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A Bayesian semi-parametric GLMM for
historical and newly collected presence-only
data: an application to species richness of
Ross Sea Mollusca

C. Carotaa∗ , C. R. Navaa, C. Ghiglioneb and S. Schiaparellib

Summary: Historical datasets from vast and relatively inaccessible areas are sources of potentially unique

information still valuable for biodiversity studies today. In many research fields, ranging from climate change

to projection of species loss, great efforts have been made to integrate historical datasets with recent data

to create databases that are as complete as possible. Unlocking the information contained in presence-only

data, largely prevalent in such databases, presents a challenge for statistical modeling because of insidious

observational errors due to the opportunistic nature of the data gathering process. In this article we propose

an appropriate statistical method for the joint analysis of historical and newly collected presence-only data,

i.e. a Bayesian semi-parametric generalized linear mixed model (GLMM) with Dirichlet process random

effects. The potential of the method is illustrated by considering the Ross Sea section of the SOMBASE, an

international compilation of Southern Ocean Mollusc distributional records, from 1899 to 2004 and beyond.

Despite the presence of sampling bias and non-detection errors, the proposed model draws latent information

from the data such that the resulting estimates of the parameters of interest are not only coherent with those

obtained in indirectly related studies based on well structured data, but also suggest interesting ideas for

further research.
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1. INTRODUCTION

In biodiversity research a considerable effort has been devoted to the digitization and

integration of historical datasets with recent data to create databases that are as complete as

possible and make them available to the scientific community. In particular, close attention

has been paid to the so-called primary biodiversity data, hereafter also referred to as

presence-only data. Pearce and Boyce (2006) define presence-only data as “consisting only of

observations of the organism but with no reliable data on where the species was not found.

Sources of these data include atlases, museum and herbarium records, species lists, incidental

observation databases and radio-tracking studies.” Such opportunistic data – i.e. data

collected by non-standardized means, with no sampling design and no standardized protocol

– are continuously increasing, also because of the recent development of citizen science

programs, and currently constitute the main component of the biodiversity information

stored in large-scale aggregators like the GBIF† or the BioCASE‡. A number of statistical

packages allow the easy retrieval of biodiversity information from these and other repositories;

and, of course, statistical methods that can deal with opportunistic sampling schemes are

increasingly required. In this article we propose a method for the joint analysis of historical

and newly collected presence-only data and we present an application to the study of species

richness of Ross Sea Mollusca.

Presence-only data, i.e. points in space and time where a species has been recorded as

being present, are often used to model the distribution of a species as a function of a set of

explanatory variables (e.g Warton and Shepherd, 2010; Chakraborty et al., 2011; Dorazio,

2012; Fithian and Hastie, 2013; Renner and Warton, 2013; Giraud et al., 2016). Chakraborty

et al. (2011) indicate how to use presence-only data in modeling species richness, that is

the number of distinct species in a given area. More precisely, they provide a parametric

†Global Biodiversity Information Facility.
‡Biological Collection Access Service.

2

http://www.gbif.org
http://www.biocase.org


A Bayesian semi-parametric GLMM for presence-only data Environmetrics

function for the expected richness based on a non-homogeneous Poisson process model for

the set of observed presence points. Under the assumption that a set of possible species can

be specified, they obtain inferences endowed with measures of uncertainty, thereby improving

on the often-used approach with MAXENT (Renner and Warton, 2013). The availability of

environmental features able adequately to explain the intensity of each species, however, is

a prerequisite of this method not easily satisfied in cases where the set of possible species is

large and/or includes species whose characteristics are very different or partially unknown.

Moreover, determining what types of observational errors may have occurred with presence-

only data and how these errors can be modeled is a challenging issue. Common errors are

sampling bias, non-detection and location error, all of which result in biased parameter

estimates and predictions. These issues are addressed in an increasing number of articles (e.g.

