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An approximate solution to rent-seeking contests

with private information

Andrea Gallice∗

University of Torino and Collegio Carlo Alberto

Abstract

We propose an approximate solution to rent-seeking contests in which partic-

ipants have heterogeneous and private valuations. The procedure only requires

common knowledge about the mean of the distribution of valuations. We obtain

a closed-form expression for an agent’s level of investment and subject it to com-

parative statics analysis. We then assess the performance of the model and find

that the proposed solution provides a remarkably effective approximation of the

optimal solution for a wide range of parameter specifications.

Keywords: rent-seeking contests; private information; approximate solution; be-

havioural OR.

1 Introduction

A rent-seeking contest is a probabilistic contest in which players invest resources in

order to influence the probability that they will win a prize. Rent-seeking contests were

first investigated by Tullock (1980). Tullock’s seminal model has since been generalized

in many directions (see Congleton et al., 2008, for a comprehensive literature review)

and applied in different domains, such as the analysis of political lobbying (Hillman &

∗Address: ESOMAS Department, Corso Unione Sovietica 218bis, 10134, Torino, Italy. Email:
andrea.gallice@unito.it. Telephone: +39 0116705287. Fax: +39 0116705082.
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Riley, 1989), conflicts (Garfinkel & Skaperdas, 2006), R&D races (Baye & Hoppe, 2003),

and sporting competitions (Szymanski, 2003). Rent-seeking games are also increasingly

used in OR, such as in modelling interactions between attackers and defenders (Hausken,

2008; Hausken & Bier, 2011; Zhuang et al., 2011; Rinott et al., 2012; Deck et al., 2015;

Mo et al., 2015) or selecting suppliers in outsourcing decisions (Benjaafar et al., 2007;

Fu et al., 2016).

One interesting line of research involves optimal player behaviour (i.e., the level of

investment that maximizes expected payoff) when the standard hypothesis of all par-

ticipants sharing a common prize valuation does not hold. Indeed, in many typical

applications of rent-seeking contests, the alternative assumption of asymmetric and pri-

vate valuations seems more realistic. For instance, in the case of R&D expenditures,

different competitors may assess the potential of a patent according to different infor-

mation or in light of different scenarios.

Early research allowed for heterogeneity in player valuations but maintained the as-

sumption of their common knowledge (Hillman & Riley, 1989; Nti, 1999; Stein, 2002). In

addition to asymmetry, other papers investigate the consequences of the privacy of player

valuations in various contexts:1 two-player games with one-sided private information and

continuous types (Hurley & Shogren, 1998a), n-player games with one-sided private in-

formation and discrete types (Schoonbeek & Winkel, 2006), and two-player games with

two-sided private information and discrete (Hurley & Shogren, 1998b; Malueg & Yates,

2004) or continuous types (Ewerhart, 2010). However, a full analysis remains elusive for

the general case in which n ≥ 2 players have asymmetric and private valuations that

are distributed over a continuous support. Indeed, it has been shown that the prob-

lem rapidly becomes intractable (Fey, 2008; Wasser, 2013; Ewerhart, 2014). As such, a

proper characterization of a participant’s optimal level of investment is either unfeasible

1This line of research (including this paper) assumes that agents know their own type (i.e., their own
valuation of the prize) but are uncertain about the other participants’valuations. A different strand
of the literature (Wärneryd, 2003, Wärneryd, 2013) investigates rent-seeking games where players
are uncertain about their own valuation. In a more general sense, participants in a contest may be
heterogeneous across other dimensions as well, such as the effectiveness of their lobbying efforts, their
cost functions, or their financial constraints (see Yamazaki, 2008).
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or extremely cumbersome (and thus of little practical use).

For these reasons, the aim of this paper is to propose an approximate solution to rent-

seeking games where participants have private information. Such a solution can be useful

for all those subjects (say, the organizer of the contest, other stakeholders, researchers

and external observers) that may want to have a feeling about how participants will

behave and how the contest will evolve. For instance, the promoter of a sport event

may be interested in having an estimate of the total amount of effort that the players

will exert (so called rent-dissipation, we will investigate this issue in the Appendix) and

how this amount varies as a function of agents’valuations of the prize. Moreover, an

important feature of the method that we propose is its simplicity. In particular, the

method only requires knowledge of the mean of the distribution from which players

draw their valuations. The information structure that we adopt is thus minimal.2 As

such, the approach is also well-tailored for capturing the behaviour of boundedly rational

agents, i.e., individuals that suffer from behavioural biases or face computational limits

and thus base their decisions on some heuristics.3 For instance, a participant in the

contest may use our procedure as a rule of thumb for computing his level of investment

and thus evaluate his chances of winning and his expected payoff. In this respect, the

paper joins a number of recent articles that investigate the role and implications of

bounded rationality and psychological heuristics in the theory and practice of OR (e.g.,

Hämäläinen et al., 2013; Becker, 2016; Brocklesby, 2016; Keller & Katsikopoulos, 2016;

White, 2016).4

2Notice in this respect that the method that we propose does not require common knowledge of
the distribution of agents’valuations. As such, our approach is viable under weaker assumptions with
respect to the standard private values setting. In fact, the private values assumption requires agents
to know the entire distribution of types and not just the mean. The private values assumption is
commonly used in auction theory (see Krishna, 2002) and in many OR applications that postulate
the existence of private information (for instance, see Li & Balachandran, 1997, about the design of
optimal pricing transfer schemes within a firm, Lee & Ferguson, 2010, about the strategic disclosure of
private information in negotiations, or Wang & Zhuang, 2011, about the trade-off between the depth
of screening and congestion in selecting applicants).

3The notion of bounded rationality was originally proposed by Simon (1955). However, there are
currently multiple views of bounded rationality (see Rubinstein, 1998; Gigerenzer & Selten, 2001; Lee,
2011). Katsikopoulos (2014) provides a detailed assessment of the differences in terms of both premises
and implications between the two main approaches to bounded rationality. We discuss how our method
can be interpreted within such a framework in Section 2.2.

4The last four papers are part of a special issue of the European Journal of Operational Research
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We show that our approach leads to a closed-form solution for an agent’s level of

investment. We then subject this solution to comparative statics analysis and investigate

the issue of entry in the contest. We find that an agent invests a strictly positive amount

if and only if his private valuation is above a certain threshold. In particular, we show

that a “strong”player (one whose valuation is above average) always participates, while

a “weak”player’s decision of whether to participate or not depends on the number of

competitors. The literature already highlights how asymmetric valuations may act as a

barrier to entry (Hillman & Riley, 1989; Stein, 2002). However, our analysis shows how

the combination of heterogeneity and private information can sometimes exacerbate or

contrast with this effect.

Most importantly, we examine how the proposed solution performs in approximating

optimal behaviour. To this goal, we use two different benchmarks. First, we compare our

solution with the optimal solution that characterizes the private information case. Since

our model aims at delivering a closed-form solution that could be used to approximate

optimal behaviour in rent-seeking games in which participants have private valuations,

the optimal solution of the private information case is indeed the most natural and

appropriate benchmark to use. However, and as already mentioned, as of today a general

solution to the problem of identifying the optimal level of investment when individuals

have private valuations does not exist. What the literature has uncovered are only a

few ad-hoc solutions, i.e., optimal solutions that are valid under specific distributional

assumptions. We thus study how our approximate solution performs in comparison

with two of these optimal solutions as identified by Malueg and Yates (2004) and

Ewerhart (2010).5 Despite of substantial differences between the two settings (Malueg

and Yates, 2004, consider a framework in which agents’ valuations follow a discrete

bivariate uniform distribution, whereas Ewerhart, 2010, considers a framework in which

valuations stem from a continuous distribution), we find that our solution provides a

(Vol. 249, Issue 3, March 2016) devoted to behavioural operational research, for which additional
references and more details are available in the editorial of the issue (Franco & Hämäläinen, 2016).

