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ABSTRACT Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by 11 

the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was 12 

monitored on an annual basis for the last twenty years, the sulfate concentrations increased over 4-fold. Among the 13 

main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of 14 

decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. 15 

Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute 16 

this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we 17 

observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment 18 

through runoff waters that are more concentrated in solutes or lowering the water-table, resulting in more rock exposed 19 

to air and enhanced mineral oxidation. 20 

INTRODUCTION 21 

High mountain ecosystems are especially vulnerable to climate change, and lakes in particular may act as sentinels.1,2  22 

An evaluable opportunity for a fine-scale investigation is particularly evident on the south slope of Mt. Everest (Nepal), 23 

which is one of the most heavily glacierized parts of Himalaya3. At the same time, this region is the most densely 24 

populated by glacial lakes in the overall Hindu-Kush-Himalaya range4. In this region, Lami et al.5 observed a significant 25 

relationship between the increase in the annual temperature recorded in the area and the enhanced conductivity detected 26 

in two glacial lakes located above 5000 m a.s.l. in the last decades, but without inferring any undergoing physical 27 

process or source of ionic release. At the same time, an increase in conductivity and sulfate concentrations has been 28 



observed in a few lakes of the European Alps, but in this case, the changes have been specifically ascribed to the solute 29 

release from an active rock glacier as a response to climate warming6. An increase in sulfate from melting ice during 30 

drought years is also reported by Williams et al.7 in the outflow of a rock glacier in the Colorado Front Range and by 31 

Mast et al.8 in southwestern Colorado. Even in this last case the authors consider temperature as the main climatic driver 32 

of change and sulfate as largely derived from pyrite (watershed weathering sources), although the undergoing physical 33 

processes are only supposed. 34 

In this study, after exploiting the recently reconstructed9 daily temperature and precipitation time series and the 35 

available accurate tracing of the glacier shrinkage in the region10, we discuss changes in the water chemistry of 20 36 

remote lakes located on the south slopes of central Himalaya that were sampled approximately after twenty years, 37 

starting in the early 1990s. Furthermore, during this period, two selected lakes (named Lake Cadastre Number (LCN)11 38 

9 and 10) were monitored yearly. We consider several drivers of changes of the in-lake chemistry, including 39 

temperature, precipitation, atmospheric deposition, rocks and soil weathering processes (periglacial environment), 40 

seasonal snow cover duration, and, in particular, the role of glaciers (subglacial and surrounding periglacial 41 

components). With regard to permafrost, little is known about its distribution in Himalaya.12 Therefore the subsurface 42 

ice and its possible degradation is not included in this analysis, although its influence on in-lake chemistry evolution 43 

cannot be excluded as reported by other authors13,14  in the Colorado Front Range. 44 

MATERIAL AND METHODS 45 

Study area. The monitored glacial lakes are located in Sagarmatha (Mt. Everest) National Park (SNP), Nepal, which 46 

lies in the central southern Himalayas (Fig. 1a, 1c). The SNP (1148 km2), crossed by the Khumbu valley, is the world’s 47 

highest protected area, extending from an elevation of 2845 to 8848 m a.s.l..15,16 According to Searle et al.17, the 48 

Khumbu valley substratum is dominantly made up of crystalline rocks (e.g,, sillimanite gneisses calc-silicates, 49 

amphibolites and K-feldspar augen gneisses) and leucogranites that intrude the metasediments as dykes, sills and 50 

bodies. The overlying Everest series (weakly metamorphosed shales and pelites with limestone bands), the Yellow band 51 

unit (limestones, marbles and calc-silicates) and the Ordovician limestones are only present in the eastern part of the 52 

basin. Extensive moraine debris of different ages, alluvial deposits and glacio-fluvial deposits host sub-surface aquifers 53 

in close connection with the hydrographic network. 54 

The land cover classification shows that almost one-third of the territory is characterized by temperate debris-55 

covered glaciers, with 75% of glacier surface area lying between 5000 m and 6500 m a.s.l.10 and with less than 10% of 56 

the park area being forested15,16. The soils in the high valleys are primarily Entisols.18 57 



Salerno et al.19 reported the presence of 170 glacial lakes and provided an accurate description of their topographic 58 

characteristics. Most of them are small (median surface of 0.01 km2) and within an elevation zone ranging from 4800 to 59 

5300 m a.s.l.. Table 1 shows the main morphometric features of the 20 survey lakes. They have been selected to cover 60 

wide elevation (4466-5427 m a.s.l.) (Fig. 1b), basin slope (9°-35°), and basin aspect (120°-231°) ranges. The mean 61 

glacial coverage is 18%, with three basins without glaciers (LCN40, LCN66, and LCN70). Two sub-basins (LCN10 and 62 

LCN67) does not have glaciers within the sub-basin, which directly drain into the lakes, while in this case their 63 

upstream lake basin (LCN9 and LCN68, respectively) presents a glacier coverage (all data are reported in Table SI1). 64 

Details on these lakes and their basins can be found in Tartari et al.20. All glaciers lying within the survey lake basins 65 

are debris-free and without clearly detectable accumulation and ablation zones. 66 