Dorazio, 2012; Fithian et al., 2015; Dorazio, 2014; Warton and Shepherd, 2010; Hefley and

Hooten, 2016), as this is a recent, very active area of research. Statistical methods suggested

to account for such errors – often in articles focussed on species distribution modeling –

consist of a variety of strategies aimed at achieving identifiability of the parameters of

interest in appropriate generalized linear models (GLMs) by exploiting auxiliary information

provided by data collected in independent, planned surveys. Such strategies range from

applying regression calibration in the presence of location error (Hefley and Hooten, 2016)

to introducing suitable functions of the original parameters in the presence of unknown

sampling effort and detectability (see Giraud et al. (2016), where the interest lies in relative

abundances of multiple species on multiple sites). Furthermore, many of these strategies

rely on strong or uncheckable assumptions, as, for instance, that observational bias toward

some species is the same across different sites (Giraud et al., 2016). See also Dorazio (2014);

Renner and Warton (2013). In this regard, Fithian et al. (2015) conclude their paper by

saying “[. . . ] in our approach, we are forced to assume a functional form for the sampling

bias, and if our model is wrong, we will not account correctly for sampling bias. [. . . ] in future
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work we plan to investigate models that treat the sampling bias nonparametrically, imposing

no assumption on its parametric form.” To the best of our knowledge, there are currently no

methods that try to use presence-only data without using auxiliary information, nor methods

that exploit the potential of the Dirichlet process (DP) in modeling sampling bias, detection

errors, and, more generally, the very complicated errors resulting from opportunistic data

collation§.

In this article we propose a Bayesian semi-parametric method useful for this purpose.

Specifically, we focus on species richness and model presence-only data through a generalized

linear mixed model (GLMM) with Dirichlet process (Ferguson, 1973; Antoniak, 1974) random

effects. We show that each model belonging to this general family of models is equivalent to

a mixture of standard parametric GLMMs with observation-specific random effects grouped

in all possible ways. For this reason models belonging to this family capture a wider range of

variability in the random component and induce more accurate estimates of the parameters of

interest that are given by the coefficients (fixed effects) of a set of explanatory variables. The

proposed method is evaluated using presence-only data affected by sampling bias and non-

detection, taken from the Ross Sea section of the SOMBASE, an international compilation of

Southern Ocean Mollusc distributional records (Griffiths et al., 2003). In this case we specify

a Bayesian semi-parametric GLMM with area-specific (spatial) random effects. Interestingly,

in the absence of auxiliary information, this model draws latent information from these

opportunistic data such that the resulting estimates of the parameters of interest are coherent

with the results obtained in indirectly related studies based on data collected in planned

surveys. We interpret this result as evidence of the capacity of the proposed model to

induce estimates not severely biased by the presence of the above mentioned two types

of errors. Moreover, such estimates (and the corresponding predictions) are relatively more

§Only in Chakraborty (2010) a hierarchical Dirichlet process is applied to cluster the presence localities of multiple species and,

subsequently, to develop measures of range overlap from posterior draws.
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accurate than the ones obtained under a parametric GLMM including the same fixed effects

and random effects distributed according to a Normal distribution. Overall, such results

suggest that Bayesian semi-parametric modeling can open new avenues for application of

presence-only data, thereby helping to mobilize a wealth of biodiversity information largely

underutilized to date.

For similar reasons, i.e. to adjust for confounding effects of unknown underlying factors,

similar models are considered by Gill and Casella (2009) and Kyung et al. (2010, 2011) to

model political science data. Dorazio et al. (2008) use a GLMM with DP random effects

to model spatial heterogeneity in animal abundance. See also Carota et al. (2015), where a

similar approach is used to model population and sample frequencies in a privacy protection

problem.

A review of a large number of Bayesian nonparametric models is conducted by Phadia

(2013); fundamentals of nonparametric Bayesian inference are discussed at great length in

Ghoshal and van der Vaart (2016), while Mueller et al. (2015) focus on nonparametric

Bayesian data analysis (see Gelman et al., 2014). Other recent discussions on nonparametric

priors include Hjort et al. (2010); Ghoshal (2010); Mueller and Quintana (2004); Mueller

and Rodriguez (2013) and Walker (2013).

The article is structured as follows. Section 2 presents material and methods: the structure

of the data and their peculiarities and limitations are described in sub-section 2.1; the general

features characterizing the proposed model are presented in sub-section 2.2. In Section 3 a

Bayesian GLMM with spatial random effects a priori distributed according to a mixture

of Dirichlet Processes is applied to data on Ross Sea Mollusca and compared to several

simpler parametric GLMMs. There we see that the proposed semi-parametric hierarchical

model exhibits a good predictive performance and provides meaningful information about

the parameters of interest (fixed effects), thereby providing a useful guide for future research.

