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1. Introduction

The problem of local subtraction of singular regions of integration for real radiation contribu-
tions to strong interaction cross sections has been the focus of intense research activity in recent
years: the reason lies in the increasing precision requirements of LHC measurements, as integrated
luminosity continues to grow, but also in the complexity of typical collider observables, which al-
most always requires a numerical treatment of radiative corrections, preventing an easy cancellation
of infrared poles. The current precision standard is the Next-to-Next-to-Leading order (NNLO) in
perturbation theory, but work towards extensions to the next order is already in progress. At NNLO,
the case of event shapes and jet cross sections in e+e− annihilation was successfully tackled about
a decade ago [1, 2]; fully hadronic processes, however, have proved to be more challenging, and are
currently being studied with a range of different methods. The Stripper framework [3] yielded the
first fully differential results for hadronic processes with colourful final states, with the study of top
quark pair production in [4, 5]. More recently, a precise approximation to differential distributions
for two-jet production was computed within the Antenna subtraction framework [6, 7], which was
further applied to jet production in Deep Inelastic Scattering [8] and to the associated production
of a W boson and a jet [9]. LHC processes with up to one final-state coloured particle at Born
level have been analysed also using ‘phase-space slicing’ methods, such as qT slicing [10, 11, 12]
and N-Jettiness slicing [13, 14, 15, 16]. A range of new methods are being developed and applied
to selected processes: Projection-to-Born [17], the CoLoRFulNNLO framework [18, 19, 20], the
technique of Nested Soft-Collinear subtractions [21, 22], the Unsubtraction [23] and the Geomet-
ric Subtraction ideas [24]. Finally, early studies of simple N3LO processes have recently been
presented [25, 26, 27].

The NNLO techniques developed and implemented so far are very demanding, either from
a numerical point of view, or because the required analytical integrations are very intricate. It is
therefore not surprising that a number of groups are searching for ways to optimise and streamline
existing algorithms: in particular, this is likely to be an essential requirement for the deployment
of the methods in multi-particle configurations at NNLO, and in any case at N3LO. In the present
contribution we discuss our recent work [28, 29, 30, 31], where we presented a proof of principle
for what we believe to be a highly efficient analytical subtraction scheme, and we studied the
connection between the structure of local infrared counterterms for real radiation and the factorised
structure of fixed-angle massless gauge-theory amplitudes. This second line of investigation, in
particular, pursues two different but related goals. On the one hand, as we will briefly review here,
it provides a list of gauge-invariant matrix elements of field operators and Wilson lines, which yield
infrared local counterterms to any order in perturbation theory; in principle, this allows a direct
calculation of counterterms without reference to any specific scattering amplitude, in contrast to the
methods followed so far at the two-loop level [32, 33]. On the other hand, tracing the connection
between virtual corrections and real radiation, one may hope that the structural simplifications
displayed by virtual factorisation will be reflected in a simplification of the counterterms. Indeed,
we note that the infrared structure of fixed-angle scattering amplitudes is very well understood [34,
35, 36, 37, 38, 39, 40, 41, 42]: infrared singularities associated with on-shell configurations of loop
momenta are known to factorise from the hard scattering; nested singular configurations (affected
by both soft and collinear singularities) have a remarkably simple structure; finally, the factorised

1



P
o
S
(
L
L
2
0
1
8
)
0
1
3

Analytic Subtraction

functions describing the singularities obey a pattern of exponentiation dictated by a small set of
infrared anomalous dimensions, which (in the massless case) are known to three loops [43, 44].
For real radiation, existing knowledge is somewhat less developed: the factorisation properties of
real radiation amplitudes, in the limits when one or more external partons become soft, or collinear
to each other, are understood in considerable generality [45, 46, 47], and all the splitting kernels
(at the amplitude level) necessary for next-to-next-to-leading order (NNLO) calculations have been
computed [47, 48, 49, 50]; on the other hand, a complete all-order understanding of factorisation
in all relevant limits is still lacking, in particular concerning the organisation of nested singular
regions.

