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Abstract Lexical resources are fundamental to tackle many tasks that are
central to present and prospective research in Text Mining, Information Re-
trieval, and connected to Natural Language Processing. In this article we in-
troduce COVER, a novel lexical resource, along with COVERAGE, the al-
gorithm devised to build it. In order to describe concepts, COVER proposes
a compact vectorial representation that combines the lexicographic precision
characterizing BabelNet and the rich common-sense knowledge featuring Con-
ceptNet. We propose COVER as a reliable and mature resource, that has been
employed in as diverse tasks as conceptual categorization, keywords extraction,
and conceptual similarity. The experimental assessment is performed on the
last task: we report and discuss the obtained results, pointing out future im-
provements. We conclude that COVER can be directly exploited to build
applications, and coupled with existing resources, as well.
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1 Introduction

The growth of the Web and the tremendous spread of social networks [12]
exert a strong pressure on computational linguistics to refine methods and
approaches to improve applications in areas as diverse as documents catego-
rization [73], conceptual categorization [43], keywords extraction [46], question
answering [25], text summarization [28], and many others. The role of linguistic
resources —mostly those concerned with lexical semantics— has been herein
central: in the last decades, the success in several tasks such as word sense
disambiguation has been strongly related to the development of lexical re-
sources [51,53,57]. The same holds for specialized forms of semantic analysis
and interpretation, such as sentiment analysis, where systems’ efficacy [11]
has been accompanied by the release of specialized lexical resources and cor-
pora (e.g., [5,47,18]). Finally, in the last few years the creation of multilingual
and parallel resources [21,58] further strengthened the link between lexical
resources and successful NLP applications [16,24,56].

In order to provide artificial systems with human-level competence in un-
derstanding text documents (which is known to be an AI-complete task [82,32,
41]), one chief component is basically missing from existing resources, with the
notable exception of ConceptNet [27]: that is, common-sense. Common-sense
is assumed to be a widely accessible and elementary form of knowledge [55],
whose main traits can be encoded as prototypical knowledge [69]. For example,
if we consider the concept water, the common-sense knowledge related to this
concept is that water, typically, occurs in liquid state and that it is usually a
colorless, odorless and tasteless fluid.1 This is a relevant piece of information,
since in many settings artificial agents need to complement more structured
information (such as, e.g., about the chemical composition or taxonomic infor-
mation) with common-sense aspects. However, although ConceptNet is suited
to structurally represent common-sense information related to typicality, it
cannot be directly connected to further resources due to the fact that it disre-
gards the conceptual anchoring issue (more on this topic later on). Other well
known semantic resources, such as DBpedia [2] and the ontological resource
Cyc [34], are de facto not able to do represent common-sense information.
In DBpedia, such information is scattered in textual descriptions (e.g., in the
abstracts) rather than being available in a structured, formal and accessible
way. For instance, the fork entity can be categorized as an object, whilst there
is no structured information about its typical usage, places where forks can
be found, entities that frequently are found together with forks, etc.. As a
consequence, DBpedia provides poor results when tested on queries involving
common-sense knowledge [37]. Cyc is one of the largest ontologies available,
and one of the biggest attempts to build common-sense knowledge bases. De-

1 “When people communicate with each other, they rely on shared background knowledge
to understand each other: knowledge about the way objects relate to each other in the world,
people’s goals in their daily lives, the emotional content of events or situations. This ‘taken
for granted’ information is what we call common sense – obvious things people normally
know and usually leave unstated” [12, p.15].
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spite this premise, however, such resource (at least in its publicly available
version, OpenCyc) does not represent common-sense information. Similar to
DBpedia, in fact, when tested on common-sense queries [36,37], systems built
on top of the OpenCyc ontology obtain poor results.2

In this work we introduce the lexical resource COVER (so named after
‘COmmon-sense VEctorial Representation’), which we propose as a helpful re-
source to semantically elaborate text documents. COVER is built by merging
BabelNet [58], NASARI [9] and ConceptNet [27] with the aim at combin-
ing, in a synthetic and cognitively grounded way, lexicographic precision and
common-sense aspects. The knowledge representation adopted in COVER al-
lows a uniform access to concepts via BabelNet synset IDs; it consists of a
vector-based semantic representation which is also compliant with the Con-
ceptual Spaces, a geometric framework for common-sense knowledge represen-
tation and reasoning [23].

Different from most popular vectorial resources that rely on Distributional
Semantics, representing hundreds of opaque distributional features (in par-
ticular for resources using latent semantic indexing), COVER provides the
represented elements with a reduced number of cognitively salient dimensions
and, as illustrated in the following, it allows building applications that obtain
interesting results in a number of tasks.

2 Related Work

In the last few years different methodologies and systems for the construction
of unified lexical and semantic resources have been proposed, as portrayed in
Figure 1. In particular, one clear trend has recently emerged: besides resources
that have been built either based on manual annotation (such as WordNet [51]
and FrameNet [3]) or in automatic fashion (such as BabelNet [59]), many
efforts have been spent in building vector representations that are known as
distributional semantics models or word embeddings.

2.1 Vector Representations

Let us start from the recent approaches that rely upon vector representa-
tions: in this setting, one major assumption is that words that occur in similar
contexts tend to purport similar meanings [26]; this principle seems to be
compatible with some mechanisms of language acquisition that are based on
similarity judgments [83]. Word meanings are herein represented as dense unit
vectors of real numbers over a continuous, high-dimensional Euclidean space,
where word similarity and relatedness can be interpreted as a metric. Four

2 The representational limitation of this ontological resource has also led to the devel-
opment of hybrid knowledge representation systems, such as, e.g., Dual-PECCS [43], that
adopts OpenCyc to encode taxonomic information and resorts to different integrated frame-
works the task of representing common-sense knowledge.
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Fig. 1 Mapping on the timeline of some of the most relevant linguistic resources proposed
in the last decades.

of the most popular embeddings are word2vec [50], GloVe [64], NASARI [9]
and ConceptNet Numberbatch [74]. The word2vec models and the associated
off the shelf word embeddings result from a training over 100 billion words
from the Google News through continuous skip-grams. The authors of this
work exploit simple — compared to either feedforward or recurrent network
models — model architectures and illustrate how to train high quality word
vectors from huge data sets. While word2vec is commonly acknowledged to be
a predictive model, GloVe [64] is instead a count based model (more on this dis-
tinction can be found in [4]). In count based models, model vectors are learned
by applying dimensionality reduction techniques to the co-occurrence counts
matrix; in particular, GloVe embeddings have been acquired through a train-
ing on 840 billion words from the Common Crawl dataset.3 As regards as the
more recent ConceptNet Numberbatch [74,75], it has been built through an
ensemble method combining the embeddings produced by GloVe and word2vec
with the structured knowledge from the semantic networks ConceptNet [76]
and PPDB [22]. The authors employ here locally-linear interpolation between
GloVe and word2vec, and also propose adopting ConceptNet as knowledge
source for retrofitting distributional semantics with structured knowledge [19].