Finally, Section 4 provides a brief summary of the article and sketchs further research
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directions.

2. MATERIALS AND METHODS

2.1. Illustrative dataset and motivation

Our illustrative dataset is a compilation of primary biodiversity records collected in a

series of scientific expeditions in the Ross Sea region of Antarctica. This is one of the

most pristine ecosystems remaining on the planet (Ainley, 2002, 2010), and it has become

an increasingly important hub for biodiversity studies, hosting several permanent research

stations and numerous scientific expeditions. Biodiversity data on the region have been

published since 1899, when the British Southern Cross Expedition overwintered in Antarctica

(see Schiaparelli et al. (2014) for a review); moreover, some of the “historical” sites have never

been re-sampled, thereby standing as the only source of biodiversity data for those areas.

The Ross Sea section of the SOMBASE – the most complete database available to date

for any biogeographical or biodiversity study of marine molluscs in Antarctica – contains

293 species collected from 1899 to 2004 at different sites (sampling stations) in 619 discrete

sampling events. Data collected over this extended period of time present many challenging

issues for statistical analysis. Although they are always the results of repeated scientific

efforts (rather than being contributed by citizens), such data clearly suffer from sampling

bias because of the different sampling protocols applied in different scientific expeditions.

Moreover, a severe issue of unknown, and not identifiable, detection probability is created

by the lack of useful information about the gears used in data collection, as explained in

the next paragraph. Vice versa, they do not suffer from location error: for all 619 sampling

events we have perfectly reliable, point observations on latitude, longitude, and, in addition,

distance from the nearest scientific station and maximum depth. Maximum depth is the

value of depth at the site reported for towed gears and reduces to the value of depth at the
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site for the remaining gears.

Indeed, specific mention of the tools used to collect data in each sampling station (site) is

often made throughout the dataset (see Figure 1).

[Figure 1 about here.]

Such tools include grab, towed gears and fine-mesh (0.5 mm) towed gears, such as the

Rauschert dredge used in the Ross Sea for the first time in 2004 (Schiaparelli et al., 2014).

Nonetheless, the database is not always consistent in reporting the mesh size of the towed

gears, and, even worse, values of the gear are sometimes reported as “unknown” (gear

type not recorded in the expedition logbook and hence not evaluable in terms of sampling

performance), “multiple” (when a variety of sampling gears or several copies of the same gear

have been used at the same site, making it impossible to distinguish the contribution of each

gear/copy to the total number of species/individuals at a sampling site) and “other” (e.g.

sampling by hand during a scuba dive). For statistical analysis, it is very difficult to treat

these values; therefore in our analysis the gear is not exploited as a covariate so as not to

sacrifice part (i.e. 163) of the 619 observations. This choice implies that in modeling species

richness we are acutely aware of the existence of underlying unobserved or poorly measured

factors that determine hidden clusters in the data (and “gear” is certainly one of them). Not

accounting for these factors “[. . . ] means that some systematic component of the data falls

to an error term, exacerbating efforts to find parsimonious models with a good fit. Lacking

direct covariate information about their effects, we seek here to find help in the data itself

by specifying a nonparametric prior that reflects information in the data to help account

for underlying structure in the context of the model. Thus this heterogeneity is actually the

motivation for our methodological approach [. . . ]” (Gill and Casella, 2009, p. 2)¶.

¶See also Kyung et al. (2011), where data on terrorists and terrorist attacks are successfully modeled by a similar approach. These

data are either observed public events, which omit planned but failed or cancelled attacks (i.e. “undetectable” events), or classified

information at government agencies that are “inaccessible” to general researches. In other words, as in our case, but for completely

different reasons, these data suffer from both non-detection and sampling bias.
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Another crucial aspect often omitted in the historical data is the abundance of species

observed, which prevents studying biodiversity with measures more complex than species

richness. In conclusion, the structure of our dataset is the one described in Table 1, where

each cell registers, according to each site (sampling station) j, the presence (X) of a specific

species i. This is a matrix with 293 rows, representing the different species observed in at

least one of the 619 sites, recorded in columns, and we are interested in the total number

of distinct species along each column, or “species richness”, yj, observed at each site j,

j = 1, . . . , 619.