5To the best of our knowledge, these are actually the only two existing explicit solutions for
rent-seeking contests that match the assumptions of our model, i.e., agents’private valuations that
are independently and identically distributed random variables.
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remarkably good approximation of optimal behaviour. Indeed, the approximate solution

differs from the optimal solution by less than 5% in terms of an agent’s level of investment

and by less than 2% in terms of expected payoffs. To further validate our method we then

also use a second benchmark, namely the optimal solution that characterizes a setting

with perfect information. In this case, we ran a series of simulations that assume dif-

ferent functional forms for the underlying distribution of agent valuations and different

numbers of participants. The results show that the model is also effective in approxi-

mating the optimal solution that an agent would implement if all individual valuations

were common knowledge. Here as well, we find that the approximate solution differs

from the optimal solution by less than 5% (and often by less than 2%) in terms of both

the level of investment and the expected payoff across a wide range of parameter speci-

fications. This last set of results corroborates the possible role of the proposed solution

as a heuristic for approximating optimal behaviour at a lower computational cost. We

show in fact that the functional form of the approximate solution is much simpler than

the optimal solution that characterizes a framework with perfect information.

Elaborating on this last point, we then discuss the trade-offbetween the performance

of the method and the simplicity of its functional form. Admittedly, the functional form

of the approximate solution remains non-trivial as it still requires some calculations on

the part of the agent. However, we argue that this is an acceptable shortcoming for two

reasons. First, the functional form of the approximate solution is far simpler than that

of the optimal solution, regardless of whether it is computed in a context of imperfect or

perfect information. Second, we show that the performance of the model is improved by

an order of magnitude compared to an alternative approach that stems from different

premises and leads to a simpler functional form.

The remainder of the paper is organized as follows. Section 2 introduces the model,

discusses the approximate solution, and presents exercises of comparative statics. Sec-

tion 3 studies the performance of the model in approximating optimal behaviour. Section

4 concludes the paper, and the appendix explores additional properties of the approxi-

mate solution.
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2 The model

Consider a rent-seeking contest in which n ≥ 2 risk-neutral players compete to win a

prize. Let vi ∈ [vmin, vmax] with vmax > vmin > 0 indicate the valuation of player i ∈ N ,

where N = {1, ..., n}. The actual realization of vi is agent i’s private information.6 It

is common knowledge that all valuations are identically and independently distributed

according to a possibly unknown probability distribution F with mean vm.

Players can invest resources in order to influence their chances of winning the prize.

Let xi ∈ [0, vi] be the level of investment chosen by player i (we measure the investment

in units commensurate with the rent), and let the vector x = (x1, ..., xn) collect the

choices of all the players. The probability Pi(x) of generic player i winning the prize

follows the well-known logit specification originally proposed by Tullock (1980). In

particular, we adopt the formulation that features constant returns to scale such that

Pi(x) = xi
xi+

∑
j 6=i xj

.7 We also assume that Pi(x) = 1
n
if x = (0, ..., 0).

Each player must simultaneously choose how much effort to exert. The optimal level

is the one that maximizes the player’s expected payoff πi (x):

max
xi

πi(x) =

(
xi

xi +
∑

j 6=i xj

)
vi − xi (1)

However, player i neither knows nor can he infer the levels of effort that his opponents

will choose. In fact, the optimal investment of generic agent j 6= i depends on the

valuation vj, which is agent j’s private information.

It has been shown that there exists an equilibrium solution to problem (1) in the

form of a profile of optimal and mutually consistent levels of investment (Cornes &

Hartley, 2005; Fey, 2008; Wasser, 2013; Ewerhart, 2014; Einy et al., 2015). However,

6Importantly, the problem of private information about asymmetric valuations is analogous to the
problem of common and publicly known valuation of the prize paired with private information about
the cost of investing resources (Fey, 2008; Ryvkin, 2010; Wasser, 2013; Ryvkin, 2013). As such, our
method is applicable to both cases.

7A more general formulation of the success function is given by Pi(x) =
xri

xri+
∑

j 6=i x
r
j
where the

parameter r > 0 measures the returns to scale of a player’s investment on effort (e.g., Tullock, 1980;
Nti, 1999). The rent-seeking technology shows decreasing returns to scale if r ∈ (0, 1), constant returns
to scale if r = 1, and increasing returns to scale if r > 1.
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the fact that agent valuations are private information generally seems to preclude the

possibility of finding the solution analytically. For instance, Fey (2008) shows that the

problem is already intractable when the distribution F is uniform and there are only two

contestants. Malueg and Yates (2004) and Ewerhart (2010) identify an explicit solu-

tion in two different scenarios but only under very specific distributional assumptions.8

We thus propose a simplified approach to overcome this problem and approximate the

optimal solution.

2.1 An approximate solution

The method that we propose postulates that an agent assigns a mean valuation vm to

any of his n− 1 opponents. Therefore, from agent i’s point of view, xj = xj(vm) for any

j 6= i. Problem (1) thus becomes:

max
xi

πi(x) =

(
xi(vi)

xi(vi) + (n− 1)xj(vm)

)
vi − xi(vi) (2)

Within this simplified framework, we further postulate that agent i behaves as if

every other participant in the game was adopting the same behaviour that he adopts.

More precisely, player i expects any player j 6= i to attach a valuation vm to all of his

opponents k 6= j (notice that the set of these players includes agent i himself). As such,

agent i expects generic agent j 6= i to face the problem:

max
xj

πj(x) =

(
xj(vj)

xj(vj) + (n− 1)xk(vm)

)
vj − xj(vj) (3)

However, agent i does not know xj(vj) since vj is j’s private information. Coherently

with the premises of the procedure, agent i then assumes vj = vm and thus approximates

xj(vj) with xj(vm). Therefore, agent i behaves as if all of his opponents j 6= i were facing

the following problem:

8We will more explicitly discuss the models by Malueg and Yates (2004) and Ewerhart (2010) in
Section 3.1.
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max
xj

πj(x) =

(
xj(vm)

xj(vm) + (n− 1)xk(vm)

)
vm − xj(vm) (4)

Agent i thus ascribes to every agent j 6= i the same behaviour that player j would

adopt in a rent-seeking game in which all the participants have a homogeneous valuation

vm.9 As such, agent i postulates that xj(vm) =
(
n−1
n2

)
vm for any j 6= i where the term(

n−1
n2

)
vm is the Cournot-Nash equilibrium solution of a standard rent-seeking game

among n players with homogeneous valuation vm (Tullock, 1980).

By substituting xj(vm) =
(
n−1
n2

)
vm in (2), agent i’s problem thus becomes:

max
xi

πi(x) =

(
xi(vi)

xi(vi) +
(
n−1
n

)2
vm

)
vi − xi(vi) (5)

Solving for xi, one obtains:

xi(vi) =
n− 1

n

√
vivm −

(
n− 1

n

)2

vm (6)

where it is clear that xi(vi) > 0 if and only if vi >
(
n−1
n

)2
vm.