Some other related works are concerned with the extraction of Concep-
tual Spaces representations. Conceptual Spaces are a cognitively-inspired rep-
resentational framework assuming that conceptual knowledge in human and
artificial systems, is ultimately represented and used for intelligent tasks in
small-scale geometric spaces (i.e., in a specific characterization of vector-based
representations). In such framework, knowledge is represented as compact set
of quality dimensions and a geometric or topological interpretation is associ-
ated to each quality dimension (we refer to [23] for the details on the frame-
work). Existing approaches, for example, try to induce Conceptual Spaces
based on distributional semantics by directly accessing huge amounts of tex-

3 http://commoncrawl.org.

http://commoncrawl.org
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tual documents to extract the multidimensional feature vectors that describe
the Conceptual Spaces. In particular, the work by [17] tries to learn a differ-
ent vector space representation for each semantic type (e.g., movies), given a
textual description of the entities in that domain (e.g., movie reviews). Specifi-
cally, in the mentioned work, the authors use multi-dimensional scaling (MDS)
to construct the space and identify directions corresponding to salient proper-
ties of the considered domain in a post-hoc analysis. A similar (though more
limited) approach has been recently undertaken in [38], consisting of automat-
ically extracting some basic and perceptually prominent feature values, such
as for the dimensions Shape, Size, Location, etc..

Since term meanings are represented as points, vectors and regions in a
Euclidean space, CSs and word embeddings can be considered to some ex-
tent as cognate representations. However, word embeddings also differ in at
least two crucial ways that limit their usefulness for applications in knowledge
representation, e.g., in automatically dealing with inconsistencies. First, word
embedding models are mainly aimed at modelling similarity (and notions such
as analogy, like in the Latent Relational Analysis approach by [78]), and are
not designed to provide a geometric representation of conceptual information
(e.g., by representing concepts as convex regions where prototypical effects are
naturally modelled). Moreover, the dimensions of a word embedding space are
not directly interpretable in that the meaning of the features is not directly ac-
cessible, while quality dimensions in Conceptual Spaces directly reflect salient
cognitive properties of the underlying domain. This fact has direct impact
on the explanatory capacity of word embeddings: the similarity between two
entities is assessed based on the closeness of their vector representations in
a multidimensional space according to some given metrics. Retrofitting tech-
niques have been proposed to refine vector space representations by borrowing
information from semantic lexica [19]. However, these can be used rather to
smartly find out terms with closer vector representation, rather than to intro-
duce information on features, functions and roles, which would explain why
and in how far two entities are similar or related.

The vector representations conveyed by word embeddings have been adopted
in systems that exhibit good (impressive, in some cases [75,7]) agreement with
human judgment and they can be applied in some specific tasks such as ana-
logical reasoning; however, no justification based on properties/relations is
allowed in this setting. Conversely, no wide coverage lexical resource has been
so far carried out that is fully compliant to Conceptual Spaces, also due to the
fact that Conceptual Spaces have been designed to grasp mainly perceptual
qualities, and they can be hardly generalized to any arbitrary domain.

2.2 Annotation Based Representations

Another broad class of lexical resources includes a heterogeneous set of works
that can be arranged into hand-crafted resources — created either by expert
annotators, such as WordNet [51], FrameNet [3] and VerbNet [35], or through
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collaborative initiatives, such as ConceptNet [27] —; and resources that have
been built by automatically combining the above ones, like in the case of
BabelNet [59].

WordNet (WN) is a lexical database for the English language. It has been
the first and the most influential resource in the field of lexical semantics;
its hierarchies are to date at the base of other resources, and it is has been
used in various and diverse sorts of applications, such as, e.g., to compute su-
persense tagging [13] and several tree-based similarity metrics [63]. Different
from traditional dictionaries — organizing terms alphabetically, thus possibly
scattering senses — WN relies on the idea of grouping terms into synonyms
sets (called synsets), that are equipped with short definitions and usage ex-
amples. Such sets are represented as nodes of a large semantic network, whose
edges express semantic relations among synset elements (such as hyponymy,
hypernymy, antonymy, meronymy, holonymy). BabelNet is a wide-coverage
multilingual semantic network resulting from the integration of lexicographic
and encyclopedic knowledge from WordNet and Wikipedia, respectively; it ex-
tends the constructive rationale of WN — and as such it is also based on sets of
synonyms, the Babel synsets — through the structure of Wikipedia composed
of redirect pages, disambiguation pages, internal links, inter-language links,
and categorical information. More on the algorithm used to build BabelNet
can be found in [59].

None of the mentioned proposals addresses the issue of integrating re-
sources and extracting information to the ends of providing common-sense
conceptual representations, also provided with a thorough conceptual anchor-
ing. The rationale underlying COVER is to extract the conceptual informa-
tion hosted in BabelNet (and its vectorial counterpart, NASARI [9]) and to
exploit the relations in ConceptNet so to rearrange BabelNet concepts into
a semantic network enriched with ConceptNet relations. Differently from the
surveyed works, however, this is done by leveraging the lexical-semantic inter-
face provided by such resources. In the next Section we illustrate our strategy
in building our resource.

3 The COVERAGE Algorithm and the COVER Lexical Resource

Before introducing COVER, we illustrate COVERAGE (that stands for
COVER Automatic GEnerator), the algorithm designed to build COVER.
The goal of the COVERAGE algorithm is to create a collection of seman-
tic vectors, one for each concept c provided as input. Each obtained vector
~c contains common-sense information about the input concept, and it is en-
coded as a set of semantic dimensions D. More precisely, each dimension (e.g.,
HasPart or UsedFor) contains a set of concepts that constitute the values
filling that dimension for the concept c. The adopted algorithm relies upon two
well-known semantic resources, that are NASARI [9] and ConceptNet [76].
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NASARI unified vector:

bn:00000001n -NA- bn:00021248n_73.1 bn:00005513n_14.48 ...

NASARI embedded vector:

bn:00000001n -NA- 0.02738748 0.00093856 0.0698559 ...

Fig. 2 The NASARI and NASARIE vectors for the bn:00000001 concept. The first el-
ement of the vector is the BSI, that identifies the concept associated with the vector; the
second one is the Wikititle (an unnamed concept is illustrated in this case, -NA-); the re-
maining elements are either BSIs enriched with their weight in the NASARI unfied vector,
or float numbers in the NASARIE vector.

3.1 Employed Resources

NASARI. NASARI is a set of distributional semantic vectors, each one pro-
viding distributional information regarding a concept, identified through a
BabelNet synset ID (hereafter also BSI). We employ two out of the three
available NASARI versions:

– NASARI unified: each vector contains a weighted list of other concepts (also
identified by BSIs) semantically close to the concept being represented by
the current vector;

– NASARI embedded (referred to as NASARIE from now on): each vector
defines a dense vector in a 300-dimensions space. All the NASARIE vectors
share the same semantic space, so that these representations can be used
to compute semantic distances between any two such vectors.