In the following, we will present some recent progress in these directions, focusing in partic-
ular on the derivation of general expressions for local infrared counterterms from the structure of
virtual corrections. In Section 2, we will very briefly review the structure of infrared factorisation
of fixed-angle scattering amplitudes; then, in Section 3, we will present a basic outline of the sub-
traction problem at NLO and NNLO, following the approach of Ref. [28]; in Section 4, we will
present and motivate our general prescription to define local infrared subtraction counterterms to all
orders in perturbation theory; in Section 5, we will give a few examples, at the NNLO level, show-
ing how our procedure advantageously organises the subtraction counterterms, with an automatic
treatment of nested singular regions; finally, we conclude with a brief perspective in Section 6.

2. Factorisation

Given a scattering process with n external partons, in massless perturbative QCD the IR be-
haviour of the corresponding amplitude is described by the factorisation formula

An

(
pi

µ

)
=

n

∏
i=1

Ji

(
(pi ·ni)

2/(n2
i µ2)

)
JE, i

(
(βi ·ni)2/n2

i

)
Sn (βi ·β j)Hn

(
pi · p j

µ2 ,
(pi ·ni)

2

n2
i µ2

)
, (2.1)

where the dependence on the renormalised coupling αS(µ) and on the dimensional regulator ε =

2−d/2 has been suppressed to simplify the notation. Color indices have also been suppressed, but
it should be kept in mind that An is a vector in the space of color configurations for the amplitude,
while the soft function Sn, generating all soft poles, is a color operator in the same space, acting
on the finite hard vector remainder Hn. The jet functions Ji and JE, i, on the other hand, are
colour-singlet quantities assigned to individual hard partons. The factorisation of the amplitude
in Eq. (2.1) expresses the universal structure of infrared singularities, contained in the soft and
collinear functions, Sn and Ji, respectively, so that the only process-dependent part is the hard
reminder Hn, which is finite in d = 4 after renormalisation. Hn is defined by matching, in such a
way that the unphysical dependence on the auxiliary factorisation vectors nµ

i , n2
i 6= 0 cancels in the

full amplitude.

The functions entering Eq. (2.1) can be explicitly defined in terms of matrix elements of field
operators and Wilson lines. To begin with, to collect all the collinear singularities of the process we
introduce for each external hard parton i the corresponding jet function Ji(pi,ni; µ). For example,
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for an outgoing quark, the explicit expression is

us(p)Jq

(
(p ·n)2

n2µ2

)
= 〈p,s |ψ(0)Φn(0,∞) |0〉 , (2.2)

where the Wilson line operator is the path ordered gauge phase

Φn(λ2,λ1)≡P exp
{

ig
∫

λ2

λ1

dλ v ·A(λv)
}
. (2.3)

As a consequence of gauge invariance and diagrammatic power counting, the collinear functions
Ji do not involve color correlation. By contrast, as announced above, the soft function Sn is
a color operator mixing the available color tensors, and it is defined as a correlator of light-like
Wilson lines running along the classical trajectories of the hard partons. One writes

Sn (βi ·β j) = 〈0|
n

∏
k=1

Φβk(∞,0) |0〉 . (2.4)

Finally, the denominator in the factorisation formula is the product of eikonal jet functions, one
for each hard parton: their introduction avoids the double counting of soft-collinear singularities,
which are present both in the numerator jets and in the soft operator. Eikonal jets are soft approxi-
mations to ordinary jets, and they can be defined replacing field operators with Wilson lines in the
jet definition. One finds then

JE

(
(βi ·n)2

n2

)
= 〈0|Φβ (∞,0) Φn(∞,0) |0〉 , (2.5)

where the Wilson lines must be taken in the color representation of the original hard parton. The
ratio of the jet function Ji(pi,n; µ) with its eikonal counterpart contains only hard-collinear poles,
a fact which has significant implications for subtraction in the case of nested singular regions, as
we will briefly discuss below.

