinh
(

r
2L

)

)

+

+ (2j + 1)LV − p

β
+

1

8LV sinh2
(

r
2L

)

]

h = 0.

(92)

If K1 = 0, m = −j, one obtains the ODE (92) with p replaced by −p.
Equation (92) has solution

h = k
[1− exp(r/L)]j [1 + exp(r/L)− β]2

[exp(2r/L)− (1− β)2]1/2
exp

[

− r

4L

(

3 + 4j +
2

β
(p − 2j − 1)

)]

, (93)

with k an arbitrary constant.

For large r,

h ≃ exp
[

− r

4L

(

− 1 + (2/β)(p − 2j − 1)
)]

. (94)

Since asymptotically volβ ≃ exp(−r/L), the solution (93) is L2 if

2j + 1 < p+ β/2, (95)

and, as 2j + 1 ≥ 1, there are L2 harmonic spinors with m = j only if

p > 1− β/2 ≥ 0 ⇒ p > 0. (96)

For the only other possibility m = −j, one obtains instead the condition

2j + 1 < −p+ β/2, (97)

so there are L2 harmonic spinors with m = −j only if

p < −1 + β/2 ≤ 0 ⇒ p < 0. (98)
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Given p ∈ R, the total number of harmonic L2 spinors is obtained by summing the

multiplicity 2j + 1, coming from the allowed values for m′, of the solution (93) over all

the allowed values of j. Hence

dim (Ker(TA)) =

[|p|+β/2]
∑

2j+1=1

(2j + 1) =
1

2
([|p|+ β/2])([|p| + β/2] + 1), (99)

where [x] is the greatest integer strictly smaller than x.

In the TN limit r = βu, β → 0, taking k = (−1)jβ−j+1/2 k̃/(2
√
2) for k̃ a constant,

h→ k̃
ρj√
1 + ρ

exp

(

1 + 2j − p

2

)

, ρ = u/L, (100)

so we recover the result in [27].

5.3 The APS Index Theorem for Mβ

If (M,g) is a Riemannian oriented 4-manifold with boundary ∂M and /DA is the Dirac

operator twisted by a connection A with curvature F , by the Atiyah-Patodi-Singer

(APS) index theorem, see e.g. [13],

index( /DA) =
1

192π2

∫

M
Tr(Ω2) +

1

8π2

∫

M
F ∧ F − 1

192π2

∫

∂M
Tr (θ ∧ Ω)− 1

2
(η(0) + h).

(101)

Here Ω is the curvature of some connection on M , Tr(Ω2) = −Ωab ∧Ωab, θ is the second

fundamental form of ∂M and η(0) + h is a non-local boundary contribution depending

on the spectrum of the boundary Dirac operator. The first two terms are the usual bulk

contributions to the index, the third one is a local boundary contribution only arising

if g is not a product metric in a neighbourhood of ∂M [19]. The η-invariant is further

discussed in Appendix A. The operator /DA in (101) acts on L2 spinors satisfying certain

global boundary conditions to be discussed below.

In order to make use of (101), we consider the truncation

Mβ,r0 = {(r, θ, ψ, φ) ∈Mβ : r ≤ r0} (102)

of Mβ at some finite radius r0, a manifold with boundary

∂Mβ,r0 = {(r, θ, ψ, φ) ∈Mβ : r = r0}, (103)

and then take the limit r0 → ∞.

Taking F = dA, A given by (62), the volume element (49) and integrating from ∞
to 0 in radial integrals, for the bulk contributions we obtain

−1

2

∫

Mβ

Tr(Ω2) = 4π2(2 + β2), (104)

∫

Mβ

F ∧ F = 4π2 p2, (105)
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where to compute (104) one can use e.g. the curvature form (9) with b = a, B = A and

the values a, c, f , A, C of gβ given by (66).