The two different representations (NASARI and NASARIE vectors) for the
same concept are illustrated in Figure 2. The NASARI vectors are used as
sense inventory and provide a connection between the term and the sense
level. Because we rely on BSIs in order to identify the different senses, and
because BabelNet is a multi-language resource, it follows that also COVER
is a multilingual resource.

ConceptNet. ConceptNet is a semantic network, where nodes represent words
and phrases connected through a large set of relationships. We chose to extract
the information from ConceptNet because it is mainly constituted by common-
sense knowledge, as illustrated by the dump provided in Figure 3. However,
since this resource does not provide a clear semantic grounding, nodes herein
conflate all possible senses. Let us briefly elaborate on the main differences
between ConceptNet and NASARI, by comparing their limitations and merits
in order to introduce the main axes that drove the design of COVER.

Motivation for Merging NASARI and ConceptNet

As it emerges from the above discussion, NASARI contains a set of concep-
tually grounded vectors. Each such vector is constituted by concepts that are
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Fig. 3 Representation of the node table in ConceptNet.

semantically proximal, leaving unspecified the nature of their semantic connec-
tion. For instance, the vector describing table (“A piece of furniture having
a smooth flat top that is usually supported by one or more vertical legs”,
identified as bn:00075813n) may be related to (the BSIs corresponding to)
furniture, leg, kitchen and so forth, but it provides no further information
on why and how each of these entities is related to table. On the other side,
ConceptNet is built upon relationships, but it doesn’t provide any conceptual
grounding to the involved nodes. Specifically, ConceptNet nodes are not con-
cepts but lexical entities (and possibly compound words, such as “Something
you find inside”). In this sense, ConceptNet offers a much richer and descrip-
tive vocabulary, but at the expense of a reduced ‘ontological’ and taxonomic
precision (no concept identifier is used at all). For example, we have that ta-
ble IsA forniture, has legs, and can be found AtLocation kitchen. However,
given the absence of a conceptual grounding, the same table node will also pro-
vide relationships such as table IsA contents, IsA counter, IsA calendar, thus
resulting in a mixture of relationships regarding all possible senses underlying
the given term table (please refer to Figure 3).

COVER representation benefits from the rich set of relations from Con-
ceptNet, and from the lexicographic precision proper to (BabelNet and) NA-
SARI. Two main design principles lie at the base of COVER: i) the need
to make explicit the relationships intervening between a given concept and
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Exemplar bn:00008010n (bakery, bakeshop)

bn:00008010nRELATEDTO = [dough,cake,wheatberry,baked goods,

crusty bread,bakehouse,chocolate brownie,breadmaker,buns,produce,shop]

bn:00008010nISA = [workplace,sales,outlet,shop]

Fig. 4 The vector for the bakery concept. The values filling the dimensions RelatedTo
and IsA are concepts identifiers (BabelNet synset IDs); for the sake of the readability they
have been replaced with their corresponding lexicalization.

those describing it; and ii) the need for filling such relations with fully fledged
concepts rather than terms/compound words.4

3.2 Representation of Lexical Concepts in COVER

The vectors in COVER are defined on a setD of 44 dimensions5 corresponding
to the most salient relationships available in ConceptNet. Each dimension
contains a set of values that are concepts themselves, identified through their
own BSIs. So a concept ci has a vector representation ~ci that is formally defined
as

~ci = [si1, .., s
i
N ], (1)

where each sih is the set of concepts filling the dimension dh ∈ D. Each s can
contain an arbitrary number of values, or be empty. For instance, the vector
bn:00008010n that represents bakery, has two dimensions filled (RelatedTo
and IsA), and therefore it has two non-empty sets of values (Figure 4).

3.3 Selecting the Sense Inventory: the CLOSEST Algorithm

The COVERAGE algorithm takes in input a concept (represented as a BSI)
and produces an associated common-sense vector representation. In order to
obtain the concepts that are actually fed to the system we start from a set of
English terms, in particular, all of the English nouns have been retrieved from

4 Of course, not all information available in ConceptNet can be directly mapped onto
BSIs (e.g., the compound word “Something you find inside” has no counterpart in Babel-
Net/NASARI).

5 InstanceOf, RelatedTo, IsA, AtLocation, dbpedia/genre, Synonym, Derived-
From, Causes, UsedFor, MotivatedByGoal, HasSubevent, Antonym, CapableOf, De-
sires, CausesDesire, PartOf, HasProperty, HasPrerequisite, MadeOf, Compound-
DerivedFrom, HasFirstSubevent, dbpedia/field, dbpedia/knownFor, dbpedia/influ-
encedBy, dbpedia/influenced, DefinedAs, HasA, MemberOf, ReceivesAction, Sim-
ilarTo, dbpedia/influenced, SymbolOf, HasContext, NotDesires, ObstructedBy,
HasLastSubevent, NotUsedFor, NotCapableOf, DesireOf, NotHasProperty, Cre-
atedBy, Attribute, Entails, LocationOfAction, LocatedNear.
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the Corpus of Contemporary American English (COCA), which is a corpus
covering different genres, such as spoken, fiction, magazines, newspaper, aca-
demic.6 The subsequent step consists of providing each term with the most rel-
evant associated sense(s); this processing is performed by a module implement-
ing the CLOSEST algorithm. It is acknowledged that too fine-grained semantic
distinctions may be unnecessary and even detrimental in many tasks [61]:
the CLOSEST algorithm accesses BabelNet and produces more coarse-grained
(with respect to BabelNet) sense inventories, based on a simple heuristics
building on the notions of availability and salience of words and phrases [80].
Specifically, more central senses are hypothesized —in accordance with their
use in spoken and written language— to be more richly represented in encyclo-
pedic resources, to be typically featured by richer and less specific information,
and by richer semantic connections with other concepts.

Given an input term t, the algorithm first retrieves the set of senses S =
{s1, s2, . . . , sn} that are possibly associated to t: such set is obtained by directly
querying NASARI. The output of the algorithm is a result set that is obtained
through a process of incremental filtering of S, arranged into two main phases:

1. LS-Pruning. Pruning of less salient senses: senses with associated poor
information are eliminated. The salience of a given sense is determined by
inspecting its NASARI vector;

2. OL-Pruning. Pruning of overlapping senses: for each two senses with sig-
nificant overlap (a function of the number of features shared in the corre-
sponding NASARI vectors), the less salient sense is pruned.

Further details on the CLOSEST algorithm can be found in [39].
Once the sense inventory for each term has been filtered, and a more coarse

one has been obtained, the COVERAGE algorithm comes to play.

