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Abstract  1 

Aldosterone is the main mineralocorticoid hormone in humans and plays a key role in maintaining 2 

water and electrolyte homeostasis. Primary aldosteronism (PA), characterized by autonomous 3 

aldosterone overproduction by the adrenal glands, affects 6% of the general hypertensive population 4 

and can be either sporadic or familial. Aldosterone producing adenoma (APA) and bilateral adrenal 5 

hyperplasia (BAH) are the two most frequent subtypes of sporadic PA, and 4 forms of familial 6 

hyperaldosteronism (FH-I to FH-IV) have been identified. Over the last six years the introduction of 7 

next-generation sequencing has significantly improved our understanding of the molecular 8 

mechanisms responsible for autonomous aldosterone overproduction in both sporadic and familial 9 

PA. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D), differently 10 

implicated in intracellular ion homeostasis, have been identified in nearly 60% of the sporadic APAs. 11 

Germline mutations in KCNJ5 and CACNA1H cause FH-III and FH-IV, respectively, while germline 12 

mutations in CACNA1D cause the rare PASNA syndrome, featuring primary aldosteronism seizures 13 

and neurological abnormalities. Further studies are warranted to identify the molecular mechanisms 14 

underlying BAH and FH-II, the most common forms of sporadic and familial PA whose molecular 15 

basis has yet to be uncovered.  16 

 17 

Introduction 18 

Aldosterone is the main mineralocorticoid hormone in humans and, under physiological conditions, 19 

its secretion is tightly regulated by angiotensin II, extracellular potassium and adrenocorticotrophin 20 

(ACTH) (1).  Its principal site of action is the distal nephron, where it promotes sodium retention and 21 

potassium excretion, playing a key role in maintaining water and electrolyte homeostasis. The 22 

autonomous aldosterone overproduction by one or both adrenal glands is a clinical syndrome known 23 

as primary aldosteronism (PA), that can affect up to 6% of the general hypertensive population (2). 24 
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Its main clinical and biochemical features are hypertension, hypokalaemia and elevated aldosterone-1 

plasma renin activity ratio (ARR); moreover, PA patients display an increased risk of cardiovascular 2 

events and metabolic alterations compared to patients affected by essential hypertension and similar 3 

risk profile (3). While the vast majority of affected patients displays a sporadic form, either due to 4 

aldosterone producing adenoma (APA) or bilateral adrenal hyperplasia (BAH), 1-6% of cases carry 5 

a familial disease (4). Subtype diagnosis is important because patients with an APA are biochemically 6 

cured in 94% of cases with adrenalectomy (5) and many patients with familial disease can avoid 7 

further diagnostic work-up including adrenal vein sampling (6). Four forms of familial 8 

hyperaldosteronism (FH) have been reported so far (FH-I to FH-IV) (7), together with the PASNA 9 

(PA, seizures, neurologic abnormalities) syndrome, which is a genetic disease, but not a familial form 10 

of PA (8). Until recently, FH-I (or GRA, glucocorticoid remediable aldosteronism) was the only 11 

subtype of PA whose genetic basis was clearly elucidated (9). Over the last few years, the 12 

development and wide application of next generation sequencing (NGS) (7), together with the 13 

development of monoclonal antibodies directed towards aldosterone synthase (CYP11B2) (10), 14 

significantly contributed to our understanding of the molecular mechanisms underlying autonomous 15 

aldosterone overproduction in both sporadic and familial PA. This review will provide an overview 16 

of the most recent genetic acquisitions in the field of PA. 17 

 18 

GENETICS OF FAMILIAL HYPERALDOSTERONISM 19 

Familial hyperaldosteronism type I 20 

FH-I or GRA (OMIM # 103900) is transmitted as an autosomal dominant disorder and it is the most 21 

common form of monogenic arterial hypertension (11). This condition is known since 1966, when 22 

Sutherland et al. reported on a father and son displaying the clinical features of PA (hypertension, 23 

hypokalaemia and suppressed PRA) that could be relieved by the administration of the glucocorticoid 24 
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dexamethasone (12). Until 1990, less than 100 cases were described (Supplemental Table S1): since 1 

the diagnosis was clinical (based on dexamethasone suppression of aldosterone overproduction), the 2 

majority of the affected patients displayed a florid PA phenotype, with hypertension and 3 

hypokalaemia. 4 

The molecular basis of GRA was elucidated by Lifton et al. in 1992 (9) and resides in the chimeric 5 