 The climate is characterized by the monsoons, with a prevailing S-N direction.21 During the last twenty years at 67 

the Pyramid meteorological station (5050 m a.s.l., Fig. 1c)9, which is located just 500 m from LCN9 (Fig. 1c), 90% of 68 

the precipitation is concentrated during June-September, and the probability of snowfall during these months is very 69 

low (4%), whereas the amount of snowfall at an annual level reaches 20%. Snow as a percentage of total precipitation 70 

increases with the elevation gradient justifying the wide glacier coverage in SNP. Recently, the daily temperature and 71 

precipitation time series of the last twenty years (1994-2013) were reconstructed by Salerno et al.9 for these altitudes 72 

(Fig. 1b), which correspond to the median elevation of the 20 survey lakes. The total annual cumulated precipitation at 73 

this elevation is 446 mm, with a mean annual temperature of -2.45 °C. The mean annual air temperature has increased 74 

by 0.9 °C since the early 1990s. The significant increases were experienced just for the months of April, November, and 75 

December.9 As the air temperature increased, the average elevation of the freezing line (0 °C isotherm) has moved 76 

upward. The major changes occurred in April, where it moved upward by 225 m, passing from around the mean 77 

elevation of glaciers terminuses to the mean elevation of the surfaces of the same glaciers located in the basins of the 20 78 

survey lakes (Fig. 1c). The increase in air temperature observed at these high elevations during April fits with the 79 

warming reported by Pal and Al-Tabbaa22, who observed that only April shows significant changes in all Indian regions 80 

and the West Himalaya (1901–2003 period). As for precipitation, a substantial reduction of rainfall (47%) and in the 81 

probability of snowfall (-10%) has been observed in this area over the last twenty years9. . According to Yao et al.23 82 

there is strong evidence of the general monsoon weakening even in the overall Himalayas. 83 

Water chemistry analysis. The chemical composition of 20 remote lakes located in SNP was evaluated in the period 84 

between 1990 and 1997 (hereafter early 1990s) and successively from 2008 to 2012 (hereafter early 2010s). Lake 85 

sampling was carried out in autumn, at the end of the monsoon season. Samples were collected from the lake shore, 86 

possibly close to the lake outlet. Moreover, for the lakes LCN 9 and LCN10, sampling and chemical analyses have been 87 

performed annually since 1990 (1991 for LCN9), usually in late September or October, with the exception of the 88 



missing years 1995-96 and 1998. For these lakes, three samples were generally collected along the water column from 89 

an inflatable boat in the deepest part of the lake. Here we took their average. For detailed information on the 90 

hydrochemical and biological characteristics of these lakes, see the work of Lami et al.6. 91 

All samples were collected using prewashed plastic bottles and stored at 4 °C for successive chemical analysis; these 92 

were performed during the 1990s by the CNR Water Research Institute and subsequently by the CNR Institute of 93 

Ecosystem Study (Italy). Several intercomparisons have been conducted to ensure data quality and comparability 94 

between the data produced by the two laboratories. Samples were analyzed for pH, conductivity, total alkalinity (using 95 

the Gran method for acidimetric titration), ammonium, total nitrogen, total phosphorus and reactive silica (by 96 

spectrophotometry), sulfate, nitrate, chloride, calcium, magnesium, sodium and potassium (by ion chromatography). 97 

Data were checked for internal consistency by means of the ionic balance and the comparison between measured and 98 

calculated conductivity. Details on the analytical methods and on the quality controls adopted in the laboratory can be 99 

found in Lami et al.5. 100 

In this paper, we focus on conductivity values, as an index of total solute concentrations of lakes, H+, and major ions: 101 

calcium + magnesium (Ca2++Mg2+), sulfate (SO4
2-) and bicarbonate (HCO3

-). These are indeed the prevailing ions in all 102 

sampled lakes, representing more than 80% of the total ionic content (Fig. SI1). We assume alkalinity as corresponding 103 

to bicarbonate ions, because at circum-neutral pH, as those of the study lakes, dissolved HCO3
- is the dominant species 104 

contributing to alkalinity. 105 

Morphometric and hydrological analysis. Seasonal snow cover duration of each survey lake basin has been attributed 106 

as a mean for the 2002-2012 period of the daily MODIS (Moderate Resolution Imaging Spectroradiometer) imagery 107 

(pixel 250 m) (http://modis.gsfc.nasa.gov/). The glacier surface areas within the survey lake basins were derived for the 108 

early 1990s from Landsat 5 TM (17 November 1992, pixel 30 m) and for the early 2010s from Landsat 11 ETM (30 109 

November 2011, pixel 15 m) remote imagery. Data and methods are detailed in Thakuri et al.10. We interpreted the land 110 

cover of the remaining part of each basin through a visual interpretation of the Advanced Land Observation Satellite 111 

(ALOS, October 2008, pixel 10 m) remote imagery and distinguished terrain coverage by bare rocks, bare soils, and 112 

shrub vegetation. No rock glaciers were detected in these basins by visual interpretation. 113 

Because we were interested in understanding whether the changes that occurred over the last twenty years in glacier 114 

surface areas and snow cover have influenced the solute variations observed during the same period, we had to 115 

overcome, as shown below, such limits linked with the resolution and availability of the satellite data. 116 