3.4 The COVERAGE algorithm

The algorithm implemented by COVERAGE can be broken down into two
main steps. Given in input a concept c represented by its BabelNet synset ID,
the system performs the following operations:

1. Semantic Extraction:
- Extraction: all nodes possibly representing c in ConceptNet are re-

trieved, and all the relevant terms connected to such nodes are trig-
gered and placed in the set of extracted relevant terms T (more about
relevance criteria later on).

- Concept Identification: all terms t ∈ T are disambiguated by equipping
each one with a BSI; this step amounts to translating T into the set of
relevant extracted concepts C.

2. Vector Injection: each concept ci ∈ C is injected into its vector repre-
sentation ~c by exploiting the relationship formerly connecting ci to c in
ConceptNet.

6 http://corpus.byu.edu/full-text/.

http://corpus.byu.edu/full-text/
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Fig. 5 Each term connected to the ConceptNet node Fork is inspected to determine whether
it is relevant (dotted contour) or not (dashed contour) for the sense conveyed by the input
concept c. While the dotted nodes are relevant because they are referring to Fork as the
“kitchen utensil” —that is, the sense of c—, the dashed ones refer to Fork as the system call
for creating processes (software node), as the chess move (chess node), or as the bifurcation
of a watercourse (waterway node).

In the next sections we will illustrate the algorithm in detail by following the
execution upon the concept c = bn:00035902n, that is Fork intended as “the
utensil used for eating or serving food”.

3.4.1 Semantic Extraction

The Semantic Extraction phase has been designed to build the set C, contain-
ing the relevant concepts that will provide the common-sense information for
the output vector ~c. The first step is the retrieval of the NASARI (unified)
vector of c: such task can be performed straightforwardly, thanks to the fact
that NASARI is indexed and accessed through BSIs.

The Extraction starts by retrieving all of the ConceptNet nodes that are
possibly relevant for c. Because ConceptNet nodes are compound concepts [45]
possibly expressed by multi words phrases, we search for all the nodes in Con-
ceptNet that correspond to any term included in either the BabelNet synset
or the WordNet synset of c. For example, in the Fork case, we look for the
nodes Fork, King of utensils, Pickle fork, Fish fork, Dinner fork, Chip fork and
Beef fork in ConceptNet. All the associations starting from these nodes are
collected, and considered as information potentially pertinent to c. However,
since we are interested in working at the semantic level, we need to inspect
each one of the retrieved associations in order to determine if they are relevant
to the sense conveyed by c. Figure 5 illustrates the Fork node in ConceptNet
and its relevant/non relevant connected nodes.

The relevance is assessed by applying two criteria, that are defined as
follows.
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Fig. 6 The similarity between NASARIE candidate vectors and the vector of Fork
(bn:00035902n) is computed. The highlighted vector is selected, because its similarity with
the Fork vector obtained the highest score.

Definition 1 (Relevance Criteria) An extracted term t is considered rel-
evant for the concept c if either: i) t is included in at least one of the synsets
listed in the NASARI vector representation for c; or ii) at least β nodes di-
rectly connected to t in ConceptNet can be found in the synsets that are part
of the NASARI vector representation for c.

The rationale underlying these criteria is explained by the fact that since the
NASARI unified vector of c contains concepts (along with their lexicalizations)
semantically close to c, the presence of t (first condition) or β terms from its
ConceptNet neighborhood (second condition)7 in such vector guarantees that
t is somehow related to c, and it can be thus considered as relevant.

Once the relevance detection is performed, all the relevant terms extracted
from all the ConceptNet nodes that we previously collected are put together
in the set T . In the Fork example, the resulting set would be:

T = {plate, tool, food, utensil, silverware, table, metal knife, spoon, eat} (2)

After having obtained T , that is a set of terms that are guaranteed to be
relevant for the sense conveyed by c, the process goes through the Concept
Identification step. In fact, T still contains lexical elements and not BSIs. A
step of word sense disambiguation is thus required in order to convert T into
C, by assigning a BSI to each of the terms in T .

The Concept Identification is performed in two different ways, depending
on how the term ti ∈ T that we are trying to disambiguate was evaluated as
relevant during the relevance detection phase. More precisely, if ti was evalu-
ated as relevant via the first condition (ti was part of the NASARI vector of c),
we automatically have its BSI, thanks to the inner structure of the NASARI
vectors (Section 3.1). If, on the other side, ti was found relevant in virtue of the
second condition (Definition 1), we cannot directly retrieve its BSI. In this case,
the Concept Identification starts by detecting all the possible meanings of the
term. This operation is straightforward: since each BabelNet synset contains
all the lexicalizations corresponding to the concept it represents, we retrieve
the list of candidate BSIs by selecting those BabelNet synsets that contain

7 The parameter β has been set to 2 to build the released resource.
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Fig. 7 All the concepts in C are injected into the vector for Fork. The concepts identifiers
in the vector have been replaced with their lexicalization in order to make the image human
readable.

ti among their lexicalized elements. Subsequently, we retrieve the NASARIE
vector associated to each candidate, thus obtaining a set of candidate vectors,
one for each BSI possibly appropriate as the meaning of ti. In either case the
selection of the best candidate is performed by exploiting such NASARIE vec-
tors. We first compute the cosine similarity between each candidate vector and
the NASARIE vector of c. If the similarity of the most similar vector is greater
than a fixed threshold,8 then the BSI of that vector becomes the meaning of
ti. Figure 6 illustrates this process for the Fork example.

Once the Concept Identification is completed, the term ti is enriched with
its BSI and included in the set of the relevant extracted concepts C.

3.4.2 Vector Injection

The second phase of the COVERAGE system consists in the injection of the
concepts in C into the vector representation for the input concept c. Each
ci ∈ C has been retrieved from some node in ConceptNet that was a lexical-
ization of c, and therefore we have a ConceptNet relationship that connects
each ci to c. Because the COVER vectors have a set of ConceptNet relation-
ships as dimensions (Section 3.2), we just have to properly place each ci into
the dimension corresponding to the relationship that was linking it to c in
ConceptNet. Figure 6 illustrates the Vector Injection for the Fork example.

The Vector Injection concludes the execution of the COVERAGE system:
in the next Section we present some details about the data that has been fed
in input to the COVERAGE system and the returned output.

3.5 Building COVER

We now present some features and statistics regarding the computation of
COVERAGE, including the size of the lexical base taken as input, some
figures on retrieved (and discarded) concepts, and a final quantitative descrip-
tion of the amount of information finally encoded in COVER. In order to

8 Presently set to 0.6.
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Resource Size

NASARI/NASARIE vectors 2,868,176
ConceptNet assertions 4,227,874
ConceptNet nodes 859,932

Table 1 Information contained in NASARI and ConceptNet, and used as the starting point
to build COVER.

obtain the concepts that are actually fed to the COVERAGE algorithm, we
start from terms in the Corpus of Contemporary American English and we
exploit the CLOSEST algorithm. The CLOSEST system took 27, 006 terms in
input, and returned 40, 816 concepts in output, which were then fed to the
COVERAGE system; i.e., some of the terms have been mapped on multiple
concepts.

