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Abstract: The tandem analysis of dendrochronological and genetic data is piquing forest ecologists’
interest and represents a promising approach for studying the temporal development of genetic
structure in forest tree populations. Such multidisciplinary approach can help elucidate to what extent
different management practices have impacted the fine-scale spatial genetic structure of forest stands
through time. In this study, we jointly analysed spatial, age and genetic data from three differently
managed Norway spruce permanent plots to assess: (1) possible differences among plots in the spatial
distribution of individuals and their genetic structure due to different management practices, and (2)
whether modifications in the age structure influenced the fine-scale spatial genetic structure within
each permanent plot. With these aims, we genetically characterized at five nuclear microsatellite
markers a large subset (328) of all the trees for which spatial and age data were collected (1472).
We found that different management practices determined a similar spatial structure in terms of trees’
ages (r < 25 m in all plots) and neutral genetic diversity (Sp ranging from 0.002 to 0.004). Hot spots
and cold spots of trees’ age were not statistically different in terms of genetic diversity, and trees’ age
was not statistically different among the genetic clusters detected. On the other hand, the spatial
distribution of individuals was significantly clustered up to 22 m only in the wooded pasture plot.
Our main findings show that forest land use and management can indeed determine markedly
different spatial layouts of Norway spruce individuals but do not produce strong distortions in the
spatial structure of age and genetic parameters.

Keywords: population genetics; Norway spruce; forest management; wood pasture; dendroecology;
gene flow; spatial analysis; age structure; Eastern Alps; genetic clustering

1. Introduction

Forest management practices (e.g., clear-cut, seed tree, and shelterwood systems) often result
in even-aged stands with homogeneous spatial distribution of stems [1]. On the other hand,
unmanaged and abandoned forests generally exhibit higher diversity in stand structure in both its
vertical and horizontal components (e.g., Motta et al. [2]), and such heterogeneity is often due to forest
regeneration clumping in canopy gaps [3]. The possible genetic consequences of commonly used forest
management practices have been explored to a lesser extent. A clear negative impact of management
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on genetic diversity and its spatial arrangement has seldom been shown [4–8]. In most cases, no effect
or a weak effect on genetic parameters was found (reviewed by Kavaliauskas et al. [9]). In particular,
the genetic consequences of management practices were demonstrated to be species-specific [9] or,
within the same species, even population-specific [4,10,11].

Tree populations can buffer, or at least delay, the effects of disturbances because of typically high
gene flow and long life cycles determining a large overlap among generations [9,12]. However, there is
increasing evidence that possible genetic consequences of disturbances might be more nuanced than
the simple signals looked for so far, such as the loss of genetic diversity and increased differentiation
among populations [13]. Recent literature about a widely studied and economically important species,
Fagus sylvatica L., has indeed shown how management practices can subtly affect the spatial component
of genetic structure [11,14,15]. Since forest management immediately and heavily affects the spatial
distribution of trees (e.g., Lamedica et al. [16]), such subtle genetic signals in the first generations after
human intervention could likely represent an intermediate step between disturbance and the onset of
more relevant alterations in the fine-scale spatial genetic structure (SGS) of managed stands. On the
other hand, the effects of forest management on the temporal component of genetic structure have
been rarely explored, usually by comparing genetic diversity among different cohorts of individuals
in managed vs. unmanaged stands (e.g., Marquardt et al. [8]; Westergren et al. [17]). Such a clear-cut
subdivision into cohorts potentially makes it difficult to disentangle the effects of management from
those of other factors that affect regeneration survival, such as the interplay between seed dispersal
and density-dependent mortality [18].