3. Subtraction

We start our discussion sketching the general structure of subtraction at NLO and NNLO in
massless QCD. For simplicity, we will focus on processes with coloured particles appearing only in
the final state, a typical example being e+ e−→ jets. Consider then a process which at LO involves
n final state partons. Given an infrared-safe observable X , the NLO correction to the distribution
of X can be expressed as

dσNLO

dX
=

(∫
dΦnVn δn(X)+

∫
dΦn+1 Rn+1 δn+1(X)

)
d=4

, (3.1)

where Vn and Rn+1 account respectively for one-loop virtual and single-real radiation corrections to
the Born squared matrix element Bn. δn(X) and δn+1(X) localise the integrals to the chosen value
of the observable X , evaluated respectively with n-particle and (n+1)-particle kinematics. The fact
that X is an infrared-safe observable implies that Xn+1→ Xn in the limit of one-unresolved (either
soft or collinear) parton. Thanks to the KLN theorem, the explicit IR poles of Vn are then exactly
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cancelled by the poles which arise from the integration of Rn+1 over the radiation phase-space: this
makes the final answer finite in d = 4.

The computation of the r.h.s. of Eq. 3.1 is in general hard, since both terms must be computed
in d = 4− 2ε , and due to the complexity of the typical observable X , and of the amplitudes.
The subtraction procedure improves the situation by allowing for numerical calculations entirely
performed in d = 4. To this end, one builds a set of local counterterms Ki, incorporating the same
singular behaviour of Rn+1 in the unresolved limits, and at the same time simple enough to be
analytically integrated over the radiation phase-space. Thanks to the factorization of the (n+1)-
particle phase-space measure, we can write the counterterm contribution to the observable X as

dσNLO

dX

∣∣∣∣
ct
=
∫

dΦn+1 Kn+1δn(X) =
∫

dΦn dΦ1 Kn+1δn(X) . (3.2)

Defining then the integrated counterterm

In =
∫

dΦ1 Kn+1 , (3.3)

one can identically recast Eq. (3.1) in subtracted form as

dσNLO

dX

∣∣∣∣
subtr

=
dσNLO

dX
=
∫

dΦn

[
Vn + In

]
d=4

δn(X)

+
∫ [

dΦn+1 Rn+1 δn+1(X) − dΦn+1 Kn+1 δn(X)
]

d=4
. (3.4)

Note that in this form the integrands of the first and the second line are separately finite and inte-
grable in four dimensions, thus they can be integrated numerically.

At NNLO, the logic of subtraction is the same, but, since the pattern of cancellation of IR
singularities among real and virtual contributions is much more involved, the procedure is techni-
cally more complicated. In the same fashion of Eq. (3.1), we can write the NNLO correction to the
distribution of X as

dσNNLO

dX
=

(∫
dΦnVVn δn(X)+

∫
d Φn+1 RVn+1 δn+1(X)+

∫
d Φn+2 RRn+2 δn+2(x)

)
d=4

. (3.5)

At this level, IR poles arise from three different regimes: the double-real contribution RRn+2 fea-
tures configurations in which either one or two radiated particles become unresolved; furthermore,
the real-virtual RVn+1 features configurations with one radiation going unresolved. This suggests
that three local counterterms functions have to be constructed: we denote by Kn+2 a function incor-
porating the same phase-space singularities as RRn+2 when both radiated particles go unresolved,
while K(1)

n+2 has the same singular behaviour of RRn+2 when only one radiated parton goes unre-

solved; finally, K(RV)
n+1 approximates the IR divergences of the real-virtual squared amplitude RVn+1,

when the single radiated particle becomes unresolved. The expressions for the integrated countert-
erms to be summed and subtracted in Eq. 3.5 are then∫

dΦn+2 Kn+2 δn(X) ,
∫

dΦn+2 K(1)
n+2 δn+1(X) ,

∫
dΦn+1 K(RV)

n+1 δn(X) . (3.6)