CYP11B1/CYP11B2 gene, resulting from a non-homologous crossing over on chromosome 8q24.3 6 

between CYP11B1 gene encoding 11beta-hydroxylase and CYP11B2, encoding aldosterone synthase. 7 

The result is a chimeric enzyme, that can synthesize aldosterone under ACTH control, since it 8 

contains CYP11B1 regulatory sequences at 5’ and coding sequences from CYP11B2 at the 3′ 9 

(Figure 1). Two residues (Gly288 and Ala320, Figure 1) are necessary to retain aldosterone 10 

synthase activity and therefore in all the chimeric genes causing FH-I reported so far, the 11 

recombination break-point is comprised between CYP11B2 intron 2 and exon 4 (13). While 12 

aldosterone synthase expression is limited to the outer zona glomerulosa, the chimeric enzyme is 13 

expressed throughout the entire adrenal cortex.  In the adrenal zona fasciculata, cortisol is available 14 

as substrate and the chimeric enzyme can catalyse its C-18 hydroxylation and C-18 oxidation, 15 

resulting in the production of the so called “hybrid steroids”, 18OH-cortisol and 18-oxo cortisol (11). 16 

The hybrid steroids display weak mineralocorticoid activity (14, 15) but are a hallmark of the disease 17 

and, until the description of the chimeric gene, have been regarded as an essential diagnostic feature. 18 

After the identification of the chimeric gene, and the subsequent introduction of the long­range 19 

polymerase chain reaction strategy for the amplification of the hybrid gene (16) the clinical 20 

spectrum of FH-I dramatically changed (Supplemental Table S1). Large kindreds were available for 21 

the easy and relatively inexpensive genetic testing, allowing to diagnose the disease in patients with 22 

mild hypertension or even in normotensive subjects (17) indicating that the disease can display a 23 

variable clinical phenotype. Moreover, a retrospective report from the International Registry for GRA 24 

showed that hypokalaemia is infrequent and affected patients display an elevated prevalence of 25 
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cerebrovascular events at young age (mainly haemorrhagic stroke, as a result of intracranial 1 

aneurysms rupture) (18) (Supplemental Table S1).  2 

According to the Endocrine Society guideline, genetic testing for FH-I is appropriate in PA patients 3 

with a family history and/or early onset (< 20 years) of PA or in case of strokes at a young age (19). 4 

Once the diagnosis has been established, a therapy with low doses of an exogenous glucocorticoid 5 

(such as dexamethasone 0.125– 0.25 mg/day) should be started to suppress ACTH secretion; to avoid 6 

glucocorticoid-related adverse effects, adding a mineralocorticoid receptor antagonist should be 7 

considered (19). 8 

Familial hyperaldosteronism type II 9 

Familial hyperaldosteronism type II was reported for the first time as a novel, not glucocorticoid 10 

remediable, form of PA in Australia in 1991 (20). It is transmitted with an autosomal dominant pattern 11 

in most of the families, but the mode of inheritance is less certain in others. It is the most common 12 

form of FH (with a prevalence of 5% among patients with PA) (4) and can be due to either an APA 13 

or a BAH. There are no clinical or biochemical characteristics that allow to distinguish patients 14 

affected by FH-II from the ones affected by a sporadic form of PA (4). A linkage with 7p22 was 15 

reported in some kindreds from 3 continents (21), but notably some families thought to be affected 16 

by FH-II where subsequently re-classified as FH-III (22). There is now general agreement that FH-II 17 

might be a heterogeneous group of genetic forms of PA whose molecular basis have yet to be 18 

elucidated.  19 

The diagnosis is made when at least two first-degree members of the same family are affected by PA, 20 

and the other forms of FH have been excluded through avalaible genetic tests (19). Due to its 21 

relatively high prevalence, the Endocrine Society guideline recommend that all hypertensive first-22 

degree relatives of patients with PA should undergo screening test (19).  23 

Familial hyperaldosteronism type III  24 
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The first case of FH-III dates back to 1959 (23), but the disorder was recognized as a distinct clinical 1 

entity with a peculiar clinical and biochemical phenotype solely in 2008 (24). The index case was a 2 

young boy affected by polyuria, polydipsia, nicturia, headache and severe hypertension (known since 3 

the age of 5) (23). PA was diagnosed on the basis of hypertension (maximum recorded reading of 4 

