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Abstract 

The interest for the endovanilloid system and for transient receptor potential Vanilloid 1 (TRPV1) is 

continuously increasing, due to their involvement in inflammation, nociception and pruritus. Even if 

TRPV1 enrolment was highlighted in both physiological and pathological conditions, some aspects 

remain unclear, mostly in veterinary medicine. This study aimed to verify the expression and 

functionality of TRPV1 in canine keratinocytes to investigate in vitro the role of TRPV1 in these 

cells that are involved in different cutaneous pathologies. Keratinocytes primary cultures were 

isolated from bioptical samples and cultivated. Binding assay (using 3[H]-resiniferatoxin), 

displacement assay (in the presence of 1.2 nM 3[H]-resiniferatoxin) and functional assays (in the 

presence of 1 μCi/45Ca2+) with vanilloid agonists and antagonists, specifically addressed to 

TRPV1 receptor, were performed. Binding assay demonstrated the presence of measurable 

concentrations of TRPV1 (Bmax = 1,240 ± 120 fmol/mg protein; Kd = 0.01 ± 0.004 nM). 

Displacement assay highlighted the highest affinity for resiniferatoxin (RTX) and 5-iodo-

resiniferatoxin (5-I-RTX), among agonists and antagonists, respectively. The same compounds 

results as the most potent in the functional assays. This study demonstrated the identification and 

the characterization of TRPV1 receptor in primary canine keratinocytes cultures. The results are 

promising for a clinical use, but further in vivo investigations are required. 
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INTRODUCTION 

The transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that 

belongs to the Transient Receptor Potential (TRP) family of proteins (Veronesi and Oortgiesen, 

2011). TRP receptors are able to mediate the receptor response induced by external “transient” 

stimuli, such as light, temperature, low pH, electrical charge and xenobiotics (Starowicz et al., 

2007). TRPs are encoded by 28 genes and are divided into 6 subfamilies based on the amino acid 

homology: TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPP 

(polycystin) and TRPV (vanilloid) (Vandewauw et al., 2013). TRPV1 (Fig.1) was the first to be 

cloned among TRP ion channels (Caterina et al., 1997), and became one of the main characters in 

scientific investigations, and its presence was demonstrated in several organs and tissues, in 

physiological and pathological conditions, both for humans and animals (Starowicz et al., 2007; 

Patapoutian et al., 2005). 

The skin is the largest organ of the body and it is an interface with the environment. It protects 

water-rich internal organs from harmful external factors, i.e. dryness, chemicals, temperature and 

UV irradiation (Radner et al., 2014). It has been demonstrated that Ca2+ dynamics may play an 

important role in the homeostasis of epidermis, i.e., the outermost part of the skin (Denda et al., 

2000; Graham  et al., 2013; Permatasari et al., 2013). An increase in the intracellular Ca2+ 

concentration in response to external stimuli may result in epidermal cell differentiation (Graham  et 

al., 2013). These findings raise the possibility that epidermal keratinocytes have functional Ca2+-

permeable ion-channel receptors, similar to neuronal TRPV1. Indeed, data concerning the 

expression of functional TRPV1 in human skin are available, and the expression of TRPV1 in 

human keratinocytes suggests its involvement in the maturation and function of epithelial cells 

(Ständer et al., 2005), and skin disorders (Inoue et al., 2002; Barbas et al., 2013). In particular, it 

was demonstrated that the activation of epidermal TRPV1 plays a key role in nociception (Sałat et 

al., 2013), pruritus (Paus et al., 2006; Shim et al., 2007), and skin inflammation (Southall et al., 

2003; Ständer et al., 2004). Noteworthy, certain endocannabinoids (i.e., anandamide) and 

cannabimimetic endocannabinoid-like compounds (i.e., palmitoylethanolamide) are able to directly 

or indirectly desensitize TRPV1 (Veronesi and Oortgiesen, 2006), and may thus mitigate pruritus, 

inflammation and pain (Re et al., 2007). Indeed, TRPV1 is now often referred to as part of the 

endocannabinoid system (De Petrocellis et al., 2010). To date, mammalian TRPV1 has been cloned 

and characterized in humans (Hayes et al., 2000), rats (Caterina et al., 1997), guinea-pigs (Savidge 

et al., 2002), rabbits (Gavva et al., 2004), mice (Correll et al., 2004), and dogs (Phelps et al., 2005). 