The study of the temporal component of genetic structure would require to assess the age of
individuals sampled for genetic analyses [19]. In the available literature, a handful of studies combine
dendrochronological and genetic data. By merging such levels of information, the accumulation of
genetic diversity and the development of genetic differentiation over time [20], as well as the influence
of genetic vs. abiotic determinants on tree growth [21–24], were studied. Such a multidisciplinary
approach would also make it possible to assess possible temporal changes in the genetic structure
of managed forest stands. This could be done, for example, by comparing genetic parameters for
cohorts of adult trees established before and after disturbance events detected through the study of
abrupt changes in tree radial growth patterns [25]. Another option would be treating cambial age as a
continuous variable to be correlated with individual genetic parameters. Indeed, dendrochronological
data have already been used to assess the effects of temporal processes on ecophysiological traits,
from tree growth to xylem functional traits [26–28].

Forest management inherently changes temporal dynamics of forest tree populations [29–31] and,
in turn, temporal dynamics can have a large influence on the distribution of genetic diversity [19,20,32].
Therefore, combining spatial, genetic and dendrochronological data at the individual level can
represent a step forward in understanding the consequences of forest management, outdoing
discipline-based conclusions towards a multidisciplinary assessment of disturbance-induced
modifications. Here, we embrace such an approach to investigate whether spatiotemporal dynamics
shaped by past management affect fine-scale SGS in Norway spruce (Picea abies (L.) Karst.). To this aim,
we took advantage of dendrochronological data collected for all individuals present within three
1-ha plots in the subalpine forest of Paneveggio (Eastern Alps, Italy). These permanent plots were
established in 1993 to study the effect of different levels of forest management on several characteristics
of stand structure [29,33,34]. We genetically characterized, with nuclear microsatellite markers (nSSRs),
a large subset of trees to assess: (1) possible differences among plots in the spatial distribution
of individuals and their genetic structure due to different management practices, and (2) whether
modifications in the age structure influenced the fine-scale SGS within each permanent plot.
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2. Materials and Methods

2.1. Study Area

The study area is located in the Paneveggio forest (latitude 46◦18′ N, longitude 11◦45′ E) along
the Valbona valley, and it is part of the Paneveggio-Pale di S.Martino Natural Park (Trentino, Italy).
The vegetation in the whole Valbona valley is a typical subalpine Norway spruce forest classified as
Homogyno-Piceetum subalpinum myrtilletosum [35]. The forest was heavily grazed by cattle until the early
1970s, while nowadays it hosts a high density of wild ungulates [36]. The three 1-ha permanent plots
where dendrochronological and genetic data were collected span from the lower part of the Paneveggio
forest to the timberline, and were selected to represent the most common forest structures (i.e., closed
canopy mature forest and open subalpine forest) and past land use (i.e., managed dense forest and
grazed open forest) in this area. In the first stand (VB1), close to the forest road, thinning and harvesting
operations ended in 1984. The second stand (VB2) was sporadically managed for wood production
until 1948, and developed without anthropogenic influence during recent decades. The third stand
(VB3) is located at the upper limit of the pure spruce forest within an area used for grazing until
the 1950s [29]. VB1, VB2 and VB3 stands are characterized by similar tree densities (479, 541 and
452 trees ha−1), while they substantially differ in regeneration abundance (scarce in VB1, absent in
VB2 and abundant in VB3) and in age structure (Table 1). In fact, VB1 and VB2 are monolayered stands
established around 1820–1840 and 1790–1820, respectively, while VB3 is a multilayered stand with a
few individuals older than 200 years but most of the trees between 45 and 65 years [29].

Table 1. Characteristics of the three 1-ha stands investigated and genetic parameters estimated on the
subsamples of individuals for genetic analyses.

Plot N Spatial
Analysis 1

N Genetic
Analysis

Elevation
(m a.s.l.)