After such preprocessing step, the building of the COVER resource took
place. Before the execution of the algorithm, the dataset in input was pruned:
8, 979 concepts were dropped as either duplicates (8, 867) or because no as-
sociated NASARI vector was found (112). Thus 31, 837 concepts were fed to
the system. The size of the resources employed all throughout this process is
reported in Table 1.

As regards as the Semantic Extraction phase, overall 4, 324, 971 terms were
extracted from ConceptNet (on average, 135.85 per input concept), but only
42.9% of them (overall 1, 856, 888) were found relevant. Therefore, the aver-
age cardinality of T for each input was 58.32. The concept identification was
successful for the 32.61% of such relevant terms, thereby resulting in a total
of 605, 450 extracted relevant concepts (the average cardinality of the bag of
concepts C was then 19.02). We note that roughly two thirds of the concept
identification failures were due to the violation of the concept similarity thresh-
old. This threshold is indeed a very sensitive parameter that allows tuning the
amount of noise (vs. completeness) featuring the resource: e.g., by setting the
similarity threshold to 0.5 instead of 0.6, the average cardinality of C raises
to 25.86 (which directly compares with the actual value, 19.02).

As regards as the Vector Injection phase, since COVERAGE only loads
the ConceptNet relationships that are included into our vectors schema, all
the concepts in C were injected into the output vectors. Therefore, the aver-
age filling factor (that is, the number of values per concept) corresponds to
the average cardinality of C (19.02). This figure was then increased by adding
the first 5 elements contained in the NASARI vector for the input concept
in its RelatedTo dimension, bringing the average population of the vec-
tors to 23.97. More precisely, half vectors contain 5 to 20 values, while only
0.5% vectors are filled by less than five values. The most populated dimen-
sions are RelatedTo, Synonym, IsA, HasContext, Antonym, FormOf
and DerivedFrom: this distribution closely approaches the distribution of
information contained in ConceptNet (Table 2).

The COVERAGE system obtained an empty set C for 4, 786 concepts
out of the 31, 837 provided as input. In such cases, the resulting vectors for
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Relationship Number of associations % of associations

RelatedTo 1,449,431 51.25%
FormOf 273,560 09.67%
IsA 247,387 08.75%
Synonym 237,772 08.41%
HasContext 177,677 06.28%
DerivedFrom 116,243 04.11%
UsedFor 42,443 01.50%
SimilarTo 29,480 01.04%
AtLocation 28,960 01.02%
CapableOf 26,354 00.93%
HasSubevent 25,896 00.92%
HasPrerequisite 23,493 00.83%
EtymologicallyRelatedTo 20,723 00.73%
Antonym 19,967 00.71%
Causes 17,088 00.60%
HasProperty 13,553 00.48%
PartOf 12,795 00.45%
MotivatedByGoal 9,807 00.35%
ReceivesAction 8,383 00.30%
HasA 7,735 00.27%

Table 2 Distribution of values inside ConceptNet 5.5.0 (only the 20 most populated asso-
ciations are shown).

such concepts contain exclusively values that were automatically taken from
NASARI and injected into the RelatedTo dimension. More in detail, in most
failure cases (namely, 4, 570) the system either could not detect any extracted
relevant term, or it could not disambiguate any one of the extracted terms.
For instance, the input recantation produced only recall as extracted term.
However, the similarity between these two concepts was under the threshold
β, therefore, recall couldn’t be accepted and the C set for recantation resulted
empty. In the remaining 216 cases, it was not possible to find a ConceptNet
node for the input concept. We observed that the vast majority of this concepts
contained a dash (e.g., tete-a-tete, god-man, choo-choo). A further improve-
ment would consist in the removal of such dashes in order to detect a suitable
ConceptNet node for this kind of inputs.

The COVER resource can be downloaded at the URL http://ls.di.
unito.it/resources/cover/.

3.6 Applications

The COVER resource has been successfully applied in different tasks, such
as the conceptual categorization task, keywords extraction, and for the com-
putation of semantic similarity, both at the word and sense level.

http://ls.di.unito.it/resources/cover/
http://ls.di.unito.it/resources/cover/
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Conceptual categorization. COVER has been used as a knowledge base em-
ployed by a system designed to solve the task of conceptual categoriza-
tion [40,42,43,44]. The task is defined as follows: given a a simple common-
sense linguistic description, the corresponding target concept has to be
identified. In this setting, a hybrid reasoning system (named Dual-PECCS,
after ‘Prototypes and Exemplars-based Conceptual Categorization Sys-
tem’) has been devised combining both vector representations and formal
ontologies. In particular, Dual-PECCS is equipped with a hybrid knowl-
edge base composed of heterogeneous representations of the same con-
ceptual entities: that is, the hybrid knowledge base includes prototypes,
exemplars and classical representations for the same concept. As regards
as the former component of the KB, it is composed by a linguistic resource
similar in essence to COVER, although with limited coverage. The whole
categorization pipeline implemented by Dual-PECCS works as follows.
The input to the system is a simple linguistic description, like ‘The animal
that eats bananas’, and the expected output is a given category evoked
by the description (e.g., the category monkey). An algorithm to compute
vector distances is executed, that returns an ordering of the concepts that
best fit to those in the COVER resource. Then, these results are checked
for consistency against the deliberative sub-system, employing standard
ontological inference. Interestingly enough, we showed that common-sense
descriptions such as that in the example cannot be easily dealt with with
ontological inference alone, nor through other standard approaches.

Keywords Extraction. COVER has been used in the keywords extraction task
[14]. We investigated a novel approach to keywords extraction that relies
on the following assumption: instead of using graph-based models under-
pinning on terminological information, our system individuates the con-
cepts featuring document content. Their relevance as keywords is estimated
through their conceptual centrality w.r.t. the concepts in the title. We com-
pared several metrics to compute such relevance: the metrics at stake were
based on NASARI (both unified and embedded) vector representations [8],
on the COVER representation, and on two further metrics originally con-
ceived to evaluate the coherence in latent topic models [54,60]. Our exper-
imentation showed that the results obtained through the COVER metrics
achieve the highest precision, and competitive accuracy with state-of-art
systems [29] on a benchmark dataset [46].

Concept Similarity with Explanation. Additionally, the COVER resource has
been used to compute conceptual similarity. One main assumption under-
lying our approach is that two concepts are similar insofar as they share
some values on the same dimension, such as when they are both used for
the same ends, they share components, they can be found in the same
place(s), etc.. Consequently, our metrics to compute conceptual similarity
does not employ WordNet taxonomy and distances between node pairs,
such as in [81,33,71], nor it depends on information content accounts ei-
ther, such as in [67,30], nor it relies on distances between vectors like in
embedded representations [10,74]. Although the system devised does not
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The similarity between lizard and crocodile is 1.99 because

- they ARE reptile;

- they are RELATEDTO reptile, Caiman, fauna, diapsid.