As discussed in Ref. [28], it turns out to be convenient to separate the double-unresolved countert-
erm Kn+2, in order to distinguish between hierarchic double-unresolved singular behaviours, where
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one of the two particles becomes unresolved at a faster rate, and other configurations where both
particles become unresolved at the same rate. We write then

Kn+2 = K(12)
n+2 + K(22)

n+2 . (3.7)

We now have four integrated counterterms, which take the form

I (12)
n+1 =

∫
dΦ1 K (12)

n+2 , I (22)
n =

∫
dΦ2 K (22)

n+2 ,

I (1)n+1 =
∫

dΦ1 K (1)
n+2 , I(RV)

n =
∫

dΦ1 K(RV)
n+1 . (3.8)

Using these definitions, we can now rewrite identically the NNLO corrections to the distribution of
X , Eq. (3.5), in subtracted form, as

dσNNLO

dX

∣∣∣∣
subtr

=
∫

dΦn

[
VVn + I (22)

n + I(RV)
n

]
d=4

δn(X) (3.9)

+
∫

dΦn+1

[(
RVn+1 + I (1)n+1

)
δn+1(X) −

(
K(RV)

n+1 − I (12)
n+1

)
δn(X)

]
d=4

+
∫

dΦn+2

[
RRn+2 δn+2(X) − K (1)

n+2 δn+1(X) −
(

K(12)
n+2 +K(22)

n+2

)
δn(X)

]
d=4

.

The first line is characterised by a Born-like kinematics, and is finite in d = 4, as the sum I (22)
n +

I(RV)
n contains explicit poles in ε which exactly cancel those of VVn. Regarding the second line,

the poles in I (1)n+1 cancel those of RVn+1: their sum is finite in four dimensions, but still features

single-radiation phase-space singularities, which should be cancelled. K(RV)
n+1 cancels the phase-

space singularities of RVn+1 but features explicit poles, which are cancelled by I (12)
n+1 . Further, the

phase space singularities of K(RV)
n+1 − I (12)

n+1 exactly cancel those of I (1)n+1 +RVn+1: the full second line
is then finite and integrable in the single-radiation phase space. Finally, the three integrands which
appear in the third line of Eq. (3.9) are separately finite in d = 4 and their sum is integrable in
dΦrad,2, thus suitable for numerical evaluation.

It is clear the above outline is just a sketch of a complete subtraction procedure: in order to
have a working algorithm, one must identify counterterm functions that are simple enough to be
integrated analytically, one must construct explicit phase space mappings in order to work at all
time with on-shell momentum-conserving configurations, and one must have a complete procedure
to subtract double-counted nested singular regions. Our approach to these problems is described in
Ref. [28]. In what follows, we will focus instead on a general procedure to construct subtraction
counterterms, to any order in perturbation theory, which arises out of the factorisation described in
Section 2: the simple treatment of soft-collinear regions in the virtual case will be reflected in the
structure of the real-radiation counterterms.

4. Local Counterterms

We now illustrate how infrared factorisation of fixed-angle scattering amplitudes can be used
to infer general definitions for soft and collinear local counterterms to all orders.
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Let us begin with soft radiation. For a generic process involving the emission of m soft partons
from n hard ones, we argue that the soft singularities of the real-radiation amplitude are reproduced
by eikonal form factors, defined by

Sn,m (k1, . . . ,km;βi) ≡ 〈k1,λ1; . . . ;km,λm|
n

∏
i=1

Φβi(∞,0) |0〉

≡ ε
∗(λ1)
µ1 (k1) . . .ε

∗(λm)
µm (km)Jµ1...µm

S (k1, . . . ,km;βi)

≡
∞

∑
p=0

S
(p)

n,m (k1, . . . ,km;βi) , (4.1)

where in the second line we define multiple soft-gluon emission currents, and the third line defines
the perturbative expansion of the form factor, which includes loop corrections at all orders in per-
turbation theory. Neglecting for the moment collinear singularities, the underlying assumption is
that the real radiation matrix element factorises, at leading power in the soft momenta, as