From these and from other studies, the presence of specie-specific differences in the functional 

profile of TRPV1 arose (Chou et al., 2004; Vercelli et al., 2015a). 

 It should be considered of interest in veterinary medicine to identify and characterize TRPV1 in 

canine species, with particular respect to the skin and oral mucosa, two of the most important 

barriers between the body and the external environment, and often affected by inflammatory, 

allergic and/or neoplastic processes. 

Based on these premises, the aim of the present study was to confirm the presence of TRPV1 

receptor in in vitro canine keratinocytes cell culture model using binding assays and to verify the 

expression and to characterize the receptor using displacement and functional studies. 

  

MATERIALS AND METHODS 

 



Cell cultures 

Keratinocyte primary cultures were prepared from bioptic samples obtained from ear skin, ventral 

abdominal skin, oral mucosa and soft palate of dogs operated in the surgical rooms of the 

Veterinary Teaching Hospital of the Department of Veterinary Sciences of Turin (Italy). 

Tissues were aseptically cleaned and rinsed twice with povidone iodine scrub followed by 70% 

alcohol (Gupta et al., 2007), then 1.5 cm2 full-thickness skin/mucosal biopsies were obtained, and 

used as a source of keratinocytes. Dermal connective tissue was trimmed off, and the tissue samples 

were washed in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, Milan, Italy) containing a 

concentrated antibiotic-antimycotic solution (composed by penicillin G 1000 U/mL, streptomycin 

50 µg/mL, amphotericin B 2,5 µg/mL and gentamicin  100 µg/mL; Sigma-Aldrich, Milan, Italy) 

(Gupta et al., 2007), rinsed and then incubated for 2 h in the same medium in a 5% CO2 controlled 

atmosphere at 37 °C. Finally, subcutaneous fat and dermis were accurately removed without 

damaging the superficial layer of epidermis. The skin was then minced finely with a scalpel to small 

pieces (approximately 1 mm diameter) and plated for 1-2 weeks (this phase was named “early 

keratinocyte attachment”) in irradiated plastic culture dishes in complete William’s Medium E 

(WME) (Cambrex Bio Science, Petit-rechain, Belgium) added with: cholera toxin 10-10 M (to 

control fibroblast overgrowth), epidermal growth factor 10 ng/mL, fetal bovine serum 20%, 

penicillin G 100 U/mL, streptomycin 100 µg/mL, amphotericin B 0.25 µg/mL, gentamicin 100 

µg/mL (Sigma-Aldrich, Milan, Italy). 

Isolated keratinocytes were then incubated using the same culture medium in 5% CO2 controlled 

atmosphere at 37°C and re-seeded when reaching 80 % confluence (Sun et al., 2014; Poumay et al., 

2004; Watson et al., 2004). 

Morphological changes, growth and proliferation were observed every 2-3 days under inverted 

microscope (NikonCorporation, Tokio, Japan). Keratinocytes were seeded and expanded to obtain a 

sufficient number of cells for the following experiments, and cells were stored at -80 °C until use, 

when necessary. 

 

Binding assays 

TRPV1 radioligand binding assays were performed in canine keratinocytes in triplicate, using four 

pools of membranes containing approximately 180 x 106 cells, from which ten Scatchard’s analyses 

(n=10) were carried out. 

Binding assays for identification of the TRPV1 receptor in canine keratinocyte membranes were 

performed according to the methods described by Ross et al. (2001), and Puntambekar et al. (2004), 

but introducing some minor modifications. Briefly, thawed cells, were suspended in binding buffer 

(KCl 5 mM, NaCl 5,8 mM, CaCl2 0,75 mM, MgCl2 2 mM, sucrose 320 mM and HEPES 10 mM; 

pH 7.4), disrupted using a sonicator (XL 2020, Misonix Inc, NY, USA) and centrifuged at 3000 g 

for 10 min at 4 °C. The resulting supernatants were ultra-centrifuged at 105 000 g for 45 min at 4 

°C, in order to separate cytosolic fraction from cell membrane fraction. The final pellets were 

suspended in the same buffer, and protein concentration was measured according to the method 

described by Lowry et al. (1951). Keratinocyte membrane suspensions were diluted to a final 

concentration of 1 mg protein/mL. Aliquots of membrane suspension (100 µL) were incubated for 1 

h at 37 °C in a shaking water bath with increasing concentrations (0.025-3.2 nM) of labelled 

resiniferatoxin ([3H]RTX, 43 Ci/mmol, PerkinElmer, Boston, USA), a high affinity selective 