The similarity between Harry Potter and wizard is 2.50 because

- they are RELATEDTO spell, magic, magician, wand.

The similarity between beach and coast is 2.79 because

- they ARE shore;

- they are semantically SIMILARTO shore, formation;

- they are RELATEDTO shore, coast, weather, seaboard, island, shell,

wave.

The similarity between sodium chloride and salt is 3.56 because

- they are MADEOF sodium_chloride, ion, crystal;

- they can be found ATLOCATION Shaker_(laboratory), seawater, water,

nutrient, mine, salt_mine;

- they ARE binary_compound, taste, chemical_compound, Ionic_compound,

spice, crystal, sodium_chloride, seasoning, inorganic_compound;

- they are USEDFOR seasoning, nutrient;

- they share the same CONTEXT chemistry, inorganic_compound;

- they are SEMANTICALLYOPPOSITE of carbohydrate,

Swedish_ethyl_acetate_method, vinegar;

- they are PARTOF seawater, sea;

- they are SIMILARTO Sharp_(flour);

- they are SEMANTICALLYSIMILARTO saltiness, sodium_chloride, salinity,

salt;

- they are RELATEDTO magnesium_lactate, Mevalonic_acid, cholic_acid,

sulfate, halobacterium, benzoate, sulfonate, monosodium_glutamate,

Glutaric_acid;

- they are DERIVEDFROM salinity, sodium, chloride, sodium_carbonate.

Fig. 8 Some examples of the explanations that can be generated based on the COVER
resource; the terms at stake are marked with italic and bold font, while the dimensions are
marked with italic font. The similarity values are on a scale from 0.00 to 4.00.

yet achieve state-of-the-art scores (as reported in the next Section), the
COVER resource allows to naturally build explanations for the computed
similarity by simply enumerating the concepts shared along the dimensions
of the vector representation [15], as illustrated in Figure 8. The ability to
provide explanations justifying the obtained results is a feature shared by
all mentioned applications built on top of COVER; at the best of our
knowledge, none of the existing approaches allows to compute such ex-
planation. Further investigations are in progress in order to obtain proper
benchmarks on the generated explanations.
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We report our evaluation of the COVER resource on the Conceptual Simi-
larity task, that can be thought of as an enabling technology to cope with all
the aforementioned applications.

4 Evaluation

The intrinsic evaluation of the completeness and correctness of a lexical re-
source can be challenging. As testbed to assess COVER, we then opted for an
extrinsic evaluation, and considered the conceptual similarity task, which is a
long-standing tasks in the lexical semantics field [52,68,81,66]. To these ends,
we designed the MeRaLi system, that computes semantic similarity at both
sense and word level by specifically relying on COVER. MeRaLi was origi-
nally presented in the frame of the Sem-Eval 2017 campaign on Multilingual
and Cross-lingual Semantic Word Similarity [48]; we now present a novel ex-
perimentation, where the system employs an updated version of the COVER
resource.

In this Section we first illustrate the tasks and the similarity metrics im-
plemented by the MeRaLi system; we then introduce the data sets used for
testing, and provide the results along with their discussion.

4.1 The Concept Similarity Task

The concept similarity task consists in the estimation of a number that repre-
sents the similarity between two proposed concepts.

In our setting, the concept similarity task is actually cast to a vector-
comparison problem. In fact, since concepts in COVER are represented as
vectors, each one containing other concepts (as depicted in Equation 1), the
basic underlying rationale is that two vectors are similar if they share a good
amount of information. This criterion to compute conceptual similarity is un-
derpinned by the assumption that two concepts are similar insofar as they
share some values on the same dimension, such as when they both share com-
ponents or properties, inherit from the same superclass, when both entities
are capable of performing the same actions, etc.. Consequently, our similarity
metrics does not employ the WordNet taxonomy and the distances between
pairs of nodes, such as in [81,33,71], nor it depends on information content
accounts either, such as in [30,67].

Given two input concepts ci and cj , after the retrieval of the corresponding
COVER vectors ~ci and ~cj , we compute the similarity by counting, dimension
by dimension, the set of values that ~ci and ~cj share. Then, the similarity score
obtained over each dimension is combined by obtaining an overall similarity
score, that is our final output. So, given N dimensions in each vector, the
similarity value, sim(~ci,~cj), should be ideally computed as:

sim(~ci,~cj) =
1

N

N∑
k=1

|sik ∩ s
j
k|. (3)
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However, this formulation resulted to be too näıve. In fact, the information
available in COVER is not evenly distributed, that is, it may happen that
a given dimension is filled with many values (concepts) in the description of
a given concept, but the same dimension may be empty in the description
of another one. It was hence necessary to refine the above formula to tune
the balance between the amount of information available for the concepts at
stake: i) at the individual dimension level, to balance the number of concepts
that characterize the different dimensions; and ii) across dimensions, to pre-
vent the computation from being biased by more richly defined concepts (i.e.,
those with more dimensions filled). Both desiderata are satisfied by the Sym-
metrical Tversky’s Ratio Model [31] (which is a symmetrical reformulation for
the Tversky’s ratio model [79]),

sim(~ci,~cj) =
1

N∗
·
N∗∑
k=1

|sik ∩ s
j
k|

β (αa+ (1− α) b) + |sik ∩ s
j
k|

(4)

where |sik ∩ s
j
k| counts the number of shared concepts that are used as fillers

for the dimension dk in the concept ~ci and ~cj , respectively; a and b are defined

as a = min(|sik− s
j
k|, |s

j
k− sik|), b = max(|sik− s

j
k|, |s

j
k− sik|); finally N∗ counts

the dimensions actually filled with at least two concepts in both vectors. This
formula allows tuning the balance between cardinality differences (through
the parameter α), and between |sik ∩ s

j
k| and |sik − s

j
k|, |s

j
k − sik| (through the

parameter β).9

4.1.1 Word Similarity

Since some of the data we adopted in the experimentation is actually com-
posed by simple terms (rather than senses), this distinction deserves a brief
clarification.

As regards as the computation of the similarity at the words-level, we com-
pute it as the similarity of the closest senses of the words pair; the underlying
rationale is that each term works as the context for the other one (e.g., in
the pairs 〈‘fork’,‘system call’〉, and 〈‘fork’,‘river’〉). In particular, to compute
the semantic similarity between a term pair, we adopt a variant of a general
disambiguation approach formerly proposed in [62], formulated as follows.

Given: a pair 〈wt, C〉, where wt is the term being disambiguated, and C is the
context where wt occurs, C = {w1, w2, . . . , wn}, with 1 ≤ t ≤ n; also, each
term wi has mi possible senses, si1, s

i
2, . . . , s

i
mi

.
Find: one of the senses from the set {st1, st2, . . . , stmt

} as the most appropriate
sense for the target word wt.