300/190 mmHg), hypokalaemia (2.1-3.0 mEq/L), metabolic alkalosis and elevated average urinary 5 

aldosterone (67 μg per day, normal range 1–8 μg per day) (23) and at the age of 9 he underwent 6 

bilateral adrenalectomy. At histopathological examination, the removed adrenals were bilaterally 7 

enlarged, with nodular hyperplasia mainly of the zona fasciculata. The two daughters of the index 8 

case presented, at the age of 7 and 4 years, with a similar clinical and biochemical phenotype 9 

characterized by resistant hypertension, severe hypokalaemia (1.8-1.9 mEq/L) and elevated plasma 10 

aldosterone levels (137-185 ng/dL) despite suppressed plasma renin activity (0.2-0.3 ng/mL/h) (24). 11 

Notably, both girls displayed extremely elevated levels of urinary hybrid steroids and FH-I was 12 

suspected, but two dexamethasone suppression tests did not confirm the diagnosis. Surprisingly, not 13 

only blood pressure and aldosterone failed to be suppressed by dexamethasone administration, but 14 

showed an unexpected and paradoxical increase (24). Similarly, in both patients, cortisol levels were 15 

not suppressed after dexamethasone administration, indicating a complete deregulation of adrenal 16 

cortex functioning. As for the father, bilateral adrenalectomy was required to obtain normalization of 17 

blood pressure and plasma potassium. In both cases adrenal glands were markedly enlarged, with a 18 

complete loss of normal zonation (24, 25). Immunohistochemical staining and immunofluorescence 19 

studies for the main enzymes involved in cortisol and aldosterone biosynthesis revealed that 20 

aldosterone synthase is expressed throughout the entire adrenal cortex and frequently co-expressed 21 

with CYP17 (17α-hydroxylase), explaining the abnormally high production of hybrid steroids in these 22 

patients (25). 23 

FH-III is transmitted as an autosomal dominant disease and its molecular basis was uncovered by 24 

Choi et al. in 2011 (26). Through NGS technology, the authors identified 2 recurrent heterozygous 25 

KCNJ5 somatic mutations (p.Gly151Arg and p.Leu168Arg) in a cohort of 22 sporadic APAs (26). 26 
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The experimental evidences obtained from sporadic adenomas suggested that inherited mutations in 1 

KCNJ5 could cause FH-III and targeted sequencing of the gene revealed a germline p.Thr158Ala 2 

mutation that co-segregated with the disease (26). KCNJ5 is located on chromosome 11q24 and 3 

encodes the G protein-activated inward rectifier potassium channel 4, (GIRK4), which is expressed 4 

in adrenal zona glomerulosa (26, 27), where it contributes to maintain the cell membrane in a 5 

hyperpolarized state. The mutations disrupt the selectivity filter of the channel and are responsible 6 

for loss of ion selectivity, Na+ entry and cell membrane depolarization with subsequent opening of 7 

the voltage gated Ca2+ channels (26, 28). The increase in intracellular Ca2+ activates the signaling 8 

cascade that leads to CYP11B2 expression and autonomous aldosterone overproduction (27). 9 

FH-III (OMIM # 613677) is a rare condition, affecting <1% of patients with PA (7). To date, 6 KCNJ5 10 

germline mutations associated with FH-III have been reported (Figure 2), for a total of 12 families 11 

and 22 affected family members (29). Notably, none of the further reported cases displayed the 12 

peculiar hormonal phenotype described by Geller et al. (24). The majority of the patients presented 13 

with an early onset and severe form of PA, requiring bilateral adrenalectomy to control hypertension 14 

and hypokalaemia. However, the carriers of the p.Gly151Glu mutation (7 patients form 3 different 15 

families) (22, 30) displayed a favourable disease progress: only two of them underwent 16 

adrenalectomy (one had bilateral adrenalectomy and the other had 90% left adrenalectomy); none of 17 

the patients displayed adrenal hyperplasia at imaging. Similarly, the patient carrying the p.Tyr152Cys 18 

mutation displayed a less severe phenotype (31). Interestingly, a case of FH-III (due to the KCNJ5 19 

p.Glu145Gln mutation) presenting with severe PA and tytpical Cushing’s syndrome has recently been 20 

reported in a Chinese boy (32).  In vitro electrophysiological studies showed that the p.Gly151Glu 21 

substitution was associated with a particularly severe impairment of the channel functioning, with 22 

massive Na+ entry, osmotic shock and cell death. It has been postulated that this could at least partially 23 

account for the mild clinical presentation and the lack of adrenal hyperplasia observed in these 24 

patients (30). 25 
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According to the Endocrine Society guideline, testing for germline mutations in KCNJ5 causing FH-1 