Regarding glaciers, the satellite resolution of remote imagery available for covering the analyzed period provides a 117 

large uncertainty in estimating changes in surface areas, especially for small glaciers, such as those located within the 118 

basins of the survey lakes; thus, the estimated changes are dubious19. This limit has been overcome by enlarging the 119 



scale of analysis to the overall SNP. At this scale, the 29 glaciers (with a surface area >1 km2) that were already traced 120 

by Thakuri et al.10 are more than 30 times larger (5.7±0.40 km2 as median) than those located within the survey lakes 121 

(0.31±0.10 km2 as median); thus, changes are more representative and less uncertain19. 122 

Concerning the snow cover, the MODIS imagery is available only since the early 2010s. For the previous decade, 123 

we deduced the trend in the coverage based on the estimated snowfall decrease reported in this area since the early 124 

1990s9. The increase of temperature observed outside the monsoon period, when the precipitation is almost completely 125 

composed by snow, brought a significant decrease (-14%, p < 0.05) of the snowfall probability for the last twenty years 126 

at 5050 m a.s.l.. The trend reported above has been calculated by these authors according to Fujita and Sakai24 and 127 

Ueno et al.25 assuming that the probability of snowfall and rainfall depends on mean daily air temperature, using as 128 

thresholds 0 and 4 °C, respectively. The variations that occurred in the 2002-2012 period were computed as the 129 

difference between the first five and the last five years. Even in this case, the analysis was enlarged to the overall SNP 130 

to increase the representativeness within an elevation ranging from 4500 to 5500 m a.s.l. (6152 MODIS pixels), i.e., the 131 

altitudinal band of the survey lakes (Fig. 1b). 132 

At this wide scale, we determined that changes in glacier surface areas and seasonal snow cover duration are related 133 

to certain morphometric boundary conditions. Elevation, aspect, and slope have been investigated for snow cover 134 

duration and glaciers, but for glaciers, we also considered the maximum, minimum and mean elevation, and the down 135 

and upstream slopes of the glaciers following the experience of Thakuri et al.10 and Salerno et al.19. Detailed 136 

computational methods of these morphometric variables are reported in the works of these authors. In the same way, at 137 

the scale of each survey lake basin, we determined that the differences that occurred in SO4
2- and HCO3

- are related to 138 

the same morphometric boundary conditions investigated for glaciers and snow cover duration at a wider scale. 139 

For simulating the daily melting of the glacier located in the LCN9 basin we used a T-index model26. This model 140 

uses the mean daily air temperature, the glacier elevation bands, and a melt factor (0.0087 m d-1 °C-1) provided by 141 

Kayastha et al.27 from a field study (Glacier AX010) located close to the SNP. 142 

Statistical analysis. We conducted a Principal Component Analysis (PCA) among the lake chemical components and 143 

the basin morphometric features to obtain information on the relationships among the data and to look for reasons that 144 

could justify the observed changes in major ion concentrations28. The test was performed by using the “princomp” and 145 

the “biplot” functions in the R Project environment29. The degree of correlation among data was verified through the 146 

correlation coefficient (r) after testing that the quantile-quantile plot of model residuals follows a normal distribution. 147 

Otherwise data were log-transformed to meet the statistical requirements for normal distribution; then the residuals of 148 

the regressions were tested for homoscedasticity (not shown here) (e.g.,29). The chemical concentrations of the 20 149 

survey lakes, measured in the early 1990s and the early 2010s, were compared, and the differences between the two 150 



periods were tested by using the non-parametric ANOVA for paired comparisons (Friedman test) at p<0.0528,30. 151 

Differences in glacier surface areas and snow cover duration were analyzed by applying the same statistical test. The 152 

significance of annual chemical trends was evaluated with the annual Mann Kendall test at p<0.05.31 153 

RESULTS AND DISCUSSION 154 

Survey lakes. In the early 1990s, most of the survey lakes exhibited low values of conductivity (25 µS cm-1 as 155 

median) (Table 2, Fig. 2a). After approximately 20 years, the conductivity increased significantly, by 47% (p<0.001) on 156 

average. In some cases, the values even doubled. Lakes became significantly (p<0.001) enriched in solutes, primarily in 157 

SO4
2- (+57%), then in Ca2++Mg2+ (+41%) and less in HCO3

- (+11%) (Table 2, Fig. 2b,c,d). The increase in SO4
2- was 158 

even 4-fold in LCN9 (from 84 to 327 µeq L-1) and LCN10 (from 73 to 285 µeq L-1) (Fig. 2b). For these lakes, a 159 

significant increasing annual trend (p<0.05) was observed both for conductivity, SO4
2-, Ca2++Mg2+, and HCO3

- 160 

concentrations (Fig. 3b,c,d), with two main peaks in 1998 and 2010 (discussed in the last paragraph). All survey lakes 161 