Therefore, we can properly define the approximate solution (which we denote by the

superscript AS) as follows:

xASi =


n−1
n

√
vivm −

(
n−1
n

)2
vm if vi >

(
n−1
n

)2
vm

0 otherwise
(7)

2.2 Discussion

Before proceeding with the formal analysis of the approximate solution, we discuss its

foundations in more detail. The major simplification of the method that we propose is

using the expected value vm as a proxy for the opponents’valuations. This seems to be a

valid approach since vm is indeed the best predictor of a rival’s valuation when no further

9Notice that agent i thus expects generic agent j to rely on the same approximation of the aggregate
level of investment of the opponents (compare the term (n−1)xj(vm) in (2) with the term (n−1)xk(vm)
in (3) and (4)). However, the estimate of the total level of investment of all the players (i.e., the
denominator in (2), (3), and (4)) differs because of the two agents’actual or perceived investment).
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information about the underlying distribution is available. Moreover, if the agent knew

the underlying distribution or even the actual valuations of his opponents, he might

still deliberately decide to ignore this information in order to simplify his task. In this

respect, our approach is thus in line with the notion of bounded rationality postulating

that decision makers may consciously abstain from computing the “optimal solution”of

the general problem but instead focus on a simplified environment and rely on rules of

thumb that may still lead to satisfactory outcomes (Katsikopoulos, 2011; Katsikopoulos,

2014). The use of vm as a proxy for vj 6=i allows agent i to focus on Problem (2) rather

than on the more general formulation displayed in (1).

The proposed solution also requires an agent to presume that all rivals adopt the

same behaviour and thus use vm to approximate the valuation of their opponents. The

agent is thus implicitly assuming that all of his opponents are as rational as he is (at

least along this dimension; we will show that this does not hold along other dimensions).

To appreciate this point, note that agent i uses the vector of valuations
(
vi, {vm}j 6=i

)
as model inputs. By the same token, agent i assumes that generic opponent l uses the

vector
(
vl, {vm}j 6=l

)
. However, agent i does not know vl. Consistent with the general

approach of the model, he thus approximates vl with vm. Therefore, agent i behaves as

if l uses the vector
(
vm, {vm}j 6=l

)
. These logical steps lead agent i to further simplify

the problem from (2) to (5).

Finally, note that the approximate solution still emerges as the solution of a maxi-

mization problem. This feature of utility function maximization is in line with the stan-

dard approach used in economic modelling, even when one departs from the neoclassical

framework of unbounded rationality (which is for instance the case in behavioural eco-

nomics; e.g., Camerer & Loewenstein, 2004). As such, if one wants to interpret our model

in terms of heuristics, our solution does not exactly fit in the most common definition of

a heuristic, i.e., a cognitive shortcut for solving complex problems. Moreover, there is no

evidence that agents use the approach that we suggest in actual rent-seeking contests.

Our solution can be rather interpreted as a proposal for a possible heuristic that agents

may find useful to follow. In this respect, the approach would then more appropriately
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qualify as an “as if”heuristic, i.e., a formal description of an agent’s behaviour that is

not meant to fully describe the underlying psychological process but rather the resulting

outcome (see Katsikopoulos, 2014, for a very detailed discussion of the differences that

exist between the “as if”approach to bounded rationality and the approach that instead

relies on the use of psychological heuristics).

We now discuss two potential drawbacks of the proposed solution. First, the func-

tional form defined in (7) is not that simple. The computation of xASi on the side of

the agent is not instantaneous and still requires some calculations. However, we show

that the computation of the approximate solution is far simpler than that of the optimal

solution, no matter if this is computed in a framework of private or perfect infomation.

We already mentioned that the computation of the optimal solution in a framework of

private information is either unfeasible or extremely cumbersome and only applicable to

highly specific environments. We show in Section 3 that the computation of the approx-

imate solution that we propose is also much simpler than that of the optimal solution

in a context of perfect information.

The second drawback is that agent i chooses his level of investment under the as-

sumption that all of his opponents will actively participate in the contest. The agent

postulates that xj(vm) =
(
n−1
n2

)
vm > 0 for any j but the investment strategy defined in

(7) explicitly allows for the possibility of deciding not to participate in the contest (i.e.,

the agent plays xASi = 0). The procedure thus appears to be somehow inconsistent as

agent i builds his investment strategy without considering the possibility that some of

his opponents (those with the lowest valuations) may actually decide not to participate

in the contest. In other words, and consistent with the literature on “level-k reasoning”

(Stahl & Wilson, 1995; Crawford et al., 2013), the agent does not internalize the fact

that his opponents could be as rational as he is in terms of entry decisions. In particu-

lar, a more sophisticated agent should realize that not all of his opponents will actively

participate in the game. This in turn implies that the average valuation of those who

do invest a positive amount will be larger than vm. A more sensible approach (but

inevitably more complex) would thus require the player to account for this possibility

10



and adjust his investment strategy accordingly. The solution described in (7) fails to do

so and thus tends to overestimate the number of participants and underestimate their

valuations.10 Luckily, these two conflicting forces tend to cancel out, thus making the

proposed solution effective in approximating the total amount of resources that agent

i’s rivals invest in rent seeking. In other words, the second term in the denominator of

(5) is similar on average to the second term in the denominator of (1). More formally,(
n−1
n

)2
vm '

∑
j 6=i xj(vj). We investigate this relationship in more detail in Section 3.

2.3 Comparative statics analysis

Simple exercises of comparative statics highlight how the agent’s level of investment

xASi is influenced by the parameters of the model. In terms of active participation in

the game, expression (7) shows that the agent exerts positive effort if and only if his

valuation vi is larger than the threshold λ
AS =

(
n−1
n

)2
vm. Clearly, λ

AS is increasing in

both n and vm. However, note that the condition λ
AS < vm always holds. This implies

that a “strong”player (one with a valuation vi ≥ vm) always invests a strictly positive

amount. On the other hand, a “weak”player may decide to participate (λAS < vi < vm)

or abstain (vi ≤ λAS < vm). With all else being equal, a player of type vi < vm may thus

invest in rent-seeking activities if the game features only a few competitors or instead

abstain if the competition looks tougher.11

We now focus on the case in which the agent invests a strictly positive amount. It

can be verified immediately that xASi is increasing and strictly concave in the agent’s

private valuation vi. The effect of the average valuation vm on xASi is instead non-

monotonic. In particular, xASi is increasing in vm as far as vm < 1
4

(
n
n−1

)2
vi. In such

a situation, agent i perceives himself as a strong player and thus increments his level

of investment to maintain his good chances of winning the contest. In contrast, xASi
10We thank an anonymous referee for mentioning this point.
11More precisely, a player that perceives himself as being very weak (i.e., whose private valuation

is much lower than vm) may refuse to participate even when he faces a single opponent (i.e., n = 2).
This happens when the condition vi ≤ 1

4vm holds. This is consistent with the analysis by Schoonbeek
& Winkel (2006), although it can never happen in models of perfect information such as Nti’s (1999)
model, where the two players always participate, or Stein’s (2002) model, where non-entry of some
player can occur only when n ≥ 3.
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is decreasing in vm for any vm > 1
4

(
n
n−1

)2
vi, given that in such a situation the agent

expects to face more aggressive opponents and thus adopts a softer strategy. Finally,

xASi is always decreasing in the number of participants n whenever vi ≤ vm, whereas it

might be increasing initially in n when vi > vm.

The following panel provides a graphical illustration of the effects that vi (first row),

vm (second row), and n (third row) have on the agent’s level of investment xASi for

different parametrizations of the model.

[Insert Figure 1 here (see the file at the end of the manuscript)]

Figure 1. Comparative statics on xASi .

3 Benchmark analysis

The ideal benchmark for evaluating the performance of the approximate solution would

be the optimal solution of the problem under scrutiny, i.e., the level of investment

that maximizes an agent’s expected payoff in a setting in which individual valuations

are private information. As already noticed, it has been shown that such a solution

exists (Cornes & Hartley, 2005; Fey, 2008; Wasser, 2013; Ewerhart, 2014; Einy et al.,

2015). However, its analytical form generally cannot be pinned down and this precludes
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the possibility to perform a full-fledged comparison between the approximate solution

that we propose and the optimal solution. To overcome this problem, Wasser (2013)

notes that the private information solution can be compared with some alternative

benchmarks. For instance, Hurley and Shogren (1998b) use as a benchmark the optimal

solution that characterizes a setting with no information, i.e., a contest in which agents

do not even know their own valuation. Instead, Malueg and Yates (2004) use as a

benchmark the solution of the perfect information case.