III is appropriate in very young patients with PA (19).  2 

Familial hyperaldosteronism type IV 3 

FH-IV is a familial form of primary aldosteronism (OMIM #617027) caused by germline mutations 4 

in the CACNA1H gene located on chromosome 16p13 (33) (Figure 3, panel A) encoding the pore-5 

forming α subunit of a T-type calcium channel, Cav3.2. CACNA1H is the second most expressed 6 

Ca2+ channel gene in the adrenal zona glomerulosa (8, 26), where it is activated at small depolarizing 7 

potentials (34). Through NGS analysis, a novel germline CACNA1H mutation (p.Met1549Val) was 8 

identified in 5 out of 40 unrelated patients affected by hypertension and PA in childhood (33). The 9 

clinical presentation of the index cases was uniform, without any distinctive clinical or biochemical 10 

feature and normal appearing adrenal glands at CT scanning (33). Target sequencing of the 11 

CACNA1H gene in the family members of the index cases, allowed to identify 5 additional subjects 12 

carrying the p.Met1549Val mutation. Of note, two mutation carriers did not receive a diagnosis of 13 

early onset hypertension and were normotensives as adults, suggesting an incomplete penetrance (33).  14 

The in vitro electrophysiological characterization revealed that the p.Met1549Val CACNA1H 15 

displays loss of normal inactivation together with a shift of activation to more hyperpolarized 16 

potentials (33), alterations that are very likely to cause an increase in intracellular Ca2+ concentration 17 

in adrenal zona glomerulosa cells. To elucitade the role of the mutation in autonomous aldosterone 18 

overproduction, the p.Met1549Val mutant channel was expressed in HAC15 adrenocortical cells, 19 

resulting in a 7.1-fold increase in CYP11B2 transcription and a 3.7-fold increase in aldosterone 20 

production compared to the cells expressing the wild-type channel (35). 21 

Subsequently, four additional germline CACNA1H mutations were identified in patients with 22 

PA (p.Met1549Ile, p.Ser196Leu, p.Pro2083Leu and p.Val1951Glu) (36). The p.Met1549Ile 23 

substitution was a de novo event identified in a sporadic PA patient and both p.Ser196Leu and 24 

p.Pro2083Leu mutations were detected in pairs of brothers/sisters affected by PA. Interestingly, the 25 
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p.Val1951Glu was identified in a patient affected by apparently sporadic APA, who was cured by 1 

unilateral adrenalectomy (36). These data indicate that CACNA1H might represent a susceptibility 2 

gene for PA development that could present with a wide range of clinical phenotypes (36).  3 

PASNA syndrome 4 

PASNA (primary aldosteronism with seizures and neurologic abnormalities, OMIM #615474) is a 5 

clinical syndrome characterized by primary aldosteronism and neurological symptoms. It is caused 6 

by gain-of-function mutations in the CACNA1D gene located on the chromosome 3p14.3 (8) (Figure 7 

3, panel B), coding for the α1D subunit of a L-type voltage gated calcium channel (Cav 1.3), which 8 

is expressed in adrenal zona glomerulosa cells. Electrophysiological in vitro studies, showed that the 9 

mutations cause channel activation at less depolarized potentials and altered channel inactivation, 10 

with subsequent abnormal calcium signalling (8). 11 

Two paediatric patients affected by PASNA syndrome due to de novo CACNA1D germline mutations 12 

(p.Gly403Asp and p.Ile770Met) have been reported (8). The index cases presented with early onset 13 

severe hypertension, hypokalaemia and neurological manifestations, including seizures and cerebral 14 

palsy. In one of the two patients, blood pressure was successfully controlled by the calcium channel 15 

blocker amlodipine, raising the possibility that calcium channel blockers might represent a specific 16 

treatment for individuals affected by APAs carrying a CACNA1D somatic mutation. 17 