(Table 2 and Fig. 2e), as well as LCN9 and LCN10 (Fig. 3e), exhibited a significant increase of hydrogen ion (H+) 162 

concentrations (126%, p<0.01).  163 

The temporal change of the relative contribution of the various ions to the total ionic content of LCN 9 can be 164 

observed in Figure SI1: sulfate passed from 22 to 36%, calcium remained stable (41%), while alkalinity contribution 165 

decreased from 24 to 11%. To assess the relative change in the ionic composition of the survey lakes, we calculated the 166 

c-ratio HCO3
-/(HCO3

-+ SO4
2-), which is a geochemical indicator that is used to evaluate the relative dominance of the 167 

carbonation reaction and sulfide oxidation in meltwaters.32 The c-ratio decreased significantly in the survey lakes (-168 

18%, p<0.01) (Table 2, Fig. 2f). Particularly pronounced is the c-ratio decline observed in LCN9, from 0.56 to 0.29 (-169 

48%), and in LCN10, from 0.59 to 0.31 (-47%) (Fig. 3f). The only exception with respect to the general pattern is 170 

LCN31 (Fig. 2f). The Duwo glacier, which is located within the LCN31 basin, is surging and shows a divergent 171 

response to climate change with respect to all of the other glaciers located in the region.10 Therefore, we think that the 172 

two anomalies could be associated. All data presented in this section are reported in Table SI1. 173 

In the following, we discuss potential factors that may have contributed to the increase of solute concentrations in 174 

the lakes, with special attention towards SO4
2- and HCO3

- ions: atmospheric deposition, weathering, precipitation, 175 

glaciation, and snow cover duration. 176 

Atmospheric Deposition. The chemistry of wet deposition was investigated at the Pyramid station during 1991-199233 177 

and 2007-200834. The precipitation contents for all ions were the lowest ones among those measured at high elevation 178 

sites around the world32. The comparison between the studied periods revealed no substantial variations in SO4
2- and 179 

other compounds (NO3
− and NH4

+) that resulted from anthropic activities, thus suggesting that the tropospheric 180 



background concentrations are constant in the Himalayas34. These findings indicate that the atmospheric deposition 181 

cannot play significant role in the solute increasing trend recorded in Himalayan lakes. 182 

Land cover and Snow cover duration. We tested the possible dependence of SO4
2- and HCO3

- concentrations for the 183 

survey lakes sampled in 1990s with respect to the basin land cover and seasonal snow cover duration. We preferred to 184 

use 1990s data in order to investigate the dependences between these variables before a period (1990s-2010s) 185 

influenced decidedly more by higher climate-driven changes9. The correlation matrix among all of these variables is 186 

presented in Fig. SI3, and an overall overview of their mutual relationships is provided with the PCA in Fig. 4a. The 187 

main finding is that the SO4
2- concentrations are directly related to glacier coverage (r=0.72, p<0.001) (Fig. 4b), i.e., 188 

higher lake solute concentrations are found for basins with more glacial coverage. No relationship can be observed with 189 

the other selected variables and in particular with the snow cover duration. Furthermore, we note that the HCO3
- 190 

concentrations do not have significant relationship with the land cover and the snow cover duration. 191 

When observing the morphometric features of the LCN9 basin and the LCN10 sub-basin (Table 1), it becomes clear 192 

that the discriminating feature between these lakes is the presence of a small glacier of 0.11 km2 lying within the LCN9 193 

basin, whereas the LCN10, which is located downstream, receives the glacial melting indirectly from LCN9 (Graphical 194 

abstract). Concurrently, LCN10 has lower solute concentrations and conductivity (Fig. 3a, 3b, 3c, 3d). This fact can be 195 

interpreted as further evidence that glaciers (subglacial and surrounding periglacial components) are the most important 196 

driver of changes in both SO4
2- concentrations and that the runoff in the non glaciated areas of the LCN10 sub-basin as 197 

well as the possible groundwater discharge from headwater areas of the basin transports lower concentrations, thereby 198 

diluting the LCN10 content. This interpretation is corroborated by the further evidence provided by lakes LCN68 and 199 

LCN67. From Table SI1 we observe that the downstream lake (LCN67) has, among the other solutes, lower sulfate 200 

concentrations (733 µeq L-1 respect to 926 µeq L-1 for LCN68). Even in this case the discriminating feature is the 201 

presence of a glacier lying within the upstream lake basin (see Fig. SI2 and Salerno et al.19- Fig. SI2d-). 202 

Changes in glacier surface areas. Thakuri et al.10, considering glaciers larger than 1 km2, reported a surface area loss 203 

of -8.7%, p<0.01 for the overall SNP during the 1992-2011 period (uncertainty ±2.8%). Applying here the same remote 204 

imagery and methods reported by these authors, but at glaciers located within the basins of the 20 survey lakes 205 

(0.31±0.10 km2 as median), we found a higher decrease in glacier area, but with an uncertainty connected with the 206 

satellite resolution that increased by of an order of magnitude (-19.7%, p<0.01, uncertainty ±23.9%). The glacier within 207 

the LCN9 basin lost 14% (uncertainty ±22%) of its surface area. According to many authors10,35,36,37, even in SNP and 208 

in the Himalayas in general, the main losses in area over the last decades have been observed for smaller glaciers 209 