In what follows, we adopt a similar approach and evaluate the performance of our

approximate solution against two different benchmarks. In Section 3.1, we compare

our proposal with the few existing closed-form solutions for rent-seeking contests where

agents have private valuations. In Section 3.2, we instead use as a benchmark the

optimal solution that emerges in a context of perfect information. All in all, we find

that our solution performs well in both comparisons. It thus emerges as a promising

candidate for approximating an agent’s optimal level of investment in rent-seeking games

with private information, as well as a valid shortcut for approximating the solution of

the perfect information case.

3.1 Comparison with the private information case

To the best of our knowledge, Malueg and Yates (2004) and Ewerhart (2010) are the only

papers that provide a closed-form solution for an agent’s optimal level of investment in

rent-seeking contests where individual valuations are private and identically distributed.12

To achieve such a result, both papers rely on strong distributional assumptions. It

follows that the optimal solutions that they compute are only valid in the specific

contexts that they consider.

12In the Introduction we also mentioned the article by Hurley and Shogren (1998b) as another study
that finds an explicit solution to the private information case. However, Hurley and Shogren (1998b)
consider a situation in which agents’valuations are drawn from different distributions. Therefore, their
framework does not match the assumptions of our model.
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A comparison with Malueg and Yates (2004)

Malueg and Yates (2004) study a rent-seeking contest with two participants whose

valuations are drawn from a discrete distribution. In particular, they consider a setting

in which each agent’s valuation can be either low or high with equal probability. More

formally, n = 2, vi ∈ {vL, vH} and F ∼ U . Malueg and Yates (2004) show that in such

a context the optimal solution is given by:

xMY 04
i =

 1− σ[(
vL
vH

)− r
2

+
(
vL
vH

) r
2

]2 +
σ

4

 rvi for any i ∈ {L,H} (8)

where the parameter r > 0 reflects the returns to scale of a player’s investment (see

footnote 7 in this paper) and σ ∈ [0, 1] measures the degree of correlation among

agents’valuations with σ = 0 corresponding to perfect negative correlation and σ = 1

corresponding to perfect positive correlation. In our framework, returns to scale are

constant (i.e., r = 1) and agents’valuations are independent (i.e., σ = 1
2
). As such, the

optimal solution defined in (8) becomes:

xMY 04
i =

 0.5[(
vL
vH

)− 1
2

+
(
vL
vH

) 1
2

]2 + 0.125

 vi for any i ∈ {L,H} (9)

Given that vm = vL+vH
2
, our approximate solution (see (7)) takes the following form:

xASi =
1

2

√(
vL + vH

2

)
vi −

1

4

(
vL + vH

2

)
for any i ∈ {L,H} (10)

The following figures compare the two solutions when vL = 100 and vH ∈ [100, 200].

Figure 2.a depicts xMY 04
i and xASi for an agent whose valuation is low (i.e., vi = vL).

Figure 2.b plots xMY 04
i and xASi for an agent whose valuation is high (i.e., vi = vH).13

13In both cases, the pattern of the approximate solution is obviously consistent with the comparative
statics analysis discussed in Section 2.3. In particular, xASL is decreasing in vH since vm = vL+vH

2 is

increasing in vH and the condition vm > 1
4

(
n
n−1

)2
vi (i.e., vm > vL) holds. Notice also that both types
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The approximate solution xASi closely follows the optimal solution xMY 04
i in both cases.

Indeed, the difference between the two solutions is smaller than 5% along the entire

interval. If instead of comparing the two levels of investments one compares the expected

payoffs that stem from investing xASi rather than xMY 04
i , the difference between the

approximate and the exact solution often becomes negligible.14

[Insert Figure 2.a here] [Insert Figure 2.b here]

Figure 2: xMY 04
i and xASi for an agent with vi = vL (Fig. 2.a) and vi = vH (Fig. 2.b).

A comparison with Ewerhart (2010)

Ewerhart (2010) provides the unique closed-form solution for the case in which agents’

valuations are drawn from a continuous probability distribution. More precisely, Ewerhart

(2010) considers a scenario in which the valuations of the two participants are distributed

according to the following cumulative distribution function:

F (vi | vmin, vmax) =

ln

(√
(vmax−vmin)2

4
+ 2 (vmax + vmin) vi − vmax+vmin

2

)
− ln (vmin)

ln (vmax)− ln (vmin)
(11)

of individuals invest a strictly positive amount since the condition that determines entry in (7) becomes
vi >

1
8 (vL + vH) and thus holds for any vi ∈ {vL, vH}. More in general, and contrary to the model of

Malueg and Yates (2004), our model indicates that an agent with low valuation should not enter the
contest whenever vL < 1

7vH .
14For instance, if vH = 150 then πMY 04

L = 20.5 and πASL = 20.5 (i.e., exactly the same value),
whereas πMY 04

H = 45.75 and πASH = 45.747. If instead vH = 200 then πMY 04
L = 18.056 and

πASL = 17.593, whereas πMY 04
H = 40.278 and πASH = 39.776. Consistent with the formulation in (1), the

expected payoff of investing xMY 04
i is computed as πMY 04

i = 1
2

(
xMY 04
i

xMY 04
i +xMY 04

L

+
xMY 04
i

xMY 04
i +xMY 04

H

)
vi −

xMY 04
i for i ∈ {L,H}. Similarly, the expected payoff of investing πASi is computed as πASi =
1
2

(
xASi

xASi +xMY 04
L

+
xASi

xASi +xMY 04
H

)
vi − xASi for i ∈ {L,H}.
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He then shows that in the symmetric Bayesian equilibrium of the contest, each agent

i ∈ {1, 2} invests the amount

xE10
i = ρ

(√
A2 + vi −B

)
(12)

where

B =

(
1

2

√
vmax + vmin

2

)
, A =

(
vmax − vmin

vmax + vmin

B

)
, and ρ =

(
2A

ln(vmax/vmin)

)
. (13)

Therefore, the functional form of xE10
i is rather complicated. Ewerhart (2010) then

presents an explicit example in which vmin = 8 and vmax = 24. Substituting these values

in (13) and (12), the optimal level of investment of agent i ∈ {1, 2} becomes

xE10
i =

2

ln 3

(√
vi + 1− 2

)
(14)

Given that vm =
∫ 24

8
vif(vi | vmin, vmax)dvi, where f(vi | vmin, vmax) = ∂F (vi|vmin,vmax)

∂vi
is

the density, one obtains that vm = 13.923. It follows that our approximate solution is

given by

xASi =
1

2

√
13.923vi −

(
1

2

)2

13.923 (15)

Figure 3 plots the two solutions, xE10
i and xASi . The function x

AS
i again provides a good

approximation of the optimal solution xE10
i . The difference between the approximate

and the exact solution is always below 5%. The difference between the two methods

becomes negligible if one considers the agent’s expected payoffs.15

15For instance, if vi = 8 then πE10i = 1.1321 and πASi = 1.1320; if vi = 16 then πE10i = 4.9268 and
πASi = 4.9249; if vi = 24 then πE10i = 9.6809 and πASi = 9.6765. The expected payoff of investing xE10i

is computed as πE10i =

(∫ 24
8

xE10i

xE10i + 2
ln 3 (
√
vj+1−2)

f(vj | vmin, vmax)dvj
)
vi−xE10i . Similarly, the expected

payoff of investing xASi is computed as πASi =

(∫ 24
8

xASi
xASi + 2

ln 3 (
√
vj+1−2)

f(vj | vmin, vmax)dvj
)
vi − xASi .
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[Insert Figure 3 here (see the file at the end of the manuscript)]

Figure 3: A comparison between the two solutions xE10
i and xASi .