TRPV1 agonist (Szallasi et al., 1999), in absence (total binding) and in presence (non-specific 

binding) of 1 µM unlabelled RTX (Vercelli et al., 2015a; Barbero et al., 2006) to a final volume of 

incubation of 300 µL. The binding reaction was stopped by chilling incubation tubes in an ice-cold 

bath for 20 minutes. The incubation mixture was immediately filtered under vacuum using pre-

soaked glass fibre filters (Whatman GF/B, Whatman International, Maidstone, UK). Filters were 

then carefully washed with 3 × 3 mL of buffered saline (NaCl 154 mM, Tris-HCl 50 mM, pH 7.4) 

and solubilized with 4 mL of scintillation fluid (Filter Count, Canberra Packard, Meridien, CT, 

USA). The radioactivity retained on wet filters was measured for 2 minutes using a Tri-Carb 1600 

TR scintillator spectrometer (Canberra Packard, Meridien, CT, USA), with an efficiency of 60%. 

The maximum number of binding sites (Bmax) and the equilibrium dissociation constant (Kd) were 

estimated by use the Scatchard (Scatchard, 1949) analysis using a computer program (GraphPad 

Prism Software, San Diego, CA, USA). 

 

Displacement assays 

For competition experiments, aliquots of membrane suspension (100 µL), diluted to a final 

concentration of 1 mg protein/mL, and containing 1.2 nM [3H] RTX (minimal concentration that 

saturates the receptor system), were incubated and processed as previously described for binding 

assays, with increasing concentrations (10-11M–10-3M) of three TRPV1 unlabelled agonists 

(capsaicin, anandamide and RTX) and three TRPV1 unlabelled antagonists (capsazepine, 5’-iodo-

resiniferatoxin  - 5-I- RTX - and SB-366791) (Barbero et al., 2006). Unlabelled receptor ligand 

concentrations that inhibited 50% (IC50) of [3H]-RTX specific binding were determined from the 

competition curves obtained by nonlinear regression analysis of the data (GraphPad Prism 

Software, San Diego, CA, USA). The fitting for one-site model was tested by R2 from nonlinear 

regression and by the run test. The affinity constants (Ki) for the competitors were calculated using 

the Cheng–Prusoff equation (Cheng and Prusoff, 1973): 

  

where C is the concentration of radioligand used in the assay, and Kd the dissociation constant of 

the radioligand as obtained from the Scatchard plots (Scatchard, 1949). 

 

Functional studies 

The functionality of TRPV1 was assessed by measuring 45Ca2+ cell uptake. The potencies of the 

different vanilloid analogues to stimulate the uptake of Ca2+ and the capacity for antagonists to 

inhibit Ca2+ influx, were measured in the presence of 1 µCi 45Ca2+/mL. 

Briefly, for 45Ca2+ uptake assay, 250 μL of cell suspension (5 x 103/100 μL) were incubated for 20 

min at 37 °C in a shaking water bath in the presence of 1 μCi 45Ca2+/mL (45Ca - PerkinElmer, 

Boston USA; batch of 27.63 mCi/mL) in two parallel set of tubes with increasing concentrations 

(10-11 - 10-3 M) of the selective ligands: capsaicin, anandamide and RTX, as receptor agonists, and 

5-I-RTX and capsazepine, as receptor antagonists (Acs et al., 1996; Acs et al., 1997; Bıro et al., 

1998). The antagonists have been tested in the presence of RTX 2 nM for the measurement of the 

percentage of inhibition of 45Ca2+ uptake (IC50). Immediately after the incubation, extracellular 

45Ca2+ was removed by washing cells three times with ice-cold PBS (NaCl 140 mM, KCl 27 mM, 

KH2PO4 15 mM, Na2HPO4 90 mM, pH 7.4), then, PBS cell suspensions were transferred into 



vials containing 3 mL of scintillation fluid (Ultima GoldTM, Canberra Packard; Meridien, CT, 

USA) and radioactivity (counts per minute – cpm - /well) was measured by a Tri-Carb 1600 TR 

Canberra Packard scintillator spectrometer, with an efficiency of 60%. For each data point, four 

wells were assayed. 