Regeneration
Density (n ha−1)

Past
Management

Last
Intervention Na HE Ar100

VB1 479 97 1695 935 Wood
production 1984 10 0.64 8.87

VB2 541 114 1815 30 Wood
production 1948 11.4 0.64 9.34

VB3 452 117 1865 3010 Wood
pasture 1929 10.6 0.64 9.21

1 All trees present within the 1-ha stand were sampled, thus it also represents adult tree density (n ha−1).

2.2. Sampling Strategy and Genotyping

A total of 328 individuals (97 in VB1, 114 in VB2 and 117 in VB3), randomly distributed
within the three plots, were sampled for genetic analyses among the 1472 individuals for which
dendrochronological data were available (Figure 1 and Table 1). Genomic DNA was extracted from
about 70 mg of needle tissue, using Qiagen Plant DNeasy 96 isolation kit and Macherey-Nagel
Nucleovac Vacuum Manifold. All individuals were genotyped with five nSSRs (SpAGG03, SpAC03,
EATC1B02, EATC2B02 and EATC1E03) developed by Scotti et al. [37] and Pfeiffer et al. [38],
following the PCR conditions described in Piotti et al. [39]. An automatic capillary sequencer CEQ8000
Beckman Coulter was used for sizing microsatellite alleles.
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Figure 1. Sampling design adopted in the three 1-ha permanent plots (VB1, VB2 and VB3). Small dots
represent mapped trees (DBH > 7.5 cm) while large dots represent trees sampled for genetic analyses.
IDW interpolated age data are used as background.

2.3. Spatial Data Analysis

Inverse distance weighted (IDW) interpolation on tree age was used to obtain a surface dataset
(raster) with a spatial resolution of 1 m. This simple geostatistical tool allowed a first description of
the spatial structure of tree ages within the studied stands. In IDW interpolation, the local influence
(weight) of each measured tree diminishes as a function of distance.

Point pattern analysis (PPA) was used to assess tree spatial patterns within the permanent plots
at different spatial scales (from 1 to 50 m). Univariate pair-correlation function (g(r)) on stem-mapped
trees was contrasted against the complete spatial randomness (CSR) null model to account for
first-order effects. Mark correlation analysis with the normalized Moran’s I-mark statistic with a
single quantitative mark (tree age) was used to assess the within-stand spatial pattern of tree age at
different spatial scales (from 1 to 50 m). Moran’s I type summary statistic (Imm(r)), a spatial variant of
the classical Pearson correlation coefficient [40,41], was used to test for positive or negative correlations
between tree ages. A positive correlation means that trees that are closely located have similar ages
and negative correlation means that points that are closely located have different ages. In all PPAs,
the 95% CI was computed from 1000 Monte Carlo simulations [42,43] and a goodness-of-fit (GoF) test
for null hypothesis was performed [44]. All analyses were done applying a 1 m lag distance and a
maximum distance of 50 m with the grid-based software Programita [43], adopting a grid size of 1 m2

and a ring width of 5 m.
To obtain a spatial localization of tree groups with similar age, an approach based on the local index

of spatial association (LISA) was used. In particular, the spatiotemporal patterns of tree recruitment
were described with the Getis-Ord Gi*(d) index [45], using tree age as a quantitative variable.
LISA statistics can detect a local clustering around individual locations improving results from
inferences where a single measure of global association (e.g., Moran’s I) can provide little meaningful
information [16,46]. All local Gi*(d) analyses were computed with the Rookcase Excel add-in [47].

2.4. Genetic Data Analysis

Standard genetic parameters describing within-population genetic variation (Na, Ar100 and HE)
and genetic differentiation (FST and G′ST) were estimated by GenAlEx [48] and hp-rare [49].
Differences in genetic diversity parameters among stands were tested by two-way ANOVA in R [50]
considering as factors the locus and the stand.

Fine-scale SGS was investigated by both classical spatial autocorrelation analysis and
Bayesian clustering. Spatial autocorrelation analysis was based on Loiselle et al. [51] pair-wise kinship
coefficients (Fij) calculated by using the software SPAGeDi 1.4 [52]. Statistical significance of mean
kinship coefficients was tested in each distance class by (i) estimating 95% CI around mean Fij values by
jackknifing loci (5000 cycles), and (ii) random shuffling (5000 times) of individual geographic locations
to define the upper and lower bounds of the 95% CI of the distribution under the null hypothesis that
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Fij and pair-wise geographical distances are uncorrelated. Analyses were run using the even sample
size option based on 12 distance classes with an equal number of pairs per class. The Sp statistic was
used to measure the intensity of SGS [53]. Sp is computed as:

Sp = bF/(F1 − 1) (1)

where bF is the regression slope of all pairwise Fij values against the geographical distances
among individuals, and F1 is the average kinship coefficient of the first distance class (i.e., 0–20 m).
The statistical significance of F1 and bF was tested-based by permuting individual geographic
coordinates 5000 times.