3.2 Comparison with the perfect information case

As an alternative benchmark for evaluating the performance of the approximate solution,

we use the case of perfect information. Stein (2002) examines a rent-seeking game

among n ≥ 2 players with heterogeneous and publicly known valuations and presents

explicit solutions for the case of constant returns to scale success function. Therefore,

the only difference between Stein’s framework and our framework lies in the different

information structure that agents can rely on. Stein finds that the optimal strategy of

generic agent i ∈ N takes the following form (the superscript PI indicates the case of

perfect information):

xPIi =


(p−1)Φp

p

[
1− (p−1)Φp

pvi

]
if i ≤ p

0 otherwise
(16)

where p ∈ {1, ..., n} is the largest number for which the condition vp > (p−1)
p

Φp holds

(players are ordered in terms of their valuations such that v1 ≥ v2 ≥ ...vn > 0), and Φp =[
1
p

∑
i≤p

1
vi

]−1

is the harmonic mean of the first p values of {vi}i∈N . The computation

of xPIi is thus rather demanding and far more complex than that of xASi (see expression

(7)). Obviously, the two solutions xPIi and xASi usually differ.16

16The two approaches lead to the same solution only when vi = vm for all i ∈ N , in which case both
solutions collapse to the standard solution of a rent-seeking game with symmetric valuation (Tullock,
1980). More formally, if vi = vm for all i ∈ N then xASi = xPIi =

(
n−1
n2

)
vm.
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The following example illustrates this point.

Example 1 Consider a rent-seeking contest with 4 players and let individual valuations

be drawn from a uniform distribution defined on the interval [90, 100]. Therefore, vm =

100. Let v1 = 101, v2 = 106, v3 = 93, and v4 = 98. Now, consider the situation of

agent 1. If information is perfect, the agent plays according to (16). He thus invests

the amount xPI1 = 19.567 and his expected payoff equals πPI1 = 6.975. If valuations are

instead private and the agent relies on the proposed method, he plays according to (7).

He thus invests the amount xAS1 = 19.124, and his expected payoff equals πAS1 = 6.973.17

In this example, the differences between the approximate solution and the optimal

solution are minimal in terms of both of the level of investment (i.e., xAS1 vs. xPI1 ) and

expected payoff (i.e., πH1 vs. πPI1 ). This similarity appears to be a robust feature of the

approximate solution. Indeed, the differences between the optimal and the approximate

solution turn out to be extremely small for a wide range of possible parametrizations of

the model.

Table 1 reports the results of a series of simulations aimed at addressing this issue.

We considered three possible functional forms for the underlying distribution of agent

valuations: a uniform distribution (F ∼ U(a, b)), normal distribution (F ∼ N(µ, σ2)),

and beta distribution (F ∼ B(α, β)). In the cases of the uniform and the normal

distribution, we simulated six alternative scenarios that differ in terms of the number

of participants (n = 2, n = 4, and n = 10) or the variance of agent valuations (low vs.

high). In the case of the beta distribution, we simulated nine scenarios that differ in

terms of the number of participants (again n = 2, n = 4, and n = 10) or the relation

between the mean and the median of the distribution (=, >, or <). The mean of F

always equals vm = 100 across all 21 scenarios.

17The expected payoff under perfect information is computed as πPIi =
(

xPIi
xPIi +

∑
j 6=i x

PI
j

)
vi − xPIi ,

whereas the expected payoff that stems from using the approximate solution is computed as πASi =(
xASi

xASi +
∑

j 6=i x
PI
j

)
vi − xASi .
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

F n x̄AS1 x̄PI1 ∆x̄AS1 π̄AS1 π̄PI1 ∆π̄AS1 X̄AS
−1 X̄PI

−1 ∆X̄AS
−1

U(90, 110) 2 24.94 24.92 0.06 24.75 24.76 -0.01 25.00 25.23 -0.90

U(90, 110) 4 18.61 18.54 0.27 6.35 6.36 -0.40 56.25 56.28 -0.05

U(90, 110) 10 8.52 8.38 1.67 1.12 1.16 -2.90 81.00 81.11 -0.13

U(50, 150) 2 25.01 24.41 2.45 28.86 28.91 -0.17 25.00 24.38 2.53

U(50, 150) 4 17.66 17.93 -1.46 9.89 10.05 -1.51 56.25 54.78 2.68

U(50, 150) 10 9.77 9.31 4.99 2.71 2.80 -2.94 81.00 87.72 -7.67

N(100, 10) 2 24.84 24.78 0.26 24.88 24.89 -0.01 25.00 25.16 -0.64

N(100, 10) 4 18.40 18.31 0.49 7.06 7.12 -0.85 56.25 55.66 1.07

N(100, 10) 10 9.27 9.34 -0.72 1.71 1.77 -3.40 81.00 80.79 0.25

N(100, 50) 2 25.10 23.65 6.11 33.25 33.79 -1.60 25.00 23.62 5.85

N(100, 50) 4 19.62 19.83 -1.06 15.75 16.14 -2.41 56.25 54.27 3.64

N(100, 50) 10 12.60 11.29 11.61 4.77 4.85 -1.67 81.00 94.83 -14.59

B(5, 5) 2 23.17 22.45 3.19 26.78 26.90 -0.45 25.00 23.96 4.33

B(5, 5) 4 18.05 17.86 1.08 10.45 10.60 -1.37 56.25 55.36 1.60

B(5, 5) 10 11.06 10.35 6.85 3.30 3.39 -2.75 81.00 87.07 -6.97

B(2, 5) 2 23.82 22.89 4.06 35.40 36.08 -1.88 25.00 21.83 14.50

B(2, 5) 4 20.52 19.99 2.62 17.97 18.27 -1.65 56.25 54.85 2.55

B(2, 5) 10 13.48 11.97 12.60 6.51 6.65 -2.07 81.00 97.44 -16.87

B(5, 3) 2 25.32 24.95 1.46 26.86 26.90 -0.16 25.00 25.84 -3.23

B(5, 3) 4 19.38 19.03 1.86 9.88 10.03 -1.50 56.25 55.27 1.78

B(5, 3) 10 9.99 9.30 7.50 2.92 3.04 -3.75 81.00 86.63 -6.50

Table 1: A comparison between the approximate solution and the optimal solution.
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For each scenario, we simulated 100 different realizations of the vector of agents’

valuations, v = (v1, ..., vn). For each realization of v, we computed agent 1’s level of

investment and expected payoff under the approximate solution (xAS1 and πH1 , respec-

tively). Columns 3 and 6 in the table report the average values of these statistics across

the 100 realizations (x̄AS1 and π̄AS1 ). Similarly, we computed the optimal level of invest-

ment and the expected payoff of agent 1 in a framework of perfect information (xPI1 and

πPI1 ). Table 1 reports the average values in columns 4 and 7 (x̄
PI
1 and π̄PI1 ).

We then calculated the percentage differences between the results of the two methods.