 

RESULTS 

 

Radioligand binding assay 

The results obtained by radiobinding assay are shown in Table 1, and data are expressed as mean 

values ± SEM. A linear fit to the non-specific binding was used to calculate the non-specific 

component of the total binding at each free [3H]-RTX concentration, and the remaining part was 

defined as specific binding. The specific binding was fitted to a three-parameters function in the 

formula: 

bound = Bmax/(1 + (Kd/[L])n) 

where [L] is the free [3H]-RTX concentration, Bmax is the maximum specific binding, Kd is the 

dissociation constant, and n is the Hill coefficient (Barbero et al., 2006). 

Scatchard plots were linear, having a r value >0.9, and the receptor system was saturated by the 

increasing concentrations of [3H]-RTX used in the experiment. Scatchard analysis demonstrated the 

presence of measurable and saturable concentrations (Bmax = 1240±120 fmol/mg protein; Kd = 

0.01±0.004 nM) of a single class of specific binding sites for [3H]-RTX.  

 

Displacement studies 

Figure 2 shows the results obtained by competition studies on canine keratinocyte membranes using 

three selective agonists (capsaicin, anandamide, and RTX) and by three selective antagonists 

(capsazepine, 5-I-RTX and SB-366791). 

The tables reported in the insets of Fig. 2 show the affinity values (Ki) for the different selective 

TRPV1 agonists and antagonists derived from competition assays. All the experiments were carried 

out in the presence of saturating concentration of [3H]-RTX (1.2 nm) performed using canine 

keratinocyte membranes and performed 8 times (n=8). Among the agonists, RTX was the strongest 

analogue, having a Ki value of 8.7 x 10-10 M, while capsaicin and anandamine had 4.5 x 10-10 and 

1.5 x 10-10 M, respectively. Considering antagonists, 5-I-RTX had the highest Ki value (7.3 x 10-

10M), while capsazepine and SB-366791 Ki values resulted 1.4 x 10-8 and 1.09 x 10-8 M, 

respectively. It was also possible to calculate the maximum effect (Emax) corresponding to the 

maximal response induced by the system: among agonists, capsaicin was able to induce an effect of 

100.90% when bound to the receptor, while among antagonists, SB-366791 had an Emax value of 

94.90%. All the Ki and Emax values are summarized in the tables in the inset of Figure 2. 

 

Functional studies 



The results obtained by the functional evaluation of TRPV1 in canine keratinocytes are indicated by 

the potencies of the different vanilloid analogues to stimulate the uptake of Ca2+ and the ability of 

the antagonists to inhibit Ca2+ influx determined in the presence of 1 µCi/mL 45Ca2+. Figure 3 

shows the curves representing Ca2+ uptake induced in by the increasing concentrations of the three 

selective agonists (capsaicin, anandamide and RTX), and the corresponding table shows the 50% 

Efficacy Concentrations (EC50) of each compound. Similarly it was represented the inhibition of 

Ca2+ influx produced in canine keratinocytes by the increasing concentrations of the selective 

antagonists (5-I-RTX and capsazepine). Among agonists, RTX was the most efficient compound, 

having an EC50 value of 3.09 x 10-8M, while among antagonists, the highest efficiency was 

demonstrated by 5-I-RTX, having a IC50 value of 4.2 x10-9M. The maximum effect (Emax) was 

induced by capsaicin and capsazepine, among agonists and antagonists respectively. All the 

EC50/IC50 and Emax values of the functional studies are summarized in the tables in the inset of 

Figure 3. 

 

DISCUSSION 

In authors opinion, TRPV1 receptor is one of the most investigated targets of the last two decades, 

considering the huge amount of papers published on this topic.. It is known to be involved in 

nociception, pruritus (Paus et al., 2014; Shim et al., 2007), and skin inflammation in humans 

(Southall et al., 2003; Ständer et al., 2004). 

Functional TRPV1 receptors have been identified in human epidermal keratinocytes (Inoue et al., 

2002; Southall et al., 2003), fibroblasts (Kim et al., 2006), and skin mast cells (Ständer et al.,2004). 

Concerning the canine species, Phelps and co-workers (2005) cloned and functionally characterized 

TRPV1 in dog’s neuronal cells, and Vercelli et al. (2015a) demonstrated the expression of TRPV1 

in canine mammary cancer cells, no other cell being investigated so far in dogs.  

The aim of the present study was to identify and characterize TRPV1 receptor in canine primary 

keratinocytes, that are currently considered one of the main cell populations involved in skin 

allergies and atopic dermatitis both in humans and dogs (Albanesi, 2010; Asahina and Maeda, 2017; 

Santoro et al., 2015). 

