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 Introduction

In order to overcome the increased risk of cardio-
vascular toxicity associated with classic chemo-
therapeutics, since the last two decades, newer 
biological drugs have been designed to “target” 
specific proteins involved in cancer proliferation. 
Unfortunately, these proteins are also important 
for the maintenance of cardiovascular homeosta-
sis. Endothelial damage is a common feature not 
only of anti-VEGF agents (bevacizumab, suni-
tinib, sorafenib) but also of anti-Her-2 drugs [1, 
2]. The humanized anti-ErbB2 antibody trastu-
zumab is the prototypical biological drug first 
introduced in antineoplastic protocols for the 
treatment of ErbB2+ breast cancer. ErbB2 is a 
transmembrane glycoprotein receptor overex-

pressed in several breast cancers, which also 
plays a major role in the heart in cell growth, 
including myocyte growth, and inhibition of 
apoptosis [3–7]. When administered alone, the 
risk of significant cardiotoxicity by anti-Her-2 
drugs appears to be low, but in clinical trials, 25% 
of patients treated with trastuzumab developed 
systolic dysfunction, especially when adminis-
tered with or shortly after doxorubicin [2, 8–10].

 Cardiac Toxicity of Anti-ErbB2 
Inhibitors

Inhibition of the axis neuregulin 1/ErbB2 signal-
ing has been considered the key cardiotoxic 
effect of anti-ErbB2 drugs [11, 12]. Briefly, adult 
cardiac microvascular endothelial cells can 
release neuregulin 1 (NRG1, especially the 
NRG1b isoform) [13] following to various stim-
uli, including mechanical strain. NRG1 acts on 
cardiac myocytes in a paracrine manner, trigger-
ing ErbB4/ErbB4 homodimerization and ErbB4/
ErbB2 heterodimerization to induce protective 
pathways in response to stress [11, 12]. 
Importantly, the ErbB2 pathway regulates cell 
survival and function and can even impact mam-
malian heart regeneration [14] and can be stimu-
lated when the heart faces adverse hemodynamics 
or other stress, such as ANT therapies (Fig. 3.1) 
[11, 15]. It has been hypothesized that anti-ErbB2 
drugs can induce myocyte damage and, 
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 eventually, HF by deranging the NRG1/ErbB4/
ErbB2 pathway in the myocardium. This event is 
more likely to occur upon cardiomyocyte expo-
sure to other stressors, such as hypertension or 
doxorubicin [11, 16, 17]. Such concept seems to 
be corroborated by seminal papers that showed 
LV dilation in ErbB2 cardiac KO mice, with 
enhanced susceptibility to cardiomyocyte dam-
age from anthracyclines [18, 19]. On the oppo-
site, ErbB2-overexpressor hearts exhibited 
reduced levels of ROS in mitochondria, with 
lower ROS levels and less cell death in neonatal 
myocytes isolated from ErbB2(tg) hearts after 
administration of anthracyclines. This was due to 
higher levels of glutathione peroxidase 1 (GPx1) 
protein and activity, coupled to an increase of two 
known GPx activators, c-Abl and Arg, suggesting 
novel mechanisms by which ErbB2 blockers can 
damage heart structure and function [20].

Additional studies on NRG1/ErbB4/ErbB2 
have moved from cancer and HF to heart disease 
from any cause, paving the way to novel thera-

peutic implications. For instance, in mice sub-
jected to pressure overload,  both mRNA and 
protein levels of ErbB4 and ErbB2 were signifi-
cantly diminished with the progression of the dis-
ease from hypertrophy to decompensated HF [7, 
11, 21]. Consistently, human  failing myocardia 
exhibited lower ErbB2 and ErbB4 receptor 
expression and activation/phosphorylation, when 
compared to organ donors [22]. Interestingly, 
levels of ErbB4 and ErbB2 could be restored 
back to normal by implanting LV assist device 
and unloading the heart [22, 23]. In an apparent 
contrast with these results, there was enhanced 
phosphorylation of ErbB4 and ErbB2  in dogs 
with HF induced by tachypacing [24]. 
Dysregulation of the intracellular downstream 
effectors of ErbB4 and ErbB2, ERK1/2, and Akt 
was also observed, suggesting deranged NRG1/
ErbB4/ErbB2 pathway. Importantly, most studies 
show enhanced expression of NRG1 in HF com-
pared to control conditions [11, 22, 24]. This evi-
dence points out that in the pathophysiology of 
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Fig. 3.1 Cardiomyocyte damage induced by trastu-
zumab. Cardiac stressors, such as pressure or volume 