To assess the presence of subtle spatial signals in the genetic structure of the three stands,
the spatially explicit Bayesian clustering algorithm implemented in the R package Geneland
v. 4.0.2 [54,55] was used. This analysis aims at (i) finding the optimal number of genetic clusters
in which sampled individuals can be divided and (ii) quantifying the probability (q-value) of each
individual to belong to each of the identified genetic clusters. The program was run including
both spatial and genetic information. The spatial model with correlated allele frequencies was used.
The maximum number of clusters was set to 20 with 10 runs per each number of clusters tested.
The highest median number of clusters of the 10 runs was chosen as the most representative one.
Each analysis was run for 2 × 106 iterations with a thinning value of 1000. The possible presence of
genotyping errors was taken into account including the filter.null.alleles module.

2.5. Relationship between Age and Fine-Scale SGS

The spatial relationship between trees’ age and fine-scale SGS was tested with two
different approaches. First, we compared the age distribution of the different genetic clusters after
having categorically assigned each tree to the most likely one. ANOVA tests were run with age
as independent variable and the genetic cluster as categorical dependent variable. Then, to fully
exploit the large dendrochronological dataset and the individual array of q-values from Bayesian
clustering (i.e., the array of probability for each individual to belong to detected genetic clusters),
the spatial relationship between trees’ age and the vector of q-values was assessed by correlation
analyses between raster layers in a GIS environment. IDW interpolation was applied both to trees’
age and genetic cluster membership obtaining a co-registered 1 m resolution raster (104 pixels per
stand) with coupled age-genetic information. The possible spatial autocorrelation issue was tackled by
applying a randomization test randomly extracting 102 pixels from the interpolated dataset at each of
103 cycles. At each cycle, the correlation between age and q-values was tested, obtaining a distribution
of correlation coefficients for each genetic cluster.

In each plot, it was also tested whether hot spots and cold spots of trees’ age were characterized
by differences in genetic diversity parameters (HE and Ar100) through two-way ANOVA tests
(as described above).

3. Results

3.1. Spatial Distribution of Individual Age

The spatial interpolation on stem-mapped trees by using tree age as z-variable showed a gradient
from a homogeneous pattern (VB1) to a heterogeneous one (VB3). At VB3, a few older trees were
sparsely distributed within the plot, and several younger trees filled the open areas between them
(Figure 1).

Considering only the spatial pattern of stem-mapped trees (Figure 2a) the only plot showing a
departure from the CSR null model was VB3, which showed significant clustered distribution up to
22 m (GoF: p < 0.001). Including the age of trees in the analysis of point pattern (Figure 2b), a significant
(GoF: p < 0.001) positive spatial correlation between trees of similar ages at short distances (r < 25 m)
was found in all stands.
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Figure 2. (a) Univariate pair-correlation function (g(r)) on stem-mapped trees; (b) mark correlation
analysis on trees’ age based on the normalized Moran’s I-mark statistic (Imm(r)); (c) spatial
autocorrelograms of the kinship coefficients Fij by Loiselle et al. [51] using even distance classes.
The dark grey area represents the 95% CI around the null hypothesis (i.e., absence of spatial
genetic structure), while black lines around mean Fij values are the 95% CIs estimated by
jackknifing loci.