(glacier size vs glacier area change r=0.58, p<0.01, Fig. SI4). Therefore, the survey lake basins are subject to a glacier 210 



shrinkage twice that observed for the glacial masses in the SNP region. However, the reduced size of these glaciers 211 

causes the area loss estimation to be affected by a large uncertainty that is even higher than its magnitude, and the 212 

estimation is thus too rough to be directly compared with the chemical variations observed in the relevant downstream 213 

lakes. Therefore, as described above, we conducted two parallel analyses: at the SNP level and at the scale of a survey 214 

lake basin. 215 

At a larger scale, considering the data from Thakuri et al.10, we analyzed which morphometric factors were able to 216 

cause changes in surface areas in the last twenty years (Fig. 5a). The correlation matrix among all of these variables is 217 

presented in Fig. SI4. From the PCA analysis shown in Fig. 5a, we can see that the downstream slope (r=-0.66, 218 

p<0.001) (Fig. 5c) and the relevant aspect (r=-0.75, p<0.001) of glaciers are the main factors responsible for the surface 219 

area losses, whereas elevation seems to have less influence. These findings agree with the few other studies 220 

investigating these relationships19,35,36,37. Whereas elevation is a proxy for temperature35,37, aspect is a proxy for 221 

insolation38, and slope is the key factor responsible for the gravitational driving stresses to which glaciers are subjected3. 222 

Lower slopes are supposed to induce lower glacier ice flow, thus allowing the development of stagnant ice conditions 223 

and consequently lower terminus retreat rates3,39,40 and the development of supraglacial lakes19,41. In contrast, as we 224 

found here, under the climate warming pressure observed in the region for the last decades8, higher slopes favor the 225 

shrinkage of glaciers because they are supposed to contribute to the higher glacier velocity42. 226 

Moreover, we observed that even glacier aspect is indirectly correlated with surface area losses, i.e., the largest 227 

shrinkages have been experienced mainly for E and W facing glaciers, and the shrinkages are decidedly smaller for S 228 

facing ones (Fig. 5a). Considering that S oriented glaciers are supposed to receive more solar radiation38, the observed 229 

spatial shrinkage seems to be counterintuitive. However, we have to consider that, as their aspects deviates from S, the 230 

glaciers become significantly smaller (glacier aspect vs glacier size r=-0.61, p< 0.001) and steeper (glacier aspect vs 231 

glacier downstream slope r=0.52, p< 0.01) (all correlations are shown in Fig. SI4) because they are located in valleys 232 

perpendicular to the prevailing S-N direction of the monsoon. In our opinion, these valleys have been less hollowed, 233 

and the current glaciers are thus small and steep. Therefore, the observed correlation between aspect and glacier surface 234 

area losses indicates that gravitational stresses (conditioned by slopes) are higher for aspects far from S, and these, as 235 

observed above, are key factors in defining the rate of retreat of glaciers under the climatic pressure. 236 

Although affected by a wide uncertainty, even at the scale of 20 survey lake basins we analyzed which 237 

morphometric factors were able to cause changes in surface areas. The correlation matrix among all of these variables is 238 

presented in Fig. SI4. We can see that the glacier slope (r=-0.58, p<0.05) and the relevant aspect (r=-0.49, p<0.05) of 239 

glaciers are the main factors responsible for the surface area losses, though, for the effect of larger uncertainty, these 240 

correlations are weaker than what we found at large scale. 241 



Changes in snow cover duration. During the 2002-2012 period, we observed a decrease of the seasonal snow cover 242 

duration of -29% (p<0.01) within an elevation ranging from 4500 to 5500 m a.s.l. A similar behavior (even if we focus 243 

on the analysis exclusively) was found within the 20 survey lake basins (-27%, p<0.01). We found that the largest 244 

differences in snow cover duration occurred with W and S exposure and that the smallest occurred in the opposite 245 

orientations. Aspect (r=0.23, p<0.001) and elevation (r=0.24, p<0.001) are the main factors responsible for changes in 246 

snow cover duration, and we did not find any strong relationship with slope (all correlations are shown in Fig. SI5). In 247 

contrast to what we observed for glaciers, the snow cover duration at lower elevations decreased more due to higher 248 

temperatures that were recordable downstream, and the snow cover duration on S and W slopes decreased more than on 249 

N and E slopes, likely as a result of the higher solar irradiance received by these sides43. In the next paragraph changes 250 

observed in the seasonal snow cover duration are related to changes occurred in SO4
2- and HCO3

- concentrations of 20 251 

survey lakes. 252 

Changes in ionic concentrations. Once it is defined how variations recorded in glacier and snow cover duration have 253 

been conditioned by morphometric factors, we analyzed which of these factors are mainly responsible for changes 254 

observed in SO4
2- and HCO3

- concentrations in the survey lakes (Fig. 5b). Concerning the HCO3
- concentrations, we did 255 

not find any relationship with the selected morphometric boundary conditions (Fig. 5b; Fig. SI6). Differently, Figure 5b 256 

reveals that glacier slope (r=0.81, p<0.001) (Fig. 5d) and relevant aspect (r=0.66, p<0.01) are well correlated with SO4
2- 257 

concentration changes, whereas the direct relationship with the glacier surface areas losses is significant, but weaker 258 