The basic idea is to compute the semantic similarity as a function maximizing
the similarity between each two senses (corresponding to the target term and

9 The parameters α and β were set to .8 and .2 for the experimentation.
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to all terms in the context C) by finding the best sense sth disambiguating wt

where h is computed as:

h =
mt

argmax
mi=1

 ∑
wj∈C,j 6=t

mj

max
k=1

⊗
(
sti, s

j
k

) (5)

where ⊗ is implemented by the similarity metrics illustrated in Formula 4.
In doing so, we follow the approach employing semantic networks to compute
semantic measures also illustrated in [6] and in [65]. In formulae, given two
terms w1 and w2, each with an associated list of senses s(w1) and s(w2), this
amounts to computing

sim(w1, w2) = max
c1∈s(w1),c2∈s(w2)

[sim(c1, c2)] (6)

where each conceptual representation must be intended as a vector, as illus-
trated in Equation (4).

4.2 Experimental Setting and Procedure

Data Sets. As mentioned, the experimentation relies on the MeRaLi sys-
tem, which has been designed to compute conceptual similarity based on the
COVER lexical resource. Its performance has been assessed over four stan-
dard data sets. In particular, we considered three data sets for conceptual
similarity at the sense level,10 namely the RG [70], MC [52] and WS-Sim data
set, which was first designed for conceptual relatedness in [20] and then par-
tially annotated with similarity judgments [1]. Additionally, we considered a
fourth dataset recently released in the frame of the SemEval-2017 campaign
on Multilingual and Cross-lingual Semantic Word Similarity, and concerned
with the computation of the conceptual similarity at the word level [7]. Whilst
in the former case (sense level conceptual similarity) we computed the similar-
ity by directly applying the formula in Equation (4), in the latter case (word
level conceptual similarity) the computation also involves the computation
illustrated in Equation (6).

More in detail, the MC data set actually contains 28 pairs, that are a
subset of the RG data set, containing 65 sense pairs. The WS-Sim data set is
composed of 97 sense pairs, and the Sem-Eval 2017 data set consists of 500
word pairs. The last data set is the most challenging, since it hosts word pairs
involving entities. It is challenging also for human common sense in many
ways, since it includes pairs such as 〈Si-o-seh pol, Mathematical Bridge〉 and
〈Mount Everest, Chomolungma〉.

10 Publicly available at the URL http://www.seas.upenn.edu/˜hansens/
conceptSim/.

http://www.seas.upenn.edu/~hansens/conceptSim/
http://www.seas.upenn.edu/~hansens/conceptSim/
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Table 3 Percentage of dropped pairs for the selected data run of the MeRaLi system.

Dataset Dropped pairs

MC 17%
RG 15%
WS-Sim 12%
SemEval2017 9%

Evaluation Metrics. The MeRaLi system has then been fed with sense/word
pairs, and we recorded the conceptual similarity score provided in output.
The similarity scores so obtained have been assessed through Pearson’s r and
Spearman’s ρ correlations, that are usually adopted for the conceptual similar-
ity task. The Pearson r value captures the linear correlation of two variables
as their covariance divided by the product of their standard deviations, thus
basically allowing to grasp differences in their values, whilst the Spearman ρ
correlation is computed as the Pearson correlation between the rank values of
the considered variables, so it is reputed to be best suited to assess results in
a similarity ranking setting where relative scores are relevant [72,65].

Furthermore, we recorded the output of two runs of the MeRaLi system:
in the first one we restricted to considering pairs where the system had enough
information on both concepts involved in the comparison (named selected data
in the following), whilst in the second one we also considered cases where
no sufficient information was available in COVER for at least one of the
concepts at hand (full data in the following). In the former case, we selected
the pairs where, for both concepts at stake, a vector description was found in
COVER, and at least two shared dimensions were found to be filled (e.g., at
least IsA and UsedFor) with at least one element each. Satisfying all these
constraints is, in our opinion, necessary in order to be able to justify on which
bases two concepts are deemed similar or not. Table 3 shows the percentage of
dropped pairs in each data set in the selected data condition. Conversely, in the
full data condition we considered all pairs. In particular, for pairs lacking at
least one vector representation, or where less than two shared dimensions were
filled, we assigned a similarity score that was set to half the maximum of the
evaluation range (that is, in a 0.00-4.00 scale, we set it to 2.00). The rationale
underlying these two runs is to try to fully assess the COVER resource, by also
investigating to what extent the available information is helpful to conceptual
similarity, irrespective of its current coverage, which will be improved in the
future releases of the resource.

4.3 Results and Discussion

Table 4 illustrates the results obtained by the MeRaLi system in the exper-
imentation. Compared to the selected data run, the strongest competitors in
literature obtained 10% higher ρ correlation on the RG data set [65] (3% on
the MC data set [1]); 14% on the WS-Sim data set [75]. The distance from
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Table 4 Spearman (ρ) and Pearson (r) correlations obtained over the four datasets.

System
RG MC WS-Sim SemEval 2017

ρ r ρ r ρ r ρ r

COVER (Selected data) 0.82 0.88 0.89 0.91 0.69 0.70 0.68 0.67
COVER (Full data) 0.76 0.81 0.74 0.79 0.61 0.60 0.65 0.63
NASARIembed [7,9,10] 0.88 0.91 0.83 0.91 0.68 0.68 0.68 0.68
ADW [65] 0.92 0.91 - - 0.75 0.72 - -
PPR [1] 0.83 - 0.92 - - - - -
ConceptNet Numberbatch [75] - - - - 0.83 - - -
Luminoso [77] - - - - - - 0.72 0.74
word2vec [49] 0.84 0.83 - - 0.78 0.76 - -

state of the art figures is reduced when testing on the SemEval 2017 data set,
where we obtained a ρ correlation 4% lower than the Luminoso system [77]. If
we consider the full data run, our results are some points lower, with minimum
(3%) loss w.r.t. the selected data run on the SemEval data set.

In order to discuss our results, we focus on the SemEval dataset, that is
by far more complete (with 500 word pairs) and varied with respect to the
other ones. In fact, it contains named entities and multiword expressions, and
covers a wide range of domains.11

One major concern is the amount of missing information: as reported in Ta-
ble 3, almost 10% of word pairs were dropped, as either lacking from COVER
or due to the lack of shared information, which prevented us from comput-
ing the similarity. Missing concepts may be lacking in (at least one of) the
resources upon which the COVER is built: including further resources may
thus be helpful to overcome this limitation. Also, integrating further resources
in COVER would be beneficial to add further concepts per dimension, and
to fill more dimensions, so to expand the set of comparisons allowed by the
resource.