Interestingly, a new missense CACNA1D germline mutation (p.Val104Leu) was identified in a patient 18 

affected by autism and epilepsy with a phenotype partially overlapping with that observed in patients 19 

with PASNA syndrome (37). 20 

 21 

GENETIC OF SPORADIC PRIMARY ALDOSTERONISM 22 

Until recently, genetic studies on sporadic PA were mainly focused on genetic variants potentially 23 

able to increase the susceptibility to the disease or affect the clinical phenotype, including CYP11B2, 24 
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α-adducin and bradykinin B2 receptor polymorphisms (7). The introduction of NGS technology 1 

allowed the identification of aldosterone stimulating somatic mutations in a significant proportion of 2 

sporadic APAs (7).  3 

Germline mutations in sporadic PA 4 

While the molecular determinants of autonomous aldosterone overproduction have been at least 5 

partially unravelled, the molecular basis of bilateral hyperaldosteronism and adrenal cell proliferation 6 

(in both APA and BAH) are still poorly elucidated. It was postulated by Choi et al. (26) that the 7 

intracellular calcium influx induced by KCNJ5 mutations, other than driving aldosterone secretion, 8 

might promote cell proliferation. However, subsequent studies demonstrated that the expression of 9 

mutant GIRK4 has a negative effect on HAC15 adrenocortical cells growth (28) suggesting that a 10 

second hit might be necessary for APA formation (38). 11 

KCNJ5 sequencing in peripheral blood DNA from 251 patients affected by sporadic bilateral 12 

hyperaldosteronism revealed three heterozygous missense germline mutations. The mutations (p. 13 

p.Arg52His, p.Glu246Lys, and p.Gly247Arg) are not associated with FH-III and are not located in 14 

proximity of the selectivity filter of the channel (39). Electrophysiological studies conducted in 15 

Xenopus oocytes showed that the expression of both the p.Arg52His and p.Glu246Lys substitutions 16 

resulted in cell membrane depolarization, while the p.Gly247Arg mutation did not alter the resting 17 

potential (39).  18 

ARMC5 gene maps on 16p11 and encodes the armadillo repeat containing 5, whose function is 19 

currently unknown, but is likely to act as a tumor-suppressor gene. Somatic and germline mutations 20 

in ARMC5 are frequently found in macronodular adrenal hyperplasia and Cushing syndrome (40) and 21 

in a significant proportion of PA patients of African American descent (41). However, another study 22 

failed to confirm this association in patients of European ancestry (42). Similarly, a potential role of 23 

ARMC5 in FH-II has been recently ruled out (43). 24 
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KCNJ5 somatic mutations 1 

Following the seminal report by Choi et al. (26), several centres from four continents investigated the 2 

prevalence of KCNJ5 somatic mutations in APAs. In the largest study conducted in a Western 3 

population, comprising 474 adrenal adenomas collected through the European Network for the Study 4 

of Adrenal Tumours (ENS@T), the prevalence of KCNJ5 mutations resulted to be 38% (44), while 5 

the largest study conducted in East Asia reported, in a cohort of 168 samples, a 78% prevalence (45). 6 

According to a recent meta-analysis including 13 studies for a total of 1,636 patients, the overall 7 

prevalence of KCNJ5 mutations is 43%, with wide variation across centres (46). The prevalence 8 

appears to be consistently higher in East Asian populations compared to Western populations, but 9 

also in those centres where strict criteria for adrenal vein sampling interpretation were used (47). 10 

Sequencing analysis allowed to identify 15 further KCNJ5 somatic mutation associated with sporadic 11 

unilateral PA (48).  12 

Comprehensive clinical, biochemical and histopathological studies showed that the adenomas 13 

carrying KCNJ5 mutations are more prevalent in females than in males (46) and are associated with 14 

younger age at diagnosis and higher preoperative aldosterone levels (46).  Moreover, adenomas 15 

carrying KCNJ5 mutations express lower levels of aldosterone synthase compared to APAs carrying 16 

mutations in ATP1A1, ATP2B3 or CACNA1D and are composed mainly of zona fasciculata-like cells 17 

(49) expressing CYP17A1 (50). These characteristics might at least partially account for the high 18 

amount of hybrid steroids detected in APA patients carrying KCNJ5 mutations (51) and, considering 19 

the high prevalence of KCNJ5 mutations in the East Asian patients, explain the potential diagnostic 20 

value of 18-oxocortisol in subtype differentiation in this specific subpopulation (52). 21 