The local Gi*(d) statistic, rasterized on the maps of the three stands (Figure 3), allowed us to
identify groups of even-aged trees that are older (hot spots) or younger (cold spots) than the mean
stand age, depicting the spatiotemporal pattern of adult trees at VB1, VB2, and VB3. A patchy surface
pattern was found in all stands, where trees established in different age cohorts in groups of variable
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patch size (2–63 m-wide). The larger significant groups were present at VB3 (up to 63 m-wide), where
different cohorts were generally well separated.Forests 2018, 9, x 8 of 16 
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Parameters summarizing genetic diversity in the three stands are presented in Table 1. Genetic 
diversity was very similar among the three plots, two-way ANOVAs did not detect any statistically 
significant difference in genetic diversity as measured by Na, HE and Ar100. Genetic differentiation 
indexes showed an absence of genetic structure among stands, with the highest pair-wise FST and G′ST 
values equal to 0.004. 

Spatial autocorrelograms and low values of the Sp parameter showed an absence of stand-wise, 
spatially regular SGS in all stands (Figure 2c). On the other hand, Bayesian clustering showed the 
presence of a cryptic fine-scale SGS overlooked by spatial autocorrelation. Three, four and six 
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VB2) to 0.292 (cluster 1 vs. cluster 2 in VB3, Tables S1–S3). 

Figure 3. Interpolated and z-transformed local Gi*(d) values computed for tree age for 10 m distance
interval at (a) VB1, (b) VB2 and (c) VB3. Red and blue areas are hot spots (i.e., groups of trees with age
higher than the average within the plot) and cold spots (i.e., groups of trees with age lower than the
average within the plot), respectively. Colour scale is proportional to the value of the local Gi*(d) index.
Bold contour lines indicate significant clusters (p < 0.005). Values of genetic diversity parameters
(HE and Ar100) at each locus for individuals within hot and cold spots at (d) VB1, (e) VB2 and (f) VB3.

3.2. Spatial Distribution of Genetic Variation

Parameters summarizing genetic diversity in the three stands are presented in Table 1.
Genetic diversity was very similar among the three plots, two-way ANOVAs did not detect
any statistically significant difference in genetic diversity as measured by Na, HE and Ar100.
Genetic differentiation indexes showed an absence of genetic structure among stands, with the highest
pair-wise FST and G′ST values equal to 0.004.

Spatial autocorrelograms and low values of the Sp parameter showed an absence of stand-wise,
spatially regular SGS in all stands (Figure 2c). On the other hand, Bayesian clustering showed
the presence of a cryptic fine-scale SGS overlooked by spatial autocorrelation. Three, four and six
differentiated genetic clusters were detected in VB1, VB2 and VB3, respectively (Figures 4 and S1–S3),
with pair-wise FST values between genetic clusters ranging from 0.028 (cluster 1 vs. cluster 3 in VB2) to
0.292 (cluster 1 vs. cluster 2 in VB3, Tables S1–S3).
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Figure 4. Distributions of results from the 10 repetitions of Geneland analyses for (a) VB1, (b) VB2
and (c) VB3. The highest median number of clusters of the 10 repetitions was chosen as the most
representative one for each plot (K = 3 in VB1, K = 4 in VB2, K = 6 in VB3). Maps representing the
categorical assignment of individuals to inferred genetic clusters for (d) VB1, (e) VB2 and (f) VB3.

3.3. Relationship between Age and Fine-Scale SGS

The age structure had a marginal influence on the fine-scale SGS and, more generally, on the
spatial distribution of genetic diversity. Age was not statistically different among the genetic clusters
detected by Bayesian analysis in all plots, as assessed by ANOVA tests (Figure 5). At a finer scale,
the randomization test run to assess possible correlations between individual tree age and membership
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to genetic clusters showed that the distribution of correlation coefficients was never statistically
different from zero (Figure S4). In addition, hot spots and cold spots of trees’ age were not different in
terms of genetic diversity (Figure 3). Statistically significant differences between hot and cold spots
were not found in any two-way ANOVA test.
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1-ha plots.

4. Discussion

By jointly analysing spatial, age and genetic data from three Norway spruce permanent plots in
the Eastern Alps, we found that different management practices determined a similar spatial structure
in terms of trees’ ages and neutral genetic diversity but different clumping patterns. Our main finding
shows that forest land use and management can indeed determine markedly different spatial layouts
of Norway spruce individuals but do not produce strong distortions in the spatial structure of age and
genetic parameters.