(r=-0.49, p<0.05), probably affected by the high uncertainty connected with the measurements of small glaciers (all 259 

correlations are shown in Fig. SI6). From Figure SI6 we can also observe that the SO4
2- concentration changes are not 260 

correlated with the basin slopes (r=0.18, p>0.10), as well as the direct relationship between glaciers slopes and basins 261 

slopes is weak (r=0.44, p<0.05) enforcing the causal link between the SO4
2- variations and the glacier slopes. As 262 

indicated above, the glacier slope is also the main morphological feature able to explain the changes of the glacier 263 

surface area at higher and more representative scale (Fig. 5a and Fig. 5b). Therefore, we can assert that lake basins with 264 

steep glaciers oriented far from S have experienced higher glacier surface area losses and a concomitant SO4
2- increases. 265 

Differently, the main decreases in snow cover duration occurred at lower elevations and on land with a S orientation, 266 

and they are less strictly dependent on the terrain slope (Fig. SI5 and Fig. SI6). Therefore, the changes observed in snow 267 

cover duration seem not to be the main cause of the observed SO4
2- increases. 268 

LCN9 experienced a particularly evident increase in ionic concentrations, which was even 4-fold in the case of SO4
2- 269 

concentration (Fig. 3a). In this case, the reason for this huge change can also be found in that the LCN9 glacier has the 270 

most divergent aspect (SE-E, 110°) from the south orientation and has the highest glacier slope (36°) among the 20 271 

survey lakes (Table1). Moreover, a synchronous temporal pattern of solutes and conductivity can be observed in LCN9 272 



and LCN10 (Fig. 3a, 3b, 3c): the increases for both lakes should be driven by the same source, i.e., the glacier located 273 

within the LCN9 basin. 274 

To further investigate the processes, which could have led to the SO4
2- increase, we analyzed the associations 275 

between the main ions and how they changed during the last twenty years. We observed a highly significant positive 276 

relationship between SO4
2- and Ca2+ + Mg2+ in both in the early 1990s and in the early 2010s (r = 0.85 and 0.94, 277 

p<0.001) (Fig. SI3). On the contrary, the relationship between HCO3
- and Ca2+ + Mg2+ is weakly significant in the early 278 

1990s (r=0.39, p<0.05) (Fig. SI3) and not significant in the early 2010s. The association between SO4
2- and HCO3

- was 279 

quite low in both periods (r = 0.45, p=0.04 and “not significant” in 2010s). The ratios of (Ca2+ + Mg2+)/(Na+ + K+) was 280 

7.2 in the early 1990s and 8.7 in the early 2010s, indicating the relative weakness of silicate dissolution. This is 281 

confirmed also by the lack of correlation between Si and Na+ + K+ in the 2010s (r=0.17). These results make evident an 282 

excess of SO4
2- with respect to HCO3

- in waters flowing in the drainage system of glaciers. This shift towards SO4
2- 283 

enriched waters is even more evident in LCN9 and LCN10, as shown by the comparison of the ionic composition of 284 

lakes water in the 1990s and in the 2010s (Table SI1).  285 

It is known that subglacial environments are  dominated by carbonate dissolution and sulfide oxidation44, often 286 

microbially mediated45,46,47. Through these processes, carbonate and sulfate concentrations in melt waters are greater 287 

than might be expected from the bedrock lithology.48,49,50,51 A number of studies demonstrated that carbonation was 288 

mainly responsible of solute acquisition in the quick-flow component of the glacier hydrological system, while the 289 

enrichment in SO4
2- seems to be strictly associated to delayed flow waters.52 For these reasons, sulfate is considered an 290 

indicator of distributed type drainage beneath glaciers53 and its increase, in most glacial environments, is an effect of 291 

increasing residence times and rock/water interaction54. In general, the oxidation of sulfide minerals and the dissolution 292 

of carbonates are partially coupled, since the hydrogen ions, originated from the sulfide oxidations, fuel the carbonate 293 

hydrolysis53. Our results, showing the lack of any relationship between SO4
2- and HCO3

-, suggest that the two processes 294 

are uncoupled in our system i.e. protons generated by sulfide oxidation do not dissolve carbonates. Furthermore, for 295 

most lakes the c-ratio was at values lower than 0.5 in 2010s and, particularly for LCN9 and LCN10, reached 0.2 in 296 

some years. These results suggest that other processes, likely in addition to carbonate dissolution and sulfide oxidation, 297 

occurred in the selected lake basins.  298 

A process consistent with the elevated SO4
2-, Ca2+ and Mg2+ concentrations found recently in lake waters is the 299 

pyrite oxidation coupled to the preferential weathering of calcium-silicate minerals which presence is documented in the 300 

study area. As suggested by Williams et al.7 the Si produced from the weathering of calcium-silicate would be 301 

precipitated due to the effect of low temperature and this could explain the lack of correlation between SO4
2- and Si, and 302 

the slight Si increase observed in the studied period.  303 



The deglaciation observed in the study area has, first of all, increased the amount of meltwater causing a rising of 304 

conductivity of lake waters. The disproportional increase of SO4
2- compared to HCO3