Let g′ be a Riemannian metric on M which is a product metric in a neighbourhood

of ∂Mβ,r0 and which agrees with g on ∂Mβ,r0 , ω
′ the Levi-Civita connection associated

to g′. The 1-form θ can be computed as the difference [13]

θ = ω − ω′. (106)

We take

g′ = Λ2(r0)
[

a2hTN(r0)(η
2
1 + η22) + c2hTN(r0)η

2
3 + f2hTN(r0)dr

2
]

. (107)

After some computations, we find that the only non-vanishing components of θ are

θi4 = −exp(r/2L)
(

4− 5β + β2 + exp(r/L)(−4 + 3β)
)

ηi

2 (exp(2r/L)− (β − 1)2)
, i = 1, 2,

θ34 = −β
(

exp(3r/L) + exp(2r/L)(β − 3) + exp(r/L)(β − 1)(−3 + 2β)− (β − 1)2
)

η3

2 (exp(2r/L)− (β − 1)2) (exp(r/L) + β − 1)
.

(108)

The contribution from the boundary integral is then

lim
r0→∞

∫

∂Mβ,r0

Tr (θ ∧ Ω) = −8π2β2. (109)

The η-invariant only depends on the geometry of a large r hypersurface, and is

unaffected by a constant rescaling of the metric. By Equation (47), the metric induced

by gβ on a large r hypersurface is

4L2

β2
(

η21 + η22 + β2 exp(−r/L) η23
)

, (110)

hence the geometry is that of a squashed 3-sphere. The η-invariant for this geometry has

been considered in [23] for the non-twisted Dirac operator, and in [34] for the twisted

one. The result, which for completeness is also derived in Appendix A, is

η(0) + h = −1

6
+ p2 − [|p|]([|p|] + 1). (111)

Substituting (104), (105), (109), (111) in (101) we get, since Ker(T†
A) = 0,

index( /DA) = dim(Ker(TA))− dim(Ker(T†
A)) = dim(Ker(TA)) =

1

2
[|p|](|[p|] + 1).

(112)

Apparently, for β 6= 0 (112) is in disagreement with the result (99) obtained by

counting the explicit solutions. However, the disagreement only arises because we have
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not yet taken into account the boundary conditions of the APS index theorem. In fact,

in (101) /DA acts on L2 spinors subject to the non-local boundary conditions

〈〈υz ,Ψ〉〉 = 0 ∀z ≥ 0, (113)

〈〈υz,Φ〉〉 = 0 ∀z < 0, (114)

where (Ψ,Φ)T is an L2 harmonic spinor for the operator /DA on Mβ, υz is an eigenvector

of the boundary Dirac operator PA with eigenvalue z, and

〈〈υz,Ψ〉〉 = lim
r0→∞

∫

∂Mβ,r0

υ†z Ψ vol∂Mβ,r0

. (115)

As shown in Section 5.2, harmonic spinors are of the form (Ψ, 0)T , with Ψ ∝
(|j, j,m′〉, 0)T if p > 0, Ψ ∝ (0, |j,−j,m′〉)T if p < 0. Hence, (114) automatically holds,

but we need to impose (113). Since 〈j1,m1,m
′
1|j2,m2,m

′
2〉 ∝ δj1j2δm1m2

δm′

1
m′

2
, if p > 0

the only non-trivial condition is the orthogonality of Ψ to the asymptotic eigenvector

(|j, j,m′〉, 0)T of PA, see (81), when the corresponding eigenvalue is non-negative. This

is the case for

2j + 1− p ≥ 0. (116)

Similarly, if p < 0 we only need to impose the orthogonality of Ψ to the asymptotic

eigenvector (0, |j,−j,m′〉)T of PA when the corresponding eigenvalue is non-negative,

that is, see (80), for

2j + 1 + p ≥ 0. (117)

Therefore, the APS index theorem only counts L2 harmonic spinors for which 2j+1 <

|p|, in agreement with explicit counting of the solutions satisfying the same condition,

given by (99) with the sum only extending up to [|p|].
For β ∈ (0, 2], we can consider if our harmonic spinors extend to the compactification