[Table 1 about here.]

Despite the high heterogeneity of these data, here, for the first time, we model all 619

available observations on species richness of Ross Sea Mollusca, yj, as a function of the above

mentioned geographical covariates: latitude, longitude, distance from the nearest scientific

station and maximum depth. To date, only samples from single research expeditions have

been studied (see Schiaparelli et al., 2006, 2014, e.g.). This choice will be further discussed

in Section 3, after a general description of the proposed model in the next sub-section. Here,

we just observe that:

(i) a first noticeable consequence of the joint analysis of data from different scientific

expeditions is an economic benefit since data collection is an expensive and difficult

task in the case of Ross Sea Mollusca and in many other biodiversity studies;

(ii) this illustrative dataset is used to clarify the potential of the proposed model with

presence-only data and, more in general, with problematic data.

For richer datasets, for instance datasets obtained by applying well-structured sampling

protocols (see Royle and Dorazio (2008) and references therein), such potential can be

exploited from within more complex hierarchical models where, for instance, there are levels

of the hierarchy explicitly devoted to estimate detection probabilities or to model species
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occurrences. Indeed, for very rich datasets “[. . . ] multispecies occupancy models provide an

integrated approach to modelling both community features, such as species richness, as well

as features of individual species, such as occupancy and habitat use, while accounting for

species-specific detection probabilities [. . . ]” (Tobler et al., 2015). When datasets are “poor”

such an approach cannot be successfully adopted; there are however different models, like

the one described here, that can be suitably deployed to try to retrieve valuable information

from problematic data.

2.2. The proposed family of models

The heterogeneity and the latent clustering due to incompleteness of data and meta-data

associated with a vast number of sampling events are problems quite common in primary

biodiversity databases including historical data. As previously mentioned, the basic reason

why we propose a Bayesian nonparametric approach – specifically the family of hierarchical

semi-parametric GLMMs described below – is that it allows us to exploit a data-driven

clustering of observations where the grouping is done nonparametrically rather than on

prefixed criteria. This clustering property is a distinctive feature of this family and proves

to be useful in many circumstances. Here we describe this property and suggest exploiting

it with presence-only data. In Section 3 we use a specific model belonging to this family to

cope with the confounding effects due to sampling bias and non-detection, i.e. the two types

of errors affecting the dataset on Ross Sea Mollusca.

At the first stage of the proposed hierarchical model any parametric distribution belonging

to the exponential family, say f(y), and any link function h(µ) can be specified for the

response variable y = [y1, . . . , yn] and its mean µ = [µ1, . . . , µn]. For instance, in our case,
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because the species richness is a count, we assume that:

yj|µj ∼ Poisson(µj), ∀ j = 1, . . . , n

h(µj) = log(µj) = x′jβ + φj

(1)

where xj represents a p× 1 vector of covariates, β is a p× 1 vector of fixed effects, and φj

denotes a random effect accounting for observation-specific deviations.

Then the distribution function of the random effect φj, say G, is assumed to be unknown

and drawn from a mixture of Dirichlet processes assigned to the family of all possible

distribution functions on the real line. The large support of this prior provides great flexibility

in estimating G and enhances the ability to account for unobservable or poorly understood

sources of heterogeneity in the response variable.

Specifically, G is modelled by a Dirichlet process prior, D(α,G0(θ)), with precision

parameter α and base probability measure G0(θ) (Ferguson, 1973), where G0 and θ are

a fixed distribution function and a vector of hyperparameters, respectively. When the

hyperparameters are unknown, the prior assigned to θ leads to a mixture of DPs (Antoniak,

1974). The general expression of the resulting GLMM is as follows,

yj|µj ∼ f(yj|µj), ∀ j = 1, . . . , n

h(µj) = x′jβ + φj

φj|G
iid∼ G

G|α,G0(θ) ∼ D(α,G0(θ))

α ∼ Gamma(a0, b0); β ∼ π1(β); θ ∼ π2(θ)

(2)

where π1(β) and π2(θ) are suitable parametric priors on the fixed effects β and on the

hyperparameters θ, respectively.