The specific binding assays used in the present study provide the first unequivocal evidence for the 

existence of TRPV1 receptor in membranes derived from cultured canine primary keratinocytes. 

[3H]-RTX binding affinity for TRPV1 receptor (average Kd) in canine primary keratinocytes (0.01 

nM) was similar to those previously reported in rat sensory neurons (0.04 nM) (Szallasi and 

Blumberg, 1999) and rat transfected cell line (0.034 nM) and sensibly higher compared to human 

transfected cell line  (0.44 nM) (Chou et al., 2004) and organs, such as airways (0.25 nM, rat; 2 nM, 

human; and 7nM, guinea pig) and colon (3.0 nM) (Preti et al., 2012; Szallasi and Blumberg, 1999).  

The receptor characterization was completed by displacement studies performed using [3H]-RTX in 

presence of selective agonists and antagonists. According to the affinity values (Ki), the relative 

affinity of different compounds to TRPV1 receptor in membranes of canine keratinocytes was 

assessed. On the basis of the Ki values, the range of TRPV1 affinity for agonists was RTX >> 

capsaicin >> anandamide. Among antagonists, 5-I-RTX demonstrated the highest affinity to the 

receptor, i.e., more than capsazepine, and SB-366791.  

The affinity of capsaicin and capsazepine to TRPV1 expressed by canine keratinocyte membranes 

was much higher compared to finding by Acs and colleagues (1996) in rat neuronal membranes, 



i.e., Ki = 4.93 x 10-6 M and 3.89 x 10-6 M for capsaicin and capsazepine respectively.The 

functionality of TRPV1 expressed in canine keratinocytes in term of stimulation of 45Ca2+ uptake 

indicated the following order of potency for the tested agonists: RTX >> capsaicin >> anandamide. 

Based on IC50 values, 5-I-RTX was considered more potent than capsazepine to inhibit  45Ca2+. 

Displacement and functional data of TRPV1 agonists and antagonists are both scarce and difficult 

to compare, mainly because of differences in assay employed (e.g., calcium uptake, patch-clamp 

electrophysiology) and species-related heterogeneity in sensitivity to TRPV1 activation.  

Nonetheless, some comparison might be attempted. In the present study, RTX showed an agonistic 

activity (EC50 of  3.09 x 10-8M) weaker than those previously reported in human TRPV1-

transfected cell line (Appendino et al., 2007), rat neuronal membranes (Acs et al., 1996), mouse 

TRPV1-transfected cell line (Correll et al., 2004), and dog TRPV1-transfected cell line (Phelps et 

al., 2005) i.e., EC50 values of 1.9 × 10-11M, 9.4 x 10-10M, 1.5 x 10-10M, and 2.27 x 10-9M, 

respectively. On the contrary, the agonistic effect of capsaicin in canine keratinocytes (EC50 = 9.4 

x 10-8M) was stronger than rat neuronal membranes (EC50 = 2.7 x 10-7M) (Acs et al., 1996) and 

similar to human embryonic kidney cells (Appendino et al., 2007), dog TRPV1-transfected cell line 

(Phelps et al., 2005) and rat vagal afferent neurons (Fenwick et al., 2017), the EC50 values ranging 

from 4.0 x 10-8M to 4.6 x 10-8M. Similarly, anandamide showed stronger agonistic activity in 

canine keratinocytes compared to rat neuronal cultures (Fenwick et al., 2017), i.e., EC50 of 1.1 x 

10-7 vs 1.95 x 10-6.  

As far as antagonism concerns, the highest efficacy shown by 5-I-RTX in the present study agrees 

with previously published data, all reporting 5-I-RTX to be the most potent inhibitor (Appendino et 

al., 2010; Appendino et al., 2007; Phelps et al., 2005; Correll et al., 2004). An intriguing hypothesis 

is that the introduction of the iodine atom might not only increase the binding, but also induce better 

membrane penetration and thus higher potency given the intracellular localization of the vanilloid 

binding site on TRPV1 (Appendino et al., 2010). The comparison of IC50 value found in the 

present study for I-5-RTX points to a lower efficacy on canine keratinocyte TRPV1 (4.2 x 10-9M) 

as compared to dog, mouse and rat TRPV1-transfected cell lines (IC50 = 2.64 x 10-10M, 3.5 x 10-

10M, 1.5 x 10-10, respectively) (Phelps et al., 2005; Correll et al., 2004) but in the same order of 

magnitude to what shown in human TRPV1 transfected cell line, i.e., IC50 = 1.06 x 10-9M (Correll 

et al., 2004). 