P 2
β (C) of Mβ, which has the topology of P 2(C). The topology is now non-trivial, which

results in a quantisation condition on the spinor charge p [21],

p = k +
1

2
, k ∈ Z. (118)

Requiring the harmonic spinors (93) to extend to P 2
β (C), i.e. to have a finite limit as

r → ∞, we get the condition

2j + 1 ≤ p− β/2 = k + (1− β)/2. (119)

The number of harmonic spinors extending to the compactified manifold is therefore

⌊k+(1−β)/2⌋
∑

2j+1=1

(2j + 1) =

{

k(k + 1)/2 if β ∈ (0, 1],

k(k − 1)/2 if β ∈ (1, 2],
(120)

where ⌊·⌋ is the floor function.

19



For β = 1, P 2
β (C) is P

2(C) with the FS metric. The index theorem for the twisted

Dirac operator on a closed manifold can be obtained from (101) by dropping the bound-

ary terms. Using (104), (105) with β = 1, p = k + 1/2, we have

1

192π2

∫

P 2(C)
Tr(Ω2) +

1

8π2

∫

P 2(C)
F ∧ F = −1

8
+

1

2

(

k +
1

2

)2

=
k(k + 1)

2
, (121)

in agreement with (120), see also [21].

The isometry group of P 2(C) is SU(3), with SU(3)/Z3 acting effectively [18]. Finite

dimensional irreducible representations of SU(3) are classified by pairs (m1,m2) of non-

negative integers, with the representation (m1,m2) having dimension

(m1 + 1)(m2 + 1)(m1 +m2 + 2)/2. (122)

The group SU(3) has SU(2) × U(1) as a subgroup and harmonic spinors on P 2(C) of

charge p = k + 1/2, k ∈ Z, fall into the SU(3) representation (k − 1, 0) if p ≥ 3/2, the

representation (0, |k| − 2) if p ≤ −3/2. A detailed study of the spectrum of the twisted

Dirac operator on P 2(C) can be found in [12].

For β 6= 1, P 2
β (C) has an edge cone singularity of cone angle 2π β along S2

∞, hence

the index theorem for closed manifolds needs to be modified to take into account the

conical singularity. Such an extension has been considered in [4], where the following

result is proved: Let X be a spin oriented 4-manifold, Y be a smooth compact oriented

embedded surface, g an incomplete edge metric on X \ Y with cone angle 2π β along Y .

Then, for β ∈ (0, 1],

index( /D) =
1

192π2

∫

X
Tr(Ω2) +

1

24
(β2 − 1)[Y ]2, (123)

where [Y ] is the self-intersection number of Y in X.

Since P 2
β (C) is not spin, (123) does not apply. Nevertheless, let us take X = P 2

β (C),

Y = S2
∞ and calculate the obvious extension of (123) to a twisted Dirac complex,

1

192π2

∫

P 2

β
(C)

Tr(Ω2) +
1

8π2

∫

P 2

β
(C)

F ∧ F +
1

24
(β2 − 1)[S2

∞]2 =
k(k + 1)

2
, (124)

having used [S2
∞]2 = 1, (104) and (105) with p = k + 1/2. The result is in agreement

with (120) suggesting that, at least in this case, the extension of (123) to a twisted Dirac

operator is indeed given by (124). Note that (123) requires β ∈ (0, 1], in which case a

particular geometric Witt condition holds [4], and in fact (124) and (120) only agree for

β in this range.
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6 Conclusions

The main contribution of this paper is the explicit determination of all the harmonic

spinors on the 1-parameter family of Einstein metrics gβ , β ∈ [0, 2], defined on a manifold

with the topology of C2. Because of the high degree of symmetry of the problem, it has

been possible to describe harmonic spinors as eigenvectors of the twisted Dirac operator

on the squashed 3-sphere PA, with a radial part obeying the ODE (92).