Under assumptions (2), the likelihood function uses information in the sample which does

not become expressed in a likelihood function corresponding to a GLMM with parametric
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random effects, hereafter “parametric GLMM”, and this fact improves the fit of the

corresponding model. In fact, the likelihood function is given by the sum of the huge number

of terms provided in (3), where all possible partitions (clusterings) C of the n observations

into c nonempty clusters, c = 1, . . . , n, are automatically considered (Liu, 1996; Lo, 1984):

L(β, α|y,θ) =
n∑
c=1

∑
C:|C|=c

Γ(α)

Γ(α + n)
αc

c∏
k=1

Γ(nk)

∫
f(y(k)|β, φk)dG0(θ)(φk), (3)

where y = [y1, . . . , yn], nk (1 ≤ nk ≤ n) denotes the number of observations in the k-th cluster

y(k),

Γ(α)

Γ(α +N)
αc

c∏
k=1

Γ(nk) = Pr{n1, . . . , nc|C, c}, (4)

and, finally,

f(y(k)|β, φk) =
∏

j ∈ cluster k

f(yj|µ(β, φk)). (5)

In such a likelihood, in particular in formula (5), we can observe that the same random effect

is assigned to all observations belonging to the same cluster y(k). The presence of clusters

implies that:

i. to learn about a given observation, information additional to that provided by covariates

explicitly introduced in the model is borrowed from observations included in the same

cluster, and this happens for each cluster to which such an observation can be assigned

in the context of all possible clusterizations into nonempty clusters of the n observations.

Therefore, these clusters include the ones representing patterns of association between

observations due to spatial and/or temporal correlation not explicitly modeled, the ones

due to omitted explanatory variables, and so on;

ii. as a matter of fact, the results obtained under such a Bayesian semi-parametric GLMM
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are obtained under an “average model”, i.e. under a model whose likelihood is obtained

by averaging over all the likelihoods corresponding to parametric GLMMs with the

same fixed effects and random effects φj
iid∼ G0(θ) grouped in all possible ways into c

nonempty clusters, c = 1, .., n. The weights associated with such parametric likelihoods

are given by the probabilities Pr{n1, . . . , nc|C, c} = Γ(α)
Γ(α+n)

αc
∏c

k=1 Γ(nk). This means

that accounting for uncertainty in the specification of a single distribution function for

random effects is roughly equivalent to accounting for uncertainty in the specification

of a single parametric GLMM for the response variable. This results in more robust

inferences to a distributional assumption that cannot be checked given that random

effects are unobservable variables.

3. GLMMS FOR SPECIES RICHNESS OF ROSS SEA MOLLUSCA

The literature on species richness usually focuses on estimation methods (see, e.g., the rich

lists of references in Gotelli and Colwell (2010), Dorazio et al. (2011) and Gotelli and Chao

(2013)). Contributions on direct modelling of species richness as a function of “suitable

explanatory variables” include, for instance, Mac Nally and Fleishman (2004); Steinmann

et al. (2009); Rahbek et al. (2007); Andrew et al. (2012). An alternative general simulation

model for macroecology is proposed in Gotelli et al. (2009), which contains a brief review of

the so-called curve fitting approach that has dominated the contemporary analyses of species

richness data and a specific mention (see also references therein) of the technical challenges

of spatial autocorrelation, nonlinear responses of species richness to environmental variables,

effects of spatial scale and problems with contemporary and historical factors influencing

species richness that are likely to interact in complex ways.

Our work differs from this literature in two ways. Firstly, we carry out an exploratory data

analysis aimed at discovering basic drivers or proxies for the underlying drivers of species
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richness; secondly, we do not aggregate point observations within pre-specified areas or, in

general, within grid cells. Vice versa, we consider the values of species richness, yj, observed

at each of the 619 sites and study their association with the set of geographical characteristics

of these sites: latitude, longitude, distance from the nearest scientific station and maximum

depth. In addition to fixed effects – i.e. to coefficients of such covariates observed without

error at all sites – we include a spatial random effect as follows. We overlay a 1◦ latitude × 1◦

longitude grid on the Ross Sea area and identify 112 boxes containing at least one of the 619

available point observations; then we assign the same random effect to all point observations

in the same box. The analysis is conducted using a semi-parametric Bayesian GLMMs with

box-specific random effects whose complete specification is given below

yj|µj ∼ Poisson(µj), ∀ j = 1, . . . , 619

log(µj) = x′jβ + φj

β ∼ Np(µβ, Vβ)