4.1. Influence of Forest Management on the Spatial and Age Structure

Stem-mapped data on permanent plots has become a standard survey procedure in forest
ecological studies aimed at describing and interpreting complex forest structures and fine-scale
ecological processes (e.g., Moeur [3]). Stem-mapped trees are a prerequisite to assess spatial patterns
at multiple spatial scales and are fundamental reference data in long-term ecological research.
They guarantee spatially explicit data, making it possible to explore possible relationships between
individual characteristics and biotic and abiotic conditions. In general, the spatial component of these
data makes straightforward the overlay of geographic layers obtained from different data sources,
as the geographic layer of individual genotypes.

The spatial arrangement of trees was similarly random in the two managed stands (VB1 and VB2),
conversely it was clumped in the abandoned wood pasture (VB3). This was probably due to several
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concurrent factors, both related to past management and site characteristics. Thinning operations
had a homogenization effect on the spatial structure of the managed stands at lower elevations,
while the presence of open areas in the wood pasture favoured a spatially aggregated infilling
regeneration process. This mechanism could also explain why we observed slightly larger groups of
trees with similar age in the wood pasture. Forest management and succession dynamics are not the
only important drivers determining the spatial pattern of regenerating trees. At higher elevations,
the harsh conditions and the high heterogeneity of site conditions are important limiting factors that
create favourable and unfavourable sites for forest regeneration [56–59], leading to heterogeneous
spatial patterns. Another possible explanation of the clumped distribution of younger trees at VB3 is
the short repulsion distance between regeneration and mature trees that is often observed in forest tree
species [46,60,61].

4.2. Influence of Forest Management on the Fine-Scale Spatial Genetic Structure

Recent reviews about the impact of management practices on forest genetic resources highlighted
how human intervention may directly influence the genetic layout of managed stands [9,62,63].
Although a formal comparison of genetic diversity between managed and unmanaged stands of
Norway spruce is virtually impossible in the Italian Alps due to the lack of unmanaged forests, our data
showed negligible differences in genetic diversity and SGS among plots that have had a different
recent history of forest management. The main difference in terms of recent forest management history
is between VB3, a former wooden pasture, and VB1–VB2, both established about 200 years ago after
a shelterwood felling and managed until 1984 and 1948, respectively [64]. A possible disadvantage
of shelterwood management with respect to wood pastures is that natural regeneration originates
mainly from a single seed year, determining that only a subset of adult trees could contribute to the
post-intervention generation [9]. However, it is generally expected that such possible negative genetic
consequences of forest management have an effective impact when effective population size is small
and/or gene dispersal is spatially restricted [62] and, therefore, we would not expect to detect marked
genetic consequences of management in wind-dispersed species capable of extensive dispersal such as
Norway spruce [39].

The homogenizing effect in space and time of extensive gene flow clearly emerged from the
absence of genetic differentiation among stands found in our study, which confirms what was found in
previous genetic investigation along Norway spruce altitudinal transects [21,65,66]. Available literature
on anemophilous species generally showed low to negligible impact of forest management on genetic
diversity and SGS [11]. In Fagus sylvatica (L.), one of the species for which more studies about the genetic
consequences of management are available, only subtle differences in genetic parameters emerged
when comparing managed and unmanaged stands [11,14,15,17]. For instance, Piotti et al. [11] showed
that summary genetic parameters were not affected by management history, but a general reduction in
the complexity of the fine-scale SGS was observed when comparing managed and unmanaged stands.
In our study, by explicitly including spatial information, we forced Bayesian clustering to detect the
slightest signals of spatial clustering of genotypes. However, also using such an approach, we were
able to find only slight differences among stands. The most evident one emerges when inspecting the
individual distributions of q-values within each plot (Figure S1). Individuals were clearly assigned to
inferred genetic clusters only in VB1. In VB1, thinning and harvesting operations ended only in 1984,
and the last major growth release dates back to 1920, 100 years later than in the other managed plot,
VB2 [29]. Such marked genetic structure, not related to spatial and temporal processes, might be the
last signature of forest management not yet erased by extensive gene flow.