A discussion of our results on this data set also involves a thorough analysis
of the data set itself. The terms in the data set can be naturally arranged
into three main classes, involving respectively concept-concept comparisons
(400 word pairs), entity-entity comparisons (50 word pairs), and entity-concept
pairs (50 word pairs).

So we have re-run the statistical tests to dissect our results according to the
three individuated partitions of the data set; the partial results are reported
in Table 5.

Entity-Concept pairs. Comparisons involving a concept and an entity are some-
how different from those involving only concepts. We individuated two further
sub-classes: the pairs where the entity is instance of (that is, in relation In-
stanceOf with) the class indicated by the concept (e.g., ‘Gauss-scientist’,
‘Harry Potter-wizard’, ‘NATO-alliance’, etc.), and cases where the relations

11 Namely, the 34 domains available in BabelDomains, http://lcl.uniroma1.it/
babeldomains/.

http://lcl.uniroma1.it/babeldomains/
http://lcl.uniroma1.it/babeldomains/
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Table 5 Spearman (ρ) and Pearson (r) correlations (and their harmonic mean) obtained
by the MeRaLi system over the three subsets in the full data and selected data variants.

full data # pairs ρ r harm.mean

entire data 500 0.65 0.63 0.64
entity-concept 50 0.51 0.45 0.48
entity-entity 50 0.54 0.60 0.57
concept-concept 400 0.67 0.66 0.67

selected data # pairs ρ r harm.mean

entire data 452 0.68 0.67 0.67
entity-concept 36 0.61 0.60 0.60
entity-entity 31 0.70 0.75 0.72
concept-concept 385 0.68 0.67 0.67

intervening between the two words at stake are not more specific than a general
relatedness (e.g., ‘Joule-spacecraft’, ‘Woody Allen-lens’, ‘islamophobia-ISIS’,
etc.). We then reran the MeRaLi system on the 50 entity-concept pairs (36
pairs in the selected data variant), and obtained overall 0.51 ρ correlation (thus
significantly lower, than the general figures reported in Table 4). This datum
can be complemented by comparing it with the corresponding result in the
selected data variant: in this case, we obtained 0.61 ρ correlation. Interestingly
enough, by focusing on the subset of elements linked by the InstanceOf
relationship, we achieved a 0.79 ρ correlation.

These results raise a question. Provided that the InstanceOf relationship
is at the base of semantic similarity, COVER is appropriate to unveil seman-
tic similarity for such pairs. However, in the reminder of the entity-concept
pairs, the correlation with human judgments is still low. Even more, when the
word pairs are not featured by the InstanceOf relationship, it is not simple
to understand which sort of comparison is actually being carried out. From a
cognitive perspective, it is difficult to follow the strategy adopted by human
annotators in providing a similarity score for pairs such as ‘Zara-leggings’ (gold
standard similarity judgement: 1.67 in a 0-4 scale, where 0 is dissimilar and 4
is the identity). In our approach, to assess the similarity between two elements
entails individuating under which aspects they can be compared; it means to
individuate a set of common properties and relations whose values can be di-
rectly compared. This explains that directly comparing a manufacturer and a
product is nearly unfeasible, since their features can be hardly compared. In
this case it is easy to grasp that the lack of shared (filled) dimensions between
the entities may have determined many dropped pairs. Justifying the answer
is perhaps helpful to give some information on the argumentative paths that
can be possibly followed to assess semantic similarity. One major risk, in these
respects, is that instead of similarity, the scores provided by human annota-
tors rather refer to generic relatedness, which is generally acknowledged as a
broader relation than similarity [6]. Similar arguments also apply to meronyms.
Let us consider, e.g., the pair ‘tail-Boeing 747’ (gold standard similarity judg-
ment: 1.92): although each Boeing 747 has a tail, the whole plane (holonym)
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cannot be conceptually similar to its tail (meronym), in the same way a car is
not similar to one of its wheels.

Entity-Entity pairs. As regards as the entity pairs, in the selected data experi-
ment we obtained figures about 15% higher than in the full data condition: this
is mainly due to the fact that some of the entities were not present in COVER
(namely 31 pairs were used in the selected data condition vs. the 50 pairs in
the full data condition). Conversely, the 70% agreement with human anno-
tation is overall a reasonable performance, supporting the appropriateness of
COVER. The absence of entities from COVER is easily explained: if either
ConceptNet or BabelNet does not contain an element, then this is not present
in COVER, that only hosts items that are present in both resources. In order
to escape such limitation, next versions of COVER will contain information
harvested also from further resources. The rate of agreement obtained experi-
menting with this subset of data closely approaches — limited to the selected
data setting — the outstanding results obtained by the Luminoso team at
the SemEval 2017 contest [77], and additionally benefits from the explanatory
power allowed by the knowledge representation adopted in COVER.

Concept-Concept pairs. This is the principal class in the data set, counting
80% of word pairs in the full data, and 96% in the selected data. Although
also items is this class pose some questions about the concepts at stake (such
as comparisons between abstract and concrete entities like the pairs ‘coin-
payment’, ‘pencil-story’ and ‘glacier-global warming’), our results over this
subclass of data are by far less sensitive to the filtering performed in the
selected data experiment (as it is illustrated in Table 5, the results of the
MeRaLi system differ about 1% between the two settings). We interpret this
result as one corroborating the claim that COVER is mature enough to ensure
a reasonable coverage to compute conceptual similarity.

5 Conclusions and Future Work

This article has illustrated COVER, a novel lexical resource, along with COV-
ERAGE, the algorithm designed to build it. COVER puts together the lex-
icographic precision which is proper to WordNet and BabelNet with the rich
common-sense knowledge that features ConceptNet. The obtained vectors cap-
ture conceptual information in a compact and cognitively sound fashion. The
resource, which basically borrows BabelNet synset IDs as concept identifiers
as the naming space, can be easily interfaced to many existing resources that
also are linked to BabelNet. We have also shown that COVER is suitable
for building NLP applications, in the fields of conceptual categorization, key-
words extraction and conceptual similarity. We have reported the results of a
thorough experimentation, which was carried out on the conceptual similarity
task. Although other approaches presently achieve higher accuracy, the sys-
tem employing COVER obtains competitive results, and additionally is able
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to build explanations of the traits determining the conceptual similarity. The
experimentation also revealed that in some cases the information in COVER
should be enriched with further information to fully spread the coverage of the
resource, and to improve the concept descriptions herein by tuning the bal-
ance among the filler dimensions. Another feature that will be added to next
releases of the resource is the handling of further languages, thanks to the in-
trinsically multilingual nature of BabelNet: given that the adopted knowledge
in COVER representation is fully conceptual, this step will enable tackling
the mentioned tasks in many more languages. Also, the resource to date only
contains information on nouns: one fundamental advance will be obtained
by accounting for verbs and adjectives whose representation, we believe, will
strongly benefit from conceptual information on nouns.
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