φj = z′jb

where the design vector z′j and the vector b are such that

φj = bi ∀ j ∈ boxi, i = 1, . . . , 112

bi|G
iid∼ G

G|α,N(m,Σ) ∼ D(α,N(m,Σ))

α ∼ Gamma(a0, b0)

m ∼ N(µm, Vm)

Σ ∼ IW(r, T )

(6)

where IW denotes an Inverse Wishart distribution with expected value is given by T−1/(r −

2).

Consequently all possible forms of association between non-empty boxes are automatically
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considered and exploited for inference in a way similar to the one illustrated in sub-section

2.2, point (i.). These forms of association can be interpreted as spatial association patterns

between groups of observations included in the non-empty boxes.

For comparison, we also consider models for the species richness of Ross Sea Mollusca

that are parametric elaborations of a Poisson regression model enriched in various ways to

account for over-dispersion, absence of zeros, excess of 1s and other visible violations of the

assumptions underlying the Poisson model (see Figure 2).

[Figure 2 about here.]

Initially, we consider parametric GLMMs with observation-specific random effects.

Given that yj ∼ Poisson(µj), two different distributions are explored for the random effect

φj in log(µj) = x′jβ + φj. First, we assume that eφj
iid∼ Gamma(a, b) with a = b, so that

E(eφj) = 1 and V ar(eφj) = 1/a. This assumption introduces extra-variability on a different

scale as ordinary predictors (Agresti (2013), p.556) and leads to the Negative Binomial

regression model (Cameron and Trivedi, 2013; Hilbe, 2007):

yj ∼ NB
(
a,

a

a+ ex
′
jβ

)
, j = 1, . . . , 619. (7)

where E(yj) = ex
′
jβ and V ar(yj) = ex

′
jβ(1 + ex

′
jβ/a). The parameter a is often referred to

as the “clumping parameter” (Anscombe, 1948; Young and Youn, 1998) since count data in

ecology are often clumped‖, producing an expected variance that is greater than the mean.

Successively, we introduce extra-variability in the Poisson regression model by assuming

φj
iid∼ N(0, σ2), (8)

i.e. a Lognormal distribution for eφj , implying E(yj) = ex
′
jβ+σ2

2 , j = 1, .., 619. In this case

we denote the distribution of yj, j = 1, .., 619, by PL, yj ∼ PL(t|β, σ2), t = 0, 1, 2, .. .

‖If the rate of capture of individuals varies randomly.
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Finally, we consider a parametric GLMM including box-specific random effects. Under this

model

φj = z′jb; bi ∼ N(0, Vm); j = 1, . . . , 619; i = 1, . . . , 112 (9)

where the design vector z′j and the vector b are such that, if observation j belongs to boxi,

then φj = bi, so that we have a random intercept specific to each box.

The set of models described above was estimated from the data by different methods. As

regards the point estimates reported in Table 2, the models in the first two columns (Poisson

and Negative Binomial families) were estimated by the maximum likelihood method, while

for the remaining models - more directly comparable to our semi-parametric GLMM - a

Bayesian view and Markov chain Monte Carlo (MCMC) methods were adopted. In any case,

the comparability of point estimates reported in different columns of Table 2 was guaranteed

by assuming independent vague normal priors for βj, N(0, 10000), j = 1, . . . , p, and a vague

Inverse Gamma prior for σ2. The point estimates in column 5 were obtained as a special

case of our Bayesian semi-parametric GLMM whose hyperparameters, in turn, are fixed so

as to induce vague priors for β and α (a0 = 0.0001, b0 = 0.0002, r = 0.1, T = 1, µβ = 0, Vβ =

10000, µm = 0, Vm = 1).