Column 5 shows the difference between the two levels of investment, ∆x̄AS1 =
(
x̄AS1 −x̄PI1

x̄PI1

)
·

100, whereas column 8 shows the difference in terms of the expected payoff, ∆π̄AS1 =(
π̄AS1 −π̄PI1

π̄PI1

)
·100. The table shows that the solution that we propose performs remarkably

well in approximating the optimal solution that characterizes the perfect information

case. In terms of levels of investment (∆x̄AS1 in column 5), the two methods differ by

less than 5% in the vast majority of cases. In terms of expected payoff (∆π̄AS1 in column

8, arguably the most relevant comparison), the two methods always differ by less than

5% and often by less than 2%. The differences appear to be particularly small when the

contest features only few participants.18

18Indeed, Table 1 seems to suggest that as n increases the quality of the approximation tends to
decrease. To address this issue more carefully, Table 1.1 below reports the results of two further sets
of simulations that feature many participants (n = 30 and n = 50). In particular, Table 1.1 shows the
differences between the approximate solution and the optimal solution in terms of the agent’s expected
payoff (∆π̄AS1 , as reported in column 8 in Table 1).

(1) (2) (8) (1) (2) (8) (1) (2) (8)

F n ∆x̄AS1 F n ∆x̄AS1 F n ∆x̄AS1

U(90, 110) 30 -4.10 N(100, 10) 30 -4.85 B(5, 5) 30 -4.70
U(90, 110) 50 -5.04 N(100, 10) 50 -5.40 B(5, 5) 50 -8.73
U(50, 150) 30 -5.74 N(100, 50) 30 -5.51 B(2, 5) 30 -4.45
U(50, 150) 50 -15.36 N(100, 50) 50 -7.93 B(2, 5) 50 -9.81

B(5, 3) 30 -5.90
B(5, 3) 50 -9.34

Table 1.1. The differences in expected payoffs when the number of participants is large.

The numerical results confirm that the performance of the approximate solution tends to decrease as
n gets large. This is a limitation of the procedure to be kept in mind. On the other hand, it is true that
rent-seeking games that emerge in practical situations usually involve only a handful of participants.
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Table 1 also shows why the performance of the approximate solution is so precise,

despite the potential drawbacks in its foundations (see Section 2.2). We already noted

that the method tends to overestimate the number of active participants while simulta-

neously underestimating their valuations. The last three columns in the table show that

these effects do little harm and tend to cancel out. Column 9 reports X̄AS
−1 =

(
n−1
n

)2
vm,

which is the presumed sum of investments of agent 1’s opponents (all n−1 opponents are

assumed to invest a positive amount). Column 10 reports X̄PI
−1 =

∑
j 6=1 x

PI
j (vj), the sum

of the actual investments of agent 1’s opponents in a framework of perfect information

(in this case, some of the xPIj may be zero since participants with low valuations may

decide not to participate). Finally, column 11 shows the percentage difference between

the two statistics, ∆X̄AS
−1 =

(
X̄AS
−1 −X̄PI

−1
X̄PI
−1

)
·100. Again, the difference is usually small. This

indicates that the simplified problem that the agent solves (see problem (5) in Section

2.1) is similar to the original problem (see problem (1)).

3.3 The trade-off between simplicity and performance

The previous sections showed that the proposed solution performs well in approximating

the optimal solution, both in a context of private information and of perfect information.

Moreover, the functional form of the approximate solution (see expression (7)) is clearly

simpler than the one of the optimal solution, no matter if this is computed in the private

information case (see (9), (12), and (13)) or in the perfect information case (see (16)).

However, since the computation of xASi is not trivial, one may be tempted to rely

on other functional forms that can further simplify the task of finding an approximate

solution. In this section, we briefly discuss an alternative proposal. This alternative

method still postulates that an agent assigns the mean valuation vm to any of his n− 1

rivals. However, the process through which the player approximates the investment

xj(vm) of generic rival j is now different. The approach conjectures that the agent

is able to understand the two main forces that shape xj(vm). First, xj(vm) increases

in the agent’s (presumed) valuation, vm. Second, xj(vm) decreases in the number of

competitors that opponent j faces, n− 1. The simplest formulation that captures these
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two forces is given by x̃j(vm) = vm
n−1
.

Substituting x̃j(vm) in Problem (2) and solving for xi, one obtains that according to

this alternative approximate solution (which we indicate by superscript AS2), the agent

should invest the amount:

xAS2
i =


√
vivm − vm if vi > vm

0 otherwise
(17)

The functional form of xAS2
i is indeed simpler than that of the original approach

xASi . Moreover, x
AS2
i displays similar qualitative features to xASi in terms of comparative

statics. In particular, xAS2
i is strictly increasing in vi and strictly concave in both vi

and vm.19 However, the performance of this alternative functional form turns out to be

extremely disappointing.

The following figure shows how the solution xAS2
i performs in approximating the

optimal solution identified by Ewerhart (2010) and discussed in Section 3.1. The figure

can thus be directly compared with Figure 3. The fact that the alternative solution xAS2
i

provides a much worst (and actually totally unreliable) approximation of the optimal

solution than the original proposal xASi is evident.20

[Insert Figure 4 here (see the file at the end of the manuscript)]

Figure 4: A comparison between the two solutions xE10
i and xAS2

i .

19However, in contrast to xASi , xAS2i is independent of n.
20The same qualitative conclusion holds if one compares how xASi and xAS2i performs in approximating

the optimal solution xMY 04
i identified by Malueg and Yates (2004). In particular, the solution xAS2i

underestimates xMY 04
i by an amount that ranges between 50% and 100%.
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Table 2 below instead compares the level of investment and the expected payoff of

an agent that uses the alternative approximate solution (xAS2
i and πAS2

i , respectively)

with those resulting in a context of perfect information (xPIi and πPIi ). To make this

comparison, we used the same simulated data that we used in Section 3.2 (note that

columns 4 and 7 display the same values in both Table 1 and Table 2). The results are

thus comparable between the two tables.21

(1) (2) (3) (4) (5) (6) (7) (8)

F n x̄AS2
1 x̄PI1 ∆x̄AS2

1 π̄AS2
1 π̄PI1 ∆π̄AS2

1

U(90, 110) 2 1.03 24.92 -95.85 2.82 24.76 -88.61

U(90, 110) 4 1.17 18.54 -93.69 0.99 6.36 -84.38

U(90, 110) 10 0.96 8.38 -88.49 0.32 1.16 -72.31

U(50, 150) 2 6.15 24.41 -74.82 15.64 28.91 -45.90

U(50, 150) 4 5.30 17.93 -70.44 5.90 10.05 -41.23

U(50, 150) 10 5.16 9.31 -44.52 2.31 2.80 -17.29

Table 2: A comparison between the alternative solution and the optimal solution.

The percentage differences are reported in columns 5 and 8. The performance of the

alternative method in approximating the optimal solution is extremely unsatisfactory in

terms of both the level of investment and the expected payoff. The alternative solution

often falls short of the optimal solution by more than 70%.

All in all, the results of this section further validate the original approximate solution

proposed in (7). Even though the computation of xASi is slightly more complex than the

computation of xAS2
i , this negative aspect is more than compensated by the fact that the

solution leads to estimates that are more precise by more than an order of magnitude.

21For the sake of space, Table 2 only reports the scenarios in which F is uniform. The results remain
equally disappointing in the scenarios that use the normal or beta distributions.
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4 Conclusions

As of today, a generic closed-form solution for an agent’s optimal level of investment in

rent-seeking contests with private information does not exist. In this paper, we proposed

a method to overcome this problem and compute an approximate solution. In addition

to the knowledge of one’s own type and the number of participants, the method only

requires knowledge of the mean of the distribution of valuations. Focusing on contests

with constant returns to scale, we obtained a relatively simple closed-form solution and

showed that such a solution performs well in approximating the few ad hoc optimal

solutions that the literature has so far identified.