In vitro pharmacological studies showed that mutated GIRK4 exhibited a different pharmacological 22 

profile compared to the wild type, in particular the calcium channel blocker verapamil strongly 23 

inhibits the p.Leu168Arg mutant channel, suggesting a potential therapeutic use of this drug (53). 24 

Even more surprisingly, mutant GIRK4, but not the wild-type channel, is effectively inhibited by a 25 
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series of molecules belonging to the macrolide class of antibiotics and by synthetic derivatives lacking 1 

the antibiotic activity (54). In light of this recent finding, a murine model of PA due to a germline 2 

KNCJ5 mutation would be an extremely valuable tool for further pharmacological studies.   3 

ATP1A1 and ATP2B3 somatic mutations  4 

The application of the NGS technology to a series of sporadic KCNJ5 wild-type APAs led to the 5 

identification of four different somatic mutations affecting ATP1A1 (55, 56) and two different in-6 

frame deletions of ATP2B3 (56). ATP1A1 is located on chromosome 1p21 and encodes the 7 

sodium/potassium-transporting ATPase subunit alpha-1, while the ATB2B3 gene is located on 8 

chromosome Xq28 and encodes the plasma membrane calcium-transporting ATPase 3. The 9 

sodium/potassium ATPase exchanges three cytoplasmic sodium ions for two extracellular potassium 10 

ions against the concentration gradient thus maintaining the resting membrane potential and the 11 

cellular excitability; Ca2+-ATPase3 removes one cytosolic Ca2+ in exchange for two H+ and plays a 12 

key role in calcium homeostasis. In vitro studies showed that the mutant Na+/K+ ATPase exhibits 13 

reduced K+ affinity and disturbed gating properties, resulting in lowered intracellular pH, but, 14 

surprisingly not in cell membrane depolarization (55, 57). On the contrary, the mutant Ca2+-ATPase3 15 

strongly depolarized the plasma membrane, as a consequence of a complete loss of its physiological 16 

pump function, that become permeable to cations, permitting Na+ and Ca2+ influx (58). 17 

A total of 13 different ATP1A1 and 9 ATPB3 somatic mutations have been reported so far (48). 18 

ATP1A1 somatic mutations account for 5.3% of the sporadic APAs while ATP2B3 mutations have 19 

been identified in 1.7% of the samples (44). 20 

CACNA1D somatic mutations 21 

Since its original description (8, 56), a total of 31 different CACNA1D mutations have been reported 22 

(48), accounting for 9.3% of the sporadic APAs (44). APAs carrying CACNA1D mutations are 23 

composed mainly of zona-glomerulosa-like cells (49, 50) and are smaller compared with those with 24 
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KCNJ5 or no mutations (44, 49). Accordingly, somatic CACNA1D mutations are the most frequent 1 

genetic alteration in CYP11B2-positive cortical micro-nodules in cross-sectional imagine-negative 2 

PA (59). 3 

CTNNB1 somatic mutations 4 

CTNNB1 gene is located on chromosome 3 and encodes β-catenin, which is part is part of a complex 5 

of proteins that constitute adherens junctions. β-catenin plays a key role in adrenocortical function: 6 

inactivation of β-catenin, using the Cre-loxP transgenic strategy, causes adrenal aplasia in newborn 7 

mice (60) while its constitutive activation in murine adrenal cortex results in increased aldosterone 8 

production (61). Similarly, mice lacking the WNT inhibitor SFRP2 display increased aldosterone 9 

production, supporting the evidence that SFRP2 down-regulation in APAs is likely to cause WNT/β-10 

catenin constitutive activation (62). Activating CTNNB1 mutations have been detected in both benign 11 

and malignant adrenocortical tumours (63). Somatic mutations in CTNNB1 have been identified in 12 

around 3% of sporadic APAs (64, 65) and have been associated to female gender and relatively large 13 

adenomas. APAs associated CTNNB1 mutations are located on exon 3 (64, 65) and result in aberrant 14 

activation of Wnt signaling, by altering specific residues that are involved in β-catenin degradation. 15 

Somatic mutations in aldosterone producing cell clusters  16 

The adrenal zona glomerulosa, composed of compact cells forming nests, is the exclusive site of 17 