Inhibition by capsazepine shown in the present study (IC50 = 2.06 x 10-8M) resulted to be superior 

to those found in mouse, rat, human TRPV1 (IC50 = 1.43 x 10-6M, 1.18 x 10-6M, 5.35 x 10-7M, 

respectively (Correll et al., 2004) and even dog TRPV1-transfected cell line (IC50 = 4.84 x 10-7M) 

(Phelps et al., 2005).   

Given all this, the species-related heterogeneity in TRPV1 response to different ligands should 

always be kept in mind. Although the high grade of homology between human and rat (85.7%), 

guinea pig (84.4%) rabbit (87.6%), and canine (89.1%) TRPV1s (Phelps et al., 2005), the 

pharmacologic modulation of TRPV1 among species is thus fairly heterogeneous. Further to what 

discussed above, also different sensitivity to phorbol 12-phenylacetate 13- acetate 20-homovanillate 

has been shown between human, guinea pig and rat TRPV1s (Vercelli et al., 2015b). In this light, 

the results obtained in human keratinocytes should not be simply translated into canine species, and 

competitive/non-competitive TRPV1 agonists and antagonists continue to be investigated in a 

species-specific way with the final aim to obtain a targeted therapy (Garcia-Martinez et al., 2002; 

Pomonis et al., 2003; Gunthorpe et al., 2009; Palazzo et al., 2012).. The complex functional roles of 

TRPV1 signaling in human skin in physiological and pathological conditions has been studied (Lee 



et al., 2015; Radtke et al., 2011), i.e. in pruritus (Paus et al., 2006; Shim et al., 2007), and skin 

inflammation (Southall et al., 2003; Ständer et al., 2004), but needs further analysis and clarification 

to hypothesize new therapeutic strategies. One straightforward possibility is that the activation of 

TRPV1, functioning as a calcium-permeable channel (Szallasi et al., 1999), leads to an increase in 

intracellular Ca2+ concentration and hence may initiate calcium-mediated processes (Vercelli et al., 

2015a). Such calcium-coupled mechanisms have been described for human mast cells and 

epidermal keratinocytes (pro-inflammatory mediator release), urinary epithelial cells (nitric oxide 

release), and glial cells (proliferation, differentiation, apoptosis) (Birder et al., 2001; Southall et al., 

2003; Bıro et al., 1998). In addition, since most skin cell functions are strongly affected by Ca2+ 

concentrations, TRPV1 may possess a pivotal role, for example, in regulating keratinocyte 

differentiation and proliferation, as demonstrated for other TRP receptors (Santoni et al., 2011). 

TRPV1 is expressed not only on epidermal keratinocytes of normal skin and hair follicle (Bodó et 

al., 2005), but also by on neuroectodermal and mesenchymal cell types such as Langerhans cells, 

sebocytes, sweat gland epithelium, endothelial and smooth muscle cells of skin blood vessels, and 

mast cells (Ständer et al., 2004; Nilius, 2007). This widespread pattern of TRPV1 protein 

expression suggests multiple, previously unappreciated, additional functions for TRPV1-mediated 

signaling, well beyond nociception (Ambrosino et al., 2013).  

Importantly, cannabinoid receptors 1 and 2 are also expressed in the canine skin (Esposito et al., 

2013; Abramo et al., 2014), and as previously cited, TRPV1 is now often referred to as a 

component of the endocannabinoid system (De Petrocellis et al., 2010), due to the fact that certain 

endocannabinoids (i.e., anandamide) and/ or endocannabinoid-like compounds (i.e., 

palmitoylethanolamide) are able to directly or indirectly interact with TRPV1 receptor and may thus 

modulate pruritus, inflammation and pain perceptions (Re et al., 2007). In particular, the 

endocannabinoid-like compound palmitoylethanolamide (an endogenous fatty acid amide) was 

shown to (i) potentiate Ca2+ responses triggered by anandamide in TRPV1-transfected cells (De 

Petrocellis et al., 2005), (ii) activate and desensitize TRPV1 channels in peripheral sensory neurons 

(Ambrosino et al., 2013), and (iii) potentiate endocannabinoid actions at TRPV1 receptor in 

keratinocyte cell line (Petrosino et al., 2016) . Moreover, several in vivo studies provide evidence 

supporting TRPV1 to be one of the molecular target for the anti-inflammatory and pain relieving 

effects of palmitoylethanolamide (Costa et al., 2008; Ho et al., 2008; Petrosino et al., 2010; 

Starowicz et al., 2013; Capasso et al., 2014). Taking into consideration all the mentioned factors, 

and considering that canine keratinocytes express functional TRPV1, new therapeutic strategies 

based on TRPV1 modulation might be investigated in veterinary dermatology.  