overload but also anthracyclines, are able to upregulate 
Her-2 on cardiomyocyte, rendering these cells more sus-
ceptible to following exposure to trastuzumab
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HF, a major player is deregulation of the NRG1/
ErbB4/ErbB2 signaling. In particular, anti- 
ERbB2 drugs can bring to cardiac dysfunction; 
and, in spite of normal or enhanced levels of 
NRG1, ErbB4/ErbB2 is downregulated and/or 
uncoupled from intracellular signaling, possibly 
exacerbating LV decompensation [11]. In addi-
tion, recent studies show that catecholamines, 
which usually increase in the setting of heart dys-
function and with administration of doxorubicin 
[11, 25, 26], can enhance ErbB2 expression in 
cardiomyocytes, thus making these cells more 
vulnerable to the effects of trastuzumab, bringing 
to cardiotoxicity [27].

 Vascular Toxicity of Anti-ErbB2 
Inhibitors

ErbB2 inhibition was also demonstrated to cause 
damage to vascular function through a reduction 
in NO bioavailability and an increase in ROS 
production [28, 29]. Indeed, cardiac endothelium 
produces the growth factor NRG1, which acti-
vates the Her-2/Her-4 complex, thus activating 
cascades of ERK–MAPK and PI3K–Akt signal-
ing pathways, promoting cell survival [13]. 
Importantly, NRG1 modulates angiogenesis and 
NOS-dependent desensitization of adrenergic 
stimulation [30]. Trastuzumab treatment acts on 
Her-2, inhibiting survival signals and bringing to 
mitochondrial dysfunction and depletion of 
energy supplies. In addition, stress factors, such 
as hypertension or previous anthracycline admin-
istration, increase the production of reactive oxy-
gen species (ROS) [31].

Under normal conditions, cells restrict this 
event by overexpressing Her-2, thus leading to 
the activation of the cell survival pathways. Her-2 
blockade does not allow the activation of these 
pathways, thus creating a state of enhanced oxi-
dative stress leading to apoptosis [3–6, 8, 30, 
32–35].

Importantly, an inverse correlation between 
circulating levels of neuregulin 1 and level of 
coronary artery disease has been observed [36]. 
In addition, low NRG1 synthesis impairs cardiac 
recovery after an ischemic insult, and impairment 

in NRG1/HER axis was found in experimental 
diabetic cardiomyopathy [37, 38]. Intriguingly, 
patients with coronary artery disease and those 
with diabetes mellitus also have a higher risk of 
doxorubicin-induced cardiomyopathy, and neu-
regulin administration ameliorates heart function 
after anthracycline-induced myocardial injury 
[39]. Hence, there may be elements of neuregulin- 
related endothelial–myocardial coupling even in 
mechanisms of toxicity from classic cardiotoxic 
drugs such as anthracyclines. Accordingly, it can 
be postulated that patients with higher activity/
stimulation of the NRG1/HER signaling pathway 
are more susceptible to trastuzumab cardiotoxic-
ity. This would explain the increased incidence of 
cardiotoxicity in patients treated with trastu-
zumab in close temporal proximity to anthracy-
clines. The fact that subjects with concomitant 
cardiovascular risk factors or disease have an 
increased higher risk suggests that this pathway 
is particularly important and any further reduc-
tion from baseline can be detrimental. 
Experimental work has shown that lack of ErbB2 
induces the development of dilated cardiomyopa-
thy and impaired adaptation response to after 
load increase [18]. Further studies will need to 
demonstrate correlations between ErbB2 regula-
tion of cardiac function and microvascular den-
sity [40].
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