CYP11B2 expression and aldosterone production (1), however the APAs are composed mainly of 18 

zona-fasciculata like cells (large cells with lipid-laden cytoplasm) and only less frequently display a 19 

zona-glomerulosa like phenotype (49). Moreover, histological examination of the removed adrenal 20 

glands, following a diagnosis of unilateral PA, revealed significant heterogeneity in both the nodules 21 

and the adjacent adrenal cortex (49, 66). 22 

The recent development of specific monoclonal antibodies able to distinguish between the highly 23 

homologous CYP11B1 and CYP11B2 allowed a more specific characterization of both normal 24 
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adrenals and unilateral PA, opening a new scenario that goes beyond the classical view of 1 

adrenocortical zonation (10). Histological examination and immunohistochemical staining of adrenal 2 

specimens revealed the presence of subcapsular nests of adrenocortical cells extending in the zona 3 

fasciculata and strongly expressing CYP11B2, named aldosterone producing cell clusters (APCCs) 4 

(67). The APCCs were found in both normal adrenals and in the cortex adjacent to an APA (68) and 5 

a significant proportion of them carries somatic mutations in ATP1A1 and CACNA1D genes (but not 6 

in KCNJ5), supporting the hypothesis that they might display autonomous aldosterone 7 

overproduction and progress to overt PA over time (68). In particular, APCCs are likely to progress 8 

to CT-negative PA, as suggested by the elevated prevalence of CACNA1D mutations in this particular 9 

subtype of PA (59), but less likely to CT-detectable adenomas (which more frequently harbour 10 

somatic mutations in KCNJ5).  11 

Clinical correlates indicated that APCCs number and size increase with age, (69) paralleled by a 12 

progressive transition towards a discontinuous CYP11B2 expression pattern in older-age adrenal 13 

glands which might account for the age-related changes in renin and aldosterone physiology (70). 14 

 15 

CONCLUSIONS  16 

The last six years have witnessed major advances in the field of both sporadic and familial PA. Three 17 

novel familial forms have been characterized and somatic mutations, altering intracellular ion 18 

homeostasis, drive aldosterone overproduction in around 60% of sporadic APAs. Notably, some of 19 

the somatic mutations have also been detected in APCCs, which might represent the precursors of 20 

CT-undetectable PA. In the next future, steroid profiling and targeted inhibition of mutated GIRK4 21 

are very likely to change the classical clinical approach to patients affected by PA due to an 22 

aldosterone producing adenoma. 23 

FIGURE LEGENDS 24 
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Figure 1. Schematic representation of the CYP11B1/CYP11B2 chimeric gene. The chimeric gene, 1 

expressed throughout the entire adrenal cortex (dashed circle), originates from an unequal crossing 2 

over between the highly homologous CYP11B1 and CYP11B2 genes coding for 11β-hydroxylase and 3 

aldosterone synthase, respectively. The crossing over break-points are comprised between CYP11B1 4 

intron 2 and exon 4 so that the chimeric gene contains the promoter region of CYP11B1 (regulated 5 

by ACTH) and a coding region of CYP11B2. The two CYP11B2 residues Gly288 and Ala320 6 

are responsible for 18-hydroxylation and 18-oxidation respectively and are therefore indispensable 7 

to retain aldosterone synthase activity. 8 

Figure 2. Germline mutations in GIRK4 associated with FH-III. FH-III causing KCNJ5 germline 9 

mutations (black dots) are located near or within the selectivity filter of the GIRK4 channel. N 10 

indicates the N-terminus and C indicates the C-terminus. 11 

Figure 3. Panel A - Germline mutations in Cav3.2 causing FH-IV. CACNA1H encodes the pore-12 

forming alpha subunit (Cav3.2) of a T-type calcium channel. Cav3.2 is composed of four repeated 13 

domains (I–IV), with six transmembrane segments each (S1–S6). The germline mutations associated 14 

with FH-IV are indicated as black dots and are located in S4 segment of domain I, S6 segment of 15 

domain III, and in the C-terminal cytoplasmic domain. N indicates the N-terminus and C indicates 16 

the C-terminus. 17 

Panel B - Germline mutations in Cav1.3 causing PASNA syndrome. CACNA1D encodes the α1 18 

(pore-forming) subunit (Cav1.3) of an L-type voltage-gated calcium channel. The α1 subunit is 19 

composed of four repeated domains (I–IV), with six transmembrane segments each (S1–S6). The two 20 

germline mutations associated with PASNA syndrome are indicated as black dots and are located in 21 

S6 segment of domains I and II. N indicates the N-terminus and C indicates the C-terminus. 22 

 23 
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