- may be explained by i) a change 305 

in flow-paths and residence time of the meltwaters, leading to more favorable conditions for the oxidation of sulfides, 306 

and ii) the pyrite oxidation followed by the weathering of calcium-silicate. We cannot exclude a role of microbial 307 

populations at glacier beds if the conditions had become anoxic.45,46,47 Figure SI7 shows the significant correlation 308 

between H+ differences and SO4
2- differences (r=0.72, p<0.001) observed for the studied lakes, which can be interpreted 309 

as further evidence of the importance of sulfide oxidation connected with the glacier retreat.  At this regards it is 310 

interesting to observe that Andersen55 wrote that sulfide oxidation contributes to solute fluxes from glaciers to an extent 311 

greater than might be expected from mineral abundance. 312 

Weathering and precipitation.  313 

Regarding the weathering occurring on the non glaciated part of the basin (periglacial environment), we analyzed 314 

the behavior of the lakes (three) without glaciers within their basins. They showed a slight increase in SO4
2- 315 

concentration (+17% as median) (Fig. 2b), whereas higher increases were observed for lakes with glaciers within their 316 

basins (+78% as median). These differences between the two groups were significant (p<0.01). The slight increase in 317 

SO4
2- concentration of lakes without glaciers could be attributed to the intensification of weathering rates caused by the 318 

reduction of the snow cover duration56, although we already discussed that this process is not the main driver of change. 319 

Particularly, during the warmer season, on the sunny slopes, previously snow covered, an increase in soil temperature 320 

from 0°C to 25°C could be expected, which could intensify the weathering rates by an order of magnitude.57 321 

Weathering could be further enhanced by wetter reactive surface areas of minerals58, but the decreasing precipitation 322 

trend, as observed above over the last twenty years, does not support this possibility. 323 

Nonetheless, the decreasing precipitation trend could have influenced the solute concentration in a different way: 324 

lower but more concentrated runoff, could have slightly enriched the lakes59. These solute variations were caused by 325 

enhanced weathering rates, or more probably by more concentrated runoff. Another mechanism considers that the 326 

possible dropping of water-table depth, due to decreased groundwater recharge, resulting in more rock exposed to air 327 

and enhanced mineral oxidation.60 However they can be considered background increases that are common to all survey 328 

lakes with respect to the higher increases observed in conjunction with glacier shrinkages. 329 

Annual chemical trends for two selected lakes. Sulfate was the ion showing the most pronounced change in LCN9 330 

and LCN10 (Fig. SI1, Table SI1). Hence we tested the possible dependence of the SO4
2-

 concentrations in LCN9 on 331 

monthly mean temperature, precipitation, and glacier melting, estimated by applying the T-index model26. We found 332 

that SO4
2- concentrations are only significantly correlated with the mean temperature in April (r=0.74, p<0.001). The 333 



temperature and precipitation of the other months did not show any significant influence on the observed SO4
2- 334 

concentrations (Fig. SI8). As for estimated glacier melt, we found that the only month that was significantly correlated, 335 

even in this case, is April (r=0.74, p<0.001) (Fig. 6a, 6b), whereas March shows a weak correlation (r=0.45, p<0.1) 336 

(Fig. 6a).  337 

As shown above, significant increases in mean air temperature have been experienced over the last twenty years for 338 

the months of April, November and December.9 However, April is the only month in which the increase has been 339 

effective, i.e., it has de facto favored the melting process. More precisely, the 0 °C isotherm in April shifted from 340 

around the mean elevation of glacier fronts to the mean elevation of glaciers located in the survey lake basins (Fig. 1b). 341 

In contrast, during the winter months, the temperature is so low that the 0 °C isotherm upward cannot have reached 342 

these elevations, and it cannot have had an effective impact on the melting processes. As a result, the T-index model 343 

estimates a significant increasing trend only for April (p<0.01). At this regards, the two main peaks of conductivity and 344 

major ion concentrations in 1998 and 2010 observed in Figure 3 are caused by the high temperature registered for the 345 

month of April of those years with subsequent high melting processes as estimated by the T-index model. 346 

Previously, Lami et al.5 observed a significant relationship between the enhanced conductivity detected in LCN9 347 

and LCN10 and the annual temperature until 2008. Here we confirm the observations of these authors until 2013 348 

considering the temperature as the main climatic driver of change. Besides that, we found the temperature of April is the 349 

effective drive of the observed enhanced glacier melting process, which is considered here the main factor responsible 350 

for the observed increase of sulfate concentrations.  351 

The chemical variations observed in lake water in the last two decades represent a response of these fragile 352 

ecosystems to climate change. In particular, glacier retreat proved to be the main driver of the solute increase affecting 353 

the lakes. Major ion concentrations, and sulfate at a higher extent, significantly rose in lake water. Even if these changes 354 

do not pose a direct and immediate threat to the biota, they occurred in a limited time span, and significantly modified 355 

the average chemical composition of lake water. For these reasons, the lakes and the main factors driving their 356 

variability should be regularly monitored in the future, also in relation to the lake role as ecosystem services.  357 

SUPPORTING INFORMATION 358 

A table showing the chemical and topographic features of 20 survey lakes. A figure showing the relative contribution of 359 

various ions to the total ionic content of LCN 9 in the early 1990s and in the early 2010s. ALOS 2008 imagery of 360 