Columns 2 and 3 of Table 2 show the results corresponding to parametric GLMMs with

observation-specific random effects. For the sake of completeness, column 1 also provides

the results obtained under a simple Poisson regression model, i.e. the special case of (8)

for σ2 → 0. Under the latter model, all estimated coefficients turn out to be significant,

but the ratio of the residual deviance to the residual degrees of freedom is much greater

than 1, thereby suggesting the introduction of extra-variability. On the contrary, except
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for the intercept, most fixed effects estimated under the Negative Binomial and Poisson-

Lognormal families are not significant∗∗, and the few significant effects do not have a clear

biological interpretation, or, more precisely, they are not inscribed in a coherent biological

framework. These problems are even more pronounced when, in order to account for the

absence of zeros, the Poisson-Lognormal family is substituted by its zero-truncated version

(column 4). This is an adaptation of the Poisson-Lognormal family obtained by truncation,

that is by assuming that yj ∼ PL(t|β, σ2)/(1− PL(0|β, σ2)), t = 1, 2, ...., independently for

j = 1, .., 619. As the complexity of the model increases, almost none of the geographical

covariates seem to maintain any explanatory power for the species richness, with the latter

model representing the extreme case. A slightly better conclusion is suggested by inspection

of the results in the right side of Table 2 (column 5) obtained under the parametric GLMM

including box-specific random effects.

[Table 2 about here.]

Finally, Figure 3 describes our main result. It compares the 95% credible intervals (CI)

corresponding to the Bayesian semi-parametric hierarchical model (in red) to the ones

corresponding to the parametric GLMM with box-specific random effects (in black). All

models were implemented with 10000 MCMC iterations after a burn-in of the first 2000, and

standard diagnostic tools confirmed the convergence of runs. For the semi-parametric model

we made use of MCMC methods for nonconjugate priors. More in details: the algorithm

8 of (Neal, 2000) was considered (for a complete description, see Neal (2000) p. 262),

and the Metropolis-Hastings algorithm with an iteratively weighted least squares proposal

(Gamerman, 1997) was applied to generate the fully conditional distribution for fixed and

random effects (see also West (1985) ). For the precision parameter of the DP process we

used the method described in Escobar and West (1995).

∗∗Note that they cannot be directly compared because they assume different parametrizations by having different contrasts on their

estimates (Lee and Nelder, 2004, p. 222).
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[Figure 3 about here.]

When comparing the lengths of credible intervals in the two cases, we observe that the

semi-parametric GLMM results in uniformly shorter intervals than those corresponding to

a GLMM with normal random effects. Moreover, the values of standard measures of the

predictive performance of a model like the Deviance Information Criterion (DIC) and the

log pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979) improve respectively from

4953.30 and -2657.58, under the parametric GLMM, to 4938.96 and -2655.77, under the

semi-parametric one. This means that the richer random effect model is able to remove

more extraneous variability and also confirms the presence of extra information in the data

fruitfully exploited by our model. Following Kyung et al. (2010), we take this as evidence

that the proposed model captures nonparametric information of interest, which will now be

exploited in the interpretation of the fixed effects estimated under this model.

We observe that species richness decreases when depth and distance from the nearest

scientific station increase: these negative effects can be reasonably explained in terms of

varying availability of food at different depths or changes in sediment texture, for the first

coefficient, and in terms of different sampling intensities, which are generally higher in areas

closest to research stations, for the second coefficient. As regards latitude, it is usually taken

as a general proxy for other environmental gradients, particularly in polar areas. However, for

the Ross Sea at least, latitude has been shown to be a rather poor predictor of environmental

changes for benthic communities (Cummings et al., 2010). That its credible interval is not

bounded away from zero is therefore not surprising. Nonetheless such a result is now also

confirmed for Ross Sea Mollusca by a significantly enlarged sample from an enlarged area,

given that here, for the first time, it is also based on data from the never re-sampled and

never analyzed historical sites. Hence, in a sense, this is a new evidence in favor of an existing

conjecture based on indirectly related data provided by an independent, planned surveys.

Much more intriguing is the interpretation of the longitude effect. In this case we have a
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credible interval bounded away from zero under the semi-parametric GLMM, instead of a

“not significant” effect (CI including zero) under the parametric one, see also column 5 of

Table 2. This suggests that, in order to explain the increase of species richness of Ross Sea

Mollusca with longitude, specific environmental covariates need to be taken into account

to understand if the observed variation is related to different water masses and/or benthic

food availability. The Ross Sea shelf has a variety of possible causal factors that might be

related to longitude (see Smith et al. (2007) for a review of Ross Sea features and the general

environmental setting). Therefore such an interesting result warrants further analysis using

other taxa from the complete dataset to determine whether it holds true only for molluscs

or for other groups as well.