4.3. Effect of Spatiotemporal Dynamics on the Fine-Scale Spatial Genetic Structure

The tandem analysis of dendrochronological and genetic data has raised much interest in recent
literature [67]. Potential applications span from studying the temporal development of genetic structure
and differentiation [20] to individual- and population-based association genetic studies in common
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garden experiments as well as in natural conditions [23,68,69]. So far, the temporal genetic structure of
forest trees has been usually investigated by comparing genetic parameters among cohorts (typically,
adults vs. juveniles, e.g., Westergren et al. [17] and Leonarduzzi et al. [70]) and very few studies
have fully exploited the information potentially hidden in a detailed characterization of individual
age to study within- and among-population dynamics. Troupin et al. [19] followed the dynamics of
successive cohorts in a Pinus halepensis population over time, dating each tree by analysing aerial
photos of the study site and collecting tree-ring data. Such an approach allowed them to trace in detail
the demographic history of an expanding population and its genetic consequences. Lesser et al. [20]
combined dendrochronological and genetic data to reconstruct the temporal development of genetic
diversity and differentiation in small, disjunct Pinus ponderosa populations over a 500-year period.
Our experimental setup allowed us to study temporal processes within three Norway spruce plots
that had experienced different management histories. The main result emerging from combining
spatialized age and genetic data is that past forest management influenced the spatial clumping of
individuals but produced a similar spatial arrangements of age cohorts and genotypes. The marked
spatial structure of individual age in the three investigated plots might create the conditions for
a limited parental contribution to different cohorts (i.e., the few neighbouring trees around gaps
disproportionately contributing to regeneration [9]) leading to the development of a spatial genetic
structure. Our results showed that, if there was any, such a bottleneck effect did not leave traceable
signs on the current spatial distribution of genetic variation. No correlation between age and the weak
genetic clustering detected was found, neither were levels of genetic variation different between hot
and cold spots of individual tree age.

5. Conclusions

Our investigation definitely shows that highly outcrossing species capable of
long-distance dispersal, such as Norway spruce, likely reshuffle genetic variation at a high pace,
regardless of the levels of disturbance. Nonetheless, our study provides a methodological framework
to distil information from combining genetic and dendrochronological data in forest tree species.
It has promising application in describing the consequences of fine-scale demographic events, such as
those determined by forest management practices. Studying the temporal development of SGS
can be particularly useful to assess whether forest management impacts the spatial distribution
of genetic diversity in species with lower effective population size and dispersal capabilities than
Norway spruce.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/10/622/s1,
Figures S1, S2, and S3: Spatial distribution of q-values in VB1, VB2, and VB3, respectively. Figure S4: Distributions
of randomized correlation coefficients between tree’s age and q-values for each genetic cluster. Tables S1, S2, and S3:
Pair-wise FST values between genetic clusters inferred by Bayesian clustering in VB1, VB2, and VB3, respectively.
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Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies
forest to climate. For. Ecol. Manag. 2015, 354, 77–86. [CrossRef]

28. Rita, A.; Borghetti, M.; Todaro, L.; Saracino, A. Interpreting the Climatic Effects on Xylem Functional Traits
in Two Mediterranean Oak Species: The Role of Extreme Climatic Events. Front. Plant Sci. 2016, 7, 1–11.
[CrossRef] [PubMed]

29. Motta, R.; Nola, P.; Piussi, P. Structure and stand development in three subalpine Norway spruce (Picea abies
(L.) Karst.) stands in Paneveggio (Trento, Italy). Glob. Ecol. Biogeogr. 1999, 8, 455–471. [CrossRef]

30. Duncker, P.S.; Barreiro, S.M.; Hengeveld, G.M.; Lind, T.; Mason, W.L.; Ambrozy, S. Classification of Forest
Management Approaches: A New Conceptual Framework and Its Applicability to European Forestry.
Ecol. Soc. 2012, 17, 51. [CrossRef]
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