The kernel of the non-twisted Dirac operator is trivial, but once the Dirac operator

is coupled to the geometrically preferred connection A (62) of strength p ∈ R, its kernel

decomposes as the direct sum of the irreducible SU(2) representations of dimension up

to [p + β/2]. A very similar behaviour is exhibited by harmonic spinors on the TN

manifold [27, 29], which are in fact recovered as the β → 0 limit of our solution (93).

For the special values 0, 1, 2 of the parameter β, the curvature F = dA is the unique

harmonic L2 form on Mβ . It would be interesting to know if such uniqueness holds for

all values of β.

We have compared the index of /DA as obtained by direct counting of the solutions

with the value obtained via the Atiyah-Patodi-Singer (APS) index theorem. Of course,

the two results have to agree, but to show that they do the subtle boundary conditions

of the APS index theorem need to be taken into full account — this is often not the case

as in typical applications to non-compact manifolds, the spaces under consideration have

infinite volume and the APS boundary conditions are trivially satisfied by L2 spinors.

We have also considered the extension of our solutions to the compactification P 2
β (C)

of Mβ, a topologically non-trivial manifold homeomorphic to P 2(C). For β = 1, P 2
β (C)

is P 2(C) with the smooth FS metric and our results are in agreement with those in the

literature. For all the other values of β in (0, 2), the metric gβ on Mβ extends to P 2
β (C)

as an edge-cone metric and our analysis contributes to the understanding of the Dirac

operator in this type of geometries.
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A The η-invariant

LetM be a Riemannian 4-manifold with boundary, /DA the Dirac operator onM twisted

by a connection A, PA the Dirac operator induced on ∂M . The η-invariant is the analytic

continuation to s = 0 of the meromorphic function η(s) defined for ℜ(s) > 2 by

η(s) =
∑

z>0

1

zs
−
∑

z<0

1

(−z)s , (125)

where the sum is taken over the non-zero eigenvalues z of the boundary Dirac operator

PA [8, 34]. We also define

h = dim (Ker(PA)) . (126)

In our case, M = Mβ,r0 and the eigenvalues of PA are given by (79)–(81). The

eigenvalues (79) are non-vanishing and come in pairs of elements with opposite sign,

thus giving a net zero contribution to the η-invariant. The non-vanishing contribution

comes from (80), (81). The η-invariant is unchanged under a constant rescaling of all

the eigenvalues, hence we can multiply (80), (81) by µ before taking the limit µ → 0,

obtaining
{

2j + 1− p if m = j,

2j + 1 + p if m = −j − 1,
(127)

Writing d for the multiplicity 2j +1 of each eigenvalue, and assuming for notational

simplicity p > 0 (the case p < 0 is dealt with by replacing p with |p|), we have

η(s) =

∞
∑

d=1

d

(d+ p)s
+

∞
∑

d=[p]+1
d6=p

d

(d− p)s
−

[p]
∑

d=1

d

(p− d)s

=

∞
∑

d=1

d

(d+ p)s
+

∞
∑

d=1
d6=p

d

(d− p)s
−

[p]
∑

d=1

d

(d− p)s
−

[p]
∑

d=1

d

(p − d)s
.

(128)

The condition d 6= p is trivially satisfied for p /∈ N, that is χN(p) = 0 with χN(p) the

characteristic function of N. The last two sums are finite and their value for s = 0 is

−2

[p]
∑

d=1

d = −[p]([p] + 1). (129)

We rewrite the first two terms of (128) as follows,

∞
∑

d=1

d

(d+ p)s
=

∞
∑

d=1

1

ds−1

(

1 +
p

d

)−s
=

∞
∑

d=1

1

ds−1

(

1− s
p

d
+

1

2
s(s+ 1)

(p

d

)2
+ · · ·

)