In human medicine, classical vanilloids, i.e., capsaicin, are nowadays used in creams, patch and 

subcutaneous injection to induce a local desensitization of cutaneous sensory nerves and control 

neuropathic pain (Vercelli et al., 2015b; Bley, 2004). The common side effects of these products 

(e.g. burning, itching, dryness, pain, redness, swelling, or soreness at the application site), prompted 

new efforts to develop safer and more efficacious approaches targeting TRPV1 for pain, 

inflammation and pruritus relief. In this light, competitive and non-competitive TRPV1 antagonists 

have been developed and continued to be currently under investigation (Bley, 2004; Garcia-

Martinez  et al., 2002; Pomonis et al., 2003; Gunthorpe et al., 2009; Palazzo et al., 2012).  

On the other hand, compound like palmitoylethanolamide is currently used in veterinary 

dermatology and seems to offer three major advantages. First, it is an endogenous compound, being 

identified in almost all mammalian tissues (Palazzo et al., 2012; Esposito et al., 2013), included 

canine skin (Abramo et al., 2014; Scarampella et al., 2001). Second, it modulates an array of 

promiscuous molecular targets (e.g., cannabinoid receptors 1 and 2, peroxisome proliferator-



activated receptors, G protein-coupled receptor, and TPRV1 of course), all being involved, although 

differently, in the patho-phisiological pathways of inflammation, pruritus and pain in human and 

canine species (Re et al., 2007; Petrosino et al., 2016).  Lastly, it is a safe and well tolerated 

compound (Nestmann, 2016; Noli et al., 2015) 

In conclusion, the present study identified and functionally characterized for the first time TRPV1 

in canine keratinocytes. Taking into account the role played by this cation channel in skin patho-

physiology, keratinocyte TRPV1 might be a novel therapeutic target for treatment of pruritus, and 

skin inflammation. 
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FIGURE 1 Molecular architecture of the vanilloid receptor. TRPV channel subunits have a common 

topology of six transmembrane segments with a pore region between fifth and sixth segment, and 

cytoplasmatic N and C termini. These subunits assemble as tetramers around a central aqueous 

pore, producing nonselective cation channels. TRPV channels contain three to four ankyrin 

domains in the N terminus that are thought to interact with cytosolic proteins (protein kinase A, C, 

calcium/calmodulin-dependent protein kinase II). Cytosolic C-terminal domain-carrying calmodulin 

(CaM) and phosphatydylinositol-4,5- bisphosphate (PIP2) binding sites. 

 



 

 

FIGURE 2 Displacement studies of TRPV1 in canine keratinocyte membranes. The displacement 

studies (n = 8) were performed in the presence of saturating concentrations of [3H]-RTX (1.2 nM), 

using increasing concentrations (10−11–10−3 M) of (a) three selective agonists: anandamide, 

capsaicin and resiniferatoxin, and (b) three selective antagonists: capsazepine, 5-I- RTX and SB-

366791. The error bars indicate SEM. The inset tables show the affinities (Ki) for the different 

selective TRPV1 agonists (a) and antagonists (b). 

 

 

 
 

 

FIGURE 3 Stimulation of 45Ca uptake induced in canine keratinocyte membranes. The 

functionality studies were performed using canine keratinocytes membranes and increasing 

concentrations (10−11–10−3 M) of three selective agonists: anandamide, RTX and capsaicin, and 

two selective TRPV1 antagonists: 5-I-RTX and capsazepine. For each data point in each 

experiment, four wells were assayed (n = 4). The error bars indicate SEM. The tables show the 

efficacy concentration of 50% (EC50) of the used vanilloid agonists on TRPV1 in canine 

keratinocyte membranes and the inhibitory concentration 50 (IC50) of Ca2+ influx of 5-I- RTX and 

capsazepine. 
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