We thus feel that the method can be useful in a variety of practical situations. First,

it can be used by agents who occasionally find themselves involved in a rent-seeking

contest and wants to find a “near-optimal”level of investment. One example is a litigant

who is involved in a dispute over a contested good and must decide how much to spend

on legal expenses. More in line with typical OR problems, attackers and defenders

of single or multiple assets (such as in computer security) may rely on the proposed

approximate solution to choose their level of commitment to various sites. The method

can also be used by some external agents that want to forecast some of the features of

the final outcome (say, the identity of the winner or the amount of rent dissipation).

This for instance could be the case of the organizer of the contest who must decide

upon the institutional details of the competition. Similarly, the method may appeal to

researchers who may want to study participants’behaviour and the properties of the

resulting outcome. In the course of the analysis, we showed that the solution that we

propose also provides a good approximation of the optimal solution that characterizes

the perfect information case. Therefore, within such a framework, the method can also

be used for identifying an almost optimal solution at a lower computational cost.

More in general, our framework allows to compute an approximate solution when

agents can only rely (or decide to only rely) on some very general summary statistic,

such as the mean or expected valuation. Knowledge about this statistic could in turn
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stem from different sources. For instance, the agent may use the mean value that

emerged in previous contests with similar prizes as a proxy. Alternatively, some external

player (perhaps the organizer of the contest, an authoritative expert, a think-tank, or a

governmental agency) may publicly provide a valuation of the prize that thus becomes

a natural focal point that participants may use to attribute a valuation to their rivals.22

This last point opens interesting paths for future research. The strategic release of

selected information by some external agent (e.g., value assessment of a certain asset

by a rating agency) may affect the way agents behave and thus influence some of the

relevant outcomes of the contest, such as the number of active participants or their levels

of investment.

22Concerning this last point, many countries recently set up specific agencies (both at the national
and local levels) to provide so-called standard costs (i.e., mean valuation) for the supply of goods and
services to the public sector that are assigned through procurement auctions.
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Appendix: Rent dissipation

Here we discuss additional properties of the proposed heuristic in more detail. We focus

in particular on the notion of rent dissipation. Rent dissipation provides a measure of

the resources that agents waste in rent-seeking activities and has thus always played

a prominent role in evaluating the effi ciency of rent-seeking contests (Tullock, 1980;

Nitzan, 1994; Hurley, 1998; Stein, 2002; Congleton et al., 2008; Alcalde & Dahm, 2010).

At the individual level, rent dissipation is defined as the fraction of an agent’s valuation

that is invested in rent-seeking activities. Given the approximate solution xASi (see

expression (7) in the main text), a player with valuation vi thus dissipates the amount:

RDAS
i =


n−1
n

√
vm
vi
−
(
n−1
n

)2 vm
vi

if vi >
(
n−1
n

)2
vm

0 otherwise
(18)

This expression subsumes the results of the standard model with homogeneous valu-

ations (see also footnote 11). When vi = vm, the expression simplifies to RDAS
i = (n−1)

n2
.

This well-known constant ratio does not depend on vi (Tullock, 1980). However, expres-

sion (18) shows that RDAS
i does depend on vi in general. In particular, rent dissipation

is increasing in the agent’s valuation for vi < ṽi and decreasing for vi > ṽi, where

ṽi =
(
n−1
n

)2
4vm. Similarly, when holding vi fixed, rent dissipation is a concave function

of vm that reaches its maximum at ṽm = 1
4

(
n
n−1

)2
vi. The shape of the RDAS

i function

is driven by the behaviour of xASi , which is strictly concave in vi and vm, as shown in

the main text.

The notion of rent dissipation can also be related with the concept of an agent’s

relative resolve, as introduced by Hurley and Shogren (1998a, 1998b). The relative

resolve of agent i with respect to a generic agent j is defined as ρi =
√

vi
vj
and thus

provides a measure of the relative strength of a player. In particular, agent i is stronger

than j when ρi > 1 (and weaker when ρi < 1). In the context of our heuristic approach,

we can thus define ρi =
√

vi
vm
as the relative resolve of agent i with respect to his

“representative rival”of type vm. Rearranging expression (18) yields:
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RDAS
i =


(
n−1
n

)
1
ρi
−
(
n−1
n

)2 1
ρ2i

if vi >
(
n−1
n

)2
vm

0 otherwise
(19)

Whenever positive, the amount of rent dissipation is thus first increasing and then

decreasing in ρi. Rent dissipation reaches its maximum for ρ̃i = 1
n

(2n− 2), in which

case RDAS
i (ρ̃i) = 1

4
. Note that this maximum is a constant that does not depend on

the number of participants n. Therefore, an agent that plays according to the heuristic

will never dissipate more than 25% of his valuation, no matter the value of his relative

resolve (and thus the values of vi and vm) or the number of participants in the game.

Figure 5 illustrates this peculiar result. The figure depicts RDAS
i as a function of ρi

in three different contests with n = 2, n = 4, and n = 100. In all cases, the participation

constraint vi >
(
n−1
n

)2
vm implies that the agent invests a positive amount if and only

if ρi >
(
n−1
n

)
.

[Insert Figure 5 here (see the file at the end of the manuscript)]

Figure 5: Rent dissipation with xASi .

Consistent with the approach commonly adopted in the literature (e.g., Hurley &

Shogren, 1998a, 1998b; Stein, 2002), we define rent dissipation at the aggregate level as

the total expenditures by all the players.23 More formally, RDAS =
∑

i x
AS
i (note that

23Whenever agent valuations are heterogeneous, the sum of individual rent dissipations (i.e.,
∑

iRDi)
makes no sense. Each RDi is in fact computed with respect to the agent’s specific valuation vi.
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we compute RDAS under the assumption that all of the participants play according to

the proposed approximate solution). In our framework, one must then consider that

not all the players necessarily invest a positive amount. We thus define the set of

active players as Ñ =
{
i ∈ N | vi >

(
n−1
n

)2
vm

}
; i.e., those agents that play xASi > 0.

Therefore, Ñ ⊆ N , or equivalently, ñ ≤ n. Rent dissipation at the aggregate level is

then given by:

RDAS =
∑

i∈Ñ

[(
n− 1

n

)
√
vivm

]
− ñ

(
n− 1

n

)2

vm (20)

Aggregate dissipation is thus weakly increasing and weakly concave in any individual

valuation vi with i ∈ N . The “weakness”of these relations stems from the fact that a

small increase in the valuation of an agent that does not participate may still not be

enough to convince him to actually invest a positive amount. If this is the case, then

RDAS obviously would not change. In contrast, the possible positive effect on total

rent dissipation of an increase in an individual valuation can flow through two channels.

First, a higher vi pushes up the optimal amount xASi > 0 of an agent that would have

invested anyway. Second, a higher vi may convince a player to enter the contest and

thus change his investment strategy from xASi = 0 to xASi > 0.

References

[1] Alcalde, J., & Dahm, M. (2010). Rent seeking and rent dissipation: A neutrality

result. Journal of Public Economics, 94, 1-7.

[2] Baye, M.R., & Hoppe, H.C. (2003). The strategic equivalence of rent-seeking, in-

novation, and patent-race games. Games and Economic Behavior, 44, 217—226.

[3] Becker, K.H. (2016). An outlook on behavioural OR - Three tasks, three pitfalls,

one definition. European Journal of Operational Research, 249, 806-815.

28



[4] Benjaafar, S., Elahi, E., & Donohue, K.L. (2007). Outsourcing via service compe-

tition. Management Science, 53, 241-259.

[5] Brocklesby, J. (2016). The what, the why and the how of behavioural operational

research - An invitation to potential sceptics. European Journal of Operational

Research, 249, 796-805.

[6] Camerer, C., & Loewenstein, G. (2004). Behavioral economics: Past, present and

future. In Camerer, C., Lowenstein, G., & Rabin, M. (Eds.), Advances in Behavioral

Economics, 1—61. Princeton University Press: Princeton, NJ.