LCN68 and LCN67 basins. Correlation matrixes among chemical species, land covers, and topographic boundary 361 

conditions. A figure showing the relationship between the SO42- and the H+ concentration changes observed in all 362 



survey lakes between 1990s and 2010s. A figure showing  the PCAs among SO42- and HCO3
- concentrations of LCN9, 363 

mean temperature, and precipitation for each month of the year.  364 
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TABLES 501 

TABLE 1. Mean morphometric features and land cover for the 20 selected lakes (reference year 1992). For LCN 10 502 

data are referred to the sub-basin draining directly into the lake (see graphical abstract). 503 

 504 

Morphometry 
20 survey lakes 

Median 
(range) 

LCN9 LCN10 

Lake elevation (m a.s.l.) 5010(4466-5427) 5209 5058 
Lake area (km2) 0.02(0.003-0.581) 0.005 0.013 
Basin area (km2) 0.8(0.1-41) 0.66 0.32 
Basin slope (°) 29(9-35) 35 25 
Basin aspect (°) 160(120-231) 120 120 
Basin mean elevation (m a.s.l.) 5204(4843-5539) 5403 5102 
Glacier area (km2) 0.31(0.03-6.4) 0.11 - 
Glacier slope (°) 26(15-36) 36 - 
Glacier aspect (°) 151(110-221) 110 - 
Glacier mean elevation (m a.s.l.) 5326(5087-5581) 5463 - 
    
Land cover 

20 survey lakes 
Mean (range) LCN9 LCN10 

Glacier (%) 18(0-50) 17 0 
Bare rock (%) 28(0-66) 30 25 
Bare soil (%) 40(9-74) 53 75 
Shrub vegetation (%) 14(0-63) 0 0 

 505 
TABLE 2. Median values of conductivity, selected ionic concentrations, and c-ratio (see the text for the explanation) of 506 

the survey lakes sampled during the early 1990s and during the early 2010s. In brackets the standard deviation. 507 



 508 

Feature Early 1990s Early 2010s Difference (%) 

Conductivity (µS cm-1, 20 °C) 24.7 (16) 36.4 (27) +47 (p<0.001) 
SO42- (µeq L-1) 80 (129) 126 (245) +57 (p<0.001) 
HCO3- (µeq L-1) 128 (54) 141 (61) +11 (p<0.001) 
Ca2++Mg2+ (µeq L-1) 221 (124) 331 (224) +41 (p<0.001) 
H+ (µeq L-1) 0.03 (0.02) 0.07 (0.02) + 126% (p<0.01) 
c-ratio  0.66 (0.22) 0.55 (0.26) -18 (p<0.01) 

 509 

FIGURE 510 

FIGURE 1. a) Location of the study area in the Himalayas. b) Hypsometric curve of SNP and altitudinal glacier 511 

distribution. Along this curve, the location of 20 selected lakes is shown. The 0 °C isotherms corresponding to the mean 512 

monthly temperature in April are plotted for the years 1994 and 2013 according to the observed T trends and lapse 513 

rates9. c) Focused map on the spatial distribution of lakes and glaciers in Sagarmatha National Park (SNP) and the 514 

location of the Pyramid meteorological station. 515 
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FIGURE 2. Scatter-plots between a) conductivity, b) SO4
2-, c) HCO3

-, d) Ca2++Mg2+, e) H+, and f) c-ratio of the survey 524 

lakes sampled during the early 1990s and the early 2010s. The orange points represent lakes without glaciers within the 525 

basin. 526 
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FIGURE 3. Long-term trends of the annual values of a) conductivity, b) SO4
2-, c) HCO3

- d) Ca2++Mg2+, e) H+ 533 

concentrations, and f) c-ratio in LCN9 (red) and LCN10 (blue). 534 
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FIGURE 4. a) PCA among SO4
2-, HCO3

- concentrations of the survey lakes (early 1990s), land cover, and snow cover 545 

duration (Glacier: glacier coverage during the early1990s; Baresoil, Barerock, Shrubs: coverage for 2008; Snow: mean 546 

snow cover duration for each basin during the 2010s). b) The most significant correlation that emerged from the above 547 

PCA. 548 
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FIGURE 5. PCAs among morphometric parameters and a) glacier surface area variations (ΔGlacier) that occurred in 555 

the last twenty years in the overall SNP (data from Thakuri et al.10); b) relative SO4
2- and HCO3

- variations (Δ SO4
2-, 556 

ΔHCO3
-) that occurred in the same period for the 20 survey lakes; (Glacier_size=size of glaciers; Elev_max, 557 

Elev_mean, Elev_min: maximum, mean, and minimum glacier elevation, respectively; Slope, Slope_down, Slope_up: 558 

mean, downstream, and upstream glacier slope, respectively; Aspect: mean glacier aspect). The lower graphs (c and d) 559 

show the most significant correlations that emerged from the relevant PCAs shown above. 560 
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FIGURE 6. a) PCA among SO42- and HCO3
- concentrations of LCN9 sampled annually in late September or October 571 

(LCN9_ SO42-, LCN9_ HCO3
-, respectively) and the cumulated glacier melt (melti) modeled for each month (i) of the 572 

year. b) The lower graph shows the most significant correlation that emerged from the PCA: SO42-_LCN9 vs melt4. 573 
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