=

= ζ(s− 1)− s p ζ(s) +
1

2
s(s+ 1)p2ζ(s+ 1) + · · · , (130)
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∞
∑

d=1
d6=p

d

(d− p)s
=

∞
∑

d=1
d6=p

1

ds−1

(

1 + s
p

d
+

1

2
s(s+ 1)

(p

d

)2
+ · · ·

)

= ζ(s− 1)− χN(p) p
1−s+

+ s p[ζ(s)− χN(p) p
−s] +

1

2
s(s+ 1)p2[ζ(s+ 1)− χN(p) p

−(s+1)] + · · · (131)

where ζ is the Riemann zeta function. Summing (130) and (131) gives

2ζ(s− 1)− χN(p) p
1−s + s(s+ 1)p2ζ(s+ 1) + · · · s→0−−−→ −1

6
+ p2 − χN(p) p, (132)

as ζ(−1) = −1/12, lims→0 s ζ(s + 1) = 1, and all the omitted terms in (132) vanish in

the limit s→ 0.

From (127) we see that, for p > 0, PA has zero as an eigenvalue if and only if m = j,

p = 2j+1 ∈ N, in which case the eigenvalue multiplicity is 2j+1 = p. Hence h = χN(p) p.

An entirely similar result holds for p < 0, hence for any p ∈ R \ {0}

η(0) + h = −1

6
+ p2 − [|p|]([|p|] + 1). (133)

B Left- and Right-invariant Vector Fields on SU(2)

For convenience, we summarise here some facts about left- and right-invariant 1-forms

and vector fields on SU(2). We follow the conventions in [27]. Let z1, z2 denote complex

coordinates in C
2. An element h ∈ SU(2) can be written as

h =

(

z1 −z̄2
z2 z̄1

)

(134)

with the constraint |z1|2 + |z2|2 = 1. In terms of the Euler angles θ ∈ [0, π], φ ∈ [0, 2π),

ψ ∈ [0, 4π) we can write

z1 = cos

(

θ

2

)

e−
i
2
(ψ+φ),

z2 = sin

(

θ

2

)

e−
i
2
(ψ−φ).

(135)

We take the basis {t1, t2, t3} of su(2), with ti = − i
2σi, σi the i-th Pauli matrix. The

chosen basis is orthonormal with respect to the product 〈A,B〉su(2) = −2Tr(AB). Note

that h can be written as

h = et3 φet2 θet3 ψ. (136)

We can decompose the left-invariant Maurer-Cartan 1-form Θ as

Θ = h−1dh = η1 t1 + η2 t2 + η3 t3. (137)
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The left-invariant 1-forms {ηi} are then given by

η1 = sinψ dθ − cosψ sin θ dφ,

η2 = cosψ dθ + sinψ sin θ dφ,

η3 = dψ + cos θ dφ.

(138)

They satisfy the relation

dηi = −1

2
ǫijk ηj ∧ ηk. (139)

The dual left-invariant vector fields are

X1 = sinψ ∂θ +
cosψ

sin θ
(cos θ ∂ψ − ∂φ) ,

X2 = cosψ ∂θ −
sinψ

sin θ
(cos θ ∂ψ − ∂φ) ,

X3 = ∂ψ.

(140)

Similarly for the right-invariant Maurer-Cartan 1-form ζ we have

ζ = dhh−1 = ζ1 t1 + ζ2 t2 + ζ3 t3, (141)

with

ζ1 = cosφ sin θ dψ − sinφdθ,

ζ2 = sinφ sin θ dψ + cosφdθ,

ζ3 = dφ+ cos θ dψ.

(142)

The dual right-invariant vector fields are

Z1 = − sinφ∂θ −
cosφ

sin θ
(cos θ ∂φ − ∂ψ) ,

Z2 = cosφ∂θ −
sinφ

sin θ
(cos θ ∂φ − ∂ψ) ,

Z3 = ∂φ.

(143)

Note that the transformation (ψ, θ, φ) 7→ (−φ,−θ,−ψ) maps (Xi, ηi) → (−Zi,−ζi).
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