[7] Congleton, R.D., Hillman, A.L., & Konrad, K.A. (2008). Forty years of research

on rent seeking: An overview. In Congleton, R.D., Hillman, A.L., & Konrad, K.A.

(Eds.), 40 Years of Research on Rent Seeking 1, Springer (2008), 1-42.

[8] Cornes, R., & Hartley, R. (2005). Asymmetric contests with general technologies.

Economic Theory, 26, 923-946.

[9] Crawford, V., Costa-Gomes, M., & Iriberri, N. (2013). Structural models of non-

equilibrium strategic thinking: Theory, evidence, and applications. Journal of Eco-

nomic Literature, 51, 5-62.

[10] Deck, C., Foster, J., & Song, H. (2015). Defense against an opportunistic challenger:

Theory and experiments. European Journal of Operational Research, 242, 501-513.

[11] Einy, E., Haimanko, O., Moreno, D., Sela, A., & Shitovitz, B. (2015). Equilibrium

existence in Tullock contests with incomplete information. Journal of Mathematical

Economics, 61, 241-245.

[12] Ewerhart, C. (2010). Rent-seeking contests with independent private values. Work-

ing paper no. 490, Institute for Empirical Research in Economics, University of

Zurich.

[13] Ewerhart, C. (2014). Unique equilibrium in rent-seeking contests with a continuum

of types. Economics Letters, 125, 115-118.

29



[14] Fey, M. (2008). Rent-seeking contest with incomplete information. Public Choice,

135, 225-236.

[15] Franco, L.A., & Hämäläinen, R.P. (2016). Behavioural operational research: Re-

turning to the roots of the OR profession. European Journal of Operational Re-

search, 249, 791-795.

[16] Fu, Y., Lai, K.K., & Liang, L. (2016). A robust optimisation approach to the

problem of supplier selection and allocation in outsourcing. International Journal

of Systems Science, 47, 913-918.

[17] Garfinkel, M., & Skaperdas, S. (2006). Economics of Conflict: An Overview. In

Sandler, T., & Hartley, K. (Eds.), Handbook of Defense Economics, 2, 649-709.

Amsterdam, The Netherlands: North Holland.

[18] Gigerenzer, G., & Selten, R. (2001). Bounded rationality: The adaptive tool box.

MIT Press.

[19] Hämäläinen, R.P., Luoma, J., & Saarinen, E. (2013). On the importance of behav-

ioral operational research: The case of understanding and communicating about

dynamic systems. European Journal of Operational Research, 228, 623-634.

[20] Hausken, K. (2008). Strategic defense and attack for series and parallel reliability

systems. European Journal of Operational Research, 186, 856-881.

[21] Hausken, K. & Bier, V.M. (2011). Defending against multiple different attackers.

European Journal of Operational Research, 211, 370-384.

[22] Hillman, A.L., & Riley, J.C. (1989). Politically contestable rents and transfers.

Economics and Politics, 1, 17-39.

[23] Hurley, T.M. (1998). Rent dissipation and effi ciency in a contest with asymmetric

valuations. Public Choice, 94, 289-298.

30



[24] Hurley, T.M., & Shogren, J.F. (1998a). Effort levels in a Cournot Nash contest with

asymmetric information. Journal of Public Economics, 69, 195-210.

[25] Hurley, T.M., & Shogren, J.F. (1998b). Asymmetric information contests. European

Journal of Political Economy, 14, 645-665.

[26] Katsikopoulos, K.V. (2011). Psychological heuristics for making inferences: Defi-

nition, performance, and the emerging theory and practice. Decision Analysis, 8,

10-29.

[27] Katsikopoulos, K.V. (2014). Bounded rationality: the two cultures. Journal of Eco-

nomic Methodology, 21, 361-374.

[28] Keller, N., & Katsikopoulos, K.V. (2016). On the role of psychological heuristics in

operational research; and a demonstration in military stability operations. European

Journal of Operational Research, 249, 1063-1073.

[29] Krishna, V. (2002). Auction theory, San Diego: Academic Press.

[30] Lee, C. (2011). Bounded rationality and the emergence of simplicity amidst com-

plexity. Journal of Economic Surveys, 25, 507-526.

[31] Lee, C.C., & Ferguson, M.J. (2010). To reveal or not to reveal? Strategic disclosure

of private information in negotiation. European Journal of Operational Research,

207, 380-390.

[32] Li, S.-H., & Balachandran, K.R. (1997). Optimal transfer pricing schemes for work

averse division managers with private information. European Journal of Operational

Research, 98, 138-153.

[33] Malueg, D.A., & Yates, A.J. (2004). Rent seeking with private values. Public Choice,

119, 161-178.

31



[34] Mo, H., Xie, M., & Levitin, G. (2015). Optimal resource distribution between pro-

tection and redundancy considering the time and uncertainties of attacks. European

Journal of Operational Research, 243, 200-210.

[35] Nitzan, S. (1994). Modelling rent-seeking contests. European Journal of Political

Economy, 10, 41-60.

[36] Nti, K.O. (1999). Rent-seeking with asymmetric valuations. Public Choice, 98, 415-

430.

[37] Rinott, Y., Scarsini, M., & Yu, Y. (2012). A Colonel Blotto gladiator game. Math-

ematics of Operations Research, 37, 574-590.

[38] Ryvkin, D. (2010). Contests with private costs: Beyond two players. European

Journal of Political Economy, 26, 558-567.

[39] Ryvkin, D. (2013). Heterogeneity of players and aggregate effort in contests. Journal

of Economics & Management Strategy, 22, 728-743.

[40] Rubinstein, A. (1998). Modeling bounded rationality. Cambridge, MA: MIT Press.

[41] Schoonbeek, L., & Winkel, B.M. (2006). Activity and inactivity in a rent-seeking

contest with private information. Public Choice, 127, 123-132.

[42] Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal of

Economics, 69, 99-118.

[43] Stahl, D.O., & Wilson, P.W. (1995). On players’models of other players: Theory

and experimental evidence. Games and Economic Behavior, 10, 213-254.

[44] Stein, W.E. (2002). Asymmetric rent-seeking with more than two contestants. Pub-

lic Choice, 113, 325-336.

[45] Szymanski, S. (2003). The economic design of sporting contests: A review. Journal

of Economic Literature, 41, 1137-1187.

32



[46] Tullock, G. (1980). Effi cient rent seeking. In Buchanan, J., Toltison, R., & Tullock,

G. (Eds.), Towards a Theory of Rent Seeking Society, 97-112. College Station: Texas

A&M University Press.

[47] Wang, X., & Zhuang, J. (2011). Balancing congestion and security in the presence

of strategic applicants with private information. European Journal of Operational

Research, 212, 100-111.

[48] Wärneryd, K. (2003). Information in conflicts. Journal of Economic Theory, 110,

121-136.

[49] Wärneryd, K. (2013). Multi-player contests with asymmetric information. Eco-

nomic Theory, 51, 277-287.

[50] Wasser, C. (2013). Incomplete information in rent-seeking contests. Economic The-

ory, 53, 239—268.

[51] White, L. (2016). Behavioural operational research: Towards a framework for un-

derstanding behaviour in OR interventions. European Journal of Operational Re-

search, 249, 827-841.

[52] Yamazaki, T. (2008). On the existence and uniqueness of pure-strategy Nash equi-

librium in asymmetric rent-seeking contests. Journal of Public Economic Theory,

10, 317-327.

[53] Zhuang, Z.Y., Bier, V.M., & Alagoz, O. (2010). Modeling secrecy and deception in a

multiple-period attacker-defender signaling game. European Journal of Operational

Research, 203, 409-418.

33