Overall, the inferential results that we have obtained can be interpreted as confirming the

ability of a Bayesian GLMM with nonparametric random effects to discount the effects of

omitted variables, or, in other words, to take them into account indirectly, by purifying from

their confounding effects the estimated effects of manifest variables in the model. In addition,

our model seems to be able to mobilize the biodiversity information stored in historical and

newly collected presence-only data in a useful way that contributes generating new research

questions and, probably, new knowledge.

4. CONCLUSIONS

This article has presented a general method for the joint analysis of historical and newly

collected presence-only data, and illustrated its potential by means of an application

to data on Ross Sea Mollusca. The analysis of data from over a century’s worth of

scientific expeditions presents particular challenges related to a variety of sampling issues

that ultimately lead to incomplete data and meta-data associated with a vast number of
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sampling events. This results in two types of observational errors: sampling bias and non-

detection. Sophisticated models must therefore be devised to overcome these challenges. In

particular, we have focused on a semi-parametric GLMM with DP random effects; this is

considered preferable to the standard approaches with parametric GLMMs also explored.

The nonparametric nature of DP random effects draws latent information from the data,

leading to more accurate inferences which, in turn, provide new answers to old research

questions and new questions soliciting further research. On the one hand, we see from data

ranging from 1899 to 2004 what has been highlighted in recent studies based on indirectly

related data collected in planned surveys, like the lack of significativity of the latitude in

the Ross Sea region. On the other, the significant coefficient of longitude indicates specific

directions in which to try to discover new variables with a direct impact on the mollusc

species richness.

Ultimately, the Bayesian semi-parametric approach that we have proposed in this article

emerges as a plausible general framework within which future biodiversity studies will be

able to embed presence-only data and, in general, problematic data, without losing a broad

comprehensive view, in order to try to produce new knowledge and information.
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Figure 1. Box plot of the species richness (a.) and of the species richness conditionally on gears (b.). The latter (number of observations

associated with each gear in parentheses) are: G=Grab (196), T=Towed gears (242), R=Rauschert (18), U=Unknown (115), M=Multiple

(22) and O=Other (26).
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Figure 2. Comparison of the observed species richness, represented in plot a, with y ∼ Poisson(4.932), in plot b, and with y ∼
NB(0.977, 0.165), in plot c. The parameters in the Poisson and Negative Binomial distributions are estimated from the data.
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Figure 3. 95% Credible intervals under the Bayesian semi-parametric (in red) and the parametric (in black) GLMM with box-specific

random effects.
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Table 1. Data matrix for the Ross Sea Mollusca

Species
Sampling Stations Incidence based

frequency of species (yi)1 2 3 4 ... 619
Acirsa antarctica X ... 12
Acteon antarcticus ... 3
Adacnarca limopsoides ... 8
Adacnarca nitens X ... 79
Adamussium colbecki X ... 80
Admete haini ... 2
... ... ... ... ... ... ... ...
Yoldiella sabrina ... 11
Species Richenss (yj) 26 6 3 4 ... 4
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Table 2. Fixed effect estimated under a parametric GLMM with observation-specific random
effects and family: Poisson, Negative Binomial, Poisson-Lognormal, zero-truncated Poisson-
Lognormal (columns 1-4, left side), and with box-specific random effects (columns 5, right
side). Significant estimates are denoted by *. Bayesian point estimates are denoted by *

when the corresponding 95% credible intervals are bounded away from zero.

Variable
name

Poisson
Negative
Binomial

Poisson
Lognormal

Zero truncated
Poisson

Lognormal

GLMM with Gaussian
box-specific

random effects
Intercept -4.13656* -5.58741* -3.47300* -5.79178* -0.41728
Latitude -0.02378* -0.02665 -0.01962 -0.02622 -0.03123
Longitude 0.02428* 0.03167* 0.01854* 0.02706 0.02689
Distance -0.00047* -0.00053 -0.00028 -0.00045 -0.00178*
Max Depth -0.00027* -0.00032* -0.00020 -0.00027 -0.00024*
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