An,m (k1, . . . ,km; pi) = Sn,m (k1, . . . ,km;βi) Hn(pi) + Rn,m , (4.2)

with corrections that are finite in dimensional regularisation and integrable in the soft-gluon phase
space. At cross section level, one then writes

∑
λi

|An,m (k1, . . . ,km; pi)|2 ' H †
n (pi)Sn,m (k1, . . . ,km;βi) Hn(pi) , (4.3)

where the radiative soft function Sn,m is defined as a Wilson-line squared matrix elements for fixed
final state quantum numbers, writing

Sn,m (k1, . . . ,km;βi) ≡
∞

∑
p=0

S(p)
n,m (k1, . . . ,km;βi) (4.4)

≡ ∑
λi

〈0|
n

∏
i=1

Φβi(0,∞)|k1,λ1; . . . ;km,λm〉〈k1,λ1; . . . ;km,λm|
n

∏
i=1

Φβi(∞,0)|0〉 .

Summing over soft particle numbers and integrating over the soft phase space one can build a fully
inclusive eikonal cross section, which is finite order by order in perturbation theory by general
theorems, and, by completeness, can be written as

∞

∑
m=0

∫
dΦm Sn,m (k1, . . . ,km;βi) = 〈0|

n

∏
i=1

Φβi(0,∞)
n

∏
i=1

Φβi(∞,0)|0〉 . (4.5)

The finiteness of Eq. (4.5) shows that the eikonal form factors defined in Eq. (4.1) are well-suited
to provide local soft counterterms for the emission of m unresolved gluons, order by order in the
strong coupling.

A similar reasoning, starting with the operator expressions for virtual jets and eikonal jets,
yields the definition of collinear and soft-collinear local counterterms. For example, for a single
emitting quark with momentum p and spin s, amplitude-level radiative jet functions for the emis-
sion of m collinear gluons can be defined as

us(p)Jq,m (k1, . . . ,km; p,n) ≡ 〈p,s;k1,λ1; . . . ;km,λm|ψ(0)Φn(0,∞)|0〉

≡ us(p)
∞

∑
p=0

J
(p)

q,m (k1, . . . ,km; p,n) , (4.6)
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where for m = 0 we recover the virtual jet function of Eq. (2.2). Unlike the soft function, the jet
does not depend on the quantum numbers of other partons in the scattering amplitude; on the other
hand, it depends on the spin of the emitter, whereas eikonal functions are only sensitive to colors
and directions of the hard partons. At cross-section level, the radiative jet function, involves a
Fourier transform, necessary to encode the non-trivial momentum flow. We write

Jq,m (k1, . . .km; l, p,n) ≡
∞

∑
p=0

J(p)
q,m (k1, . . .km; l, p,n) (4.7)

≡
∫

ddxeil·x
∑
{λ j}
〈0|Φn(∞,x)ψ(x)|p,s;k j,λ j〉〈p,s;k j,λ j|ψ(0)Φn(0,∞)|0〉 .

As was done for the radiative soft functions, also for jets we can sum over final states, and use
completeness to construct a fully inclusive, and thus finite, collinear cross-section, given by

∞

∑
m=0

∫
dΦm+1 Jq,m (k1, . . . ,km; l, p,n) =

Disc
[∫

ddxeil·x 〈0|Φn(∞,x)ψ(x)ψ(0)Φn(0,∞)|0〉
]
. (4.8)

The finiteness of Eq. (4.8) shows that the cross-section-level radiative jets defined in Eq. (4.8) are
suitable as local collinear counterterms. Let us remark, however, that at this stage the collinear limit
has still to be taken, unlike the soft case. Moreover, special attention is needed in the choice of the
auxiliary Wilson-line vector nµ , which is a necessary ingredient for the gauge invariance of the jet
function: a light-like nµ simplifies considerably the analytic computation, but, at loop level, it has
the price of introducing spurious collinear singularities, related to the emission from the auxiliary
Wilson line.

The final element in our list of counterterms is a local function simulating the squared matrix
element in the kinematic region where radiated particles are both soft and collinear to one of the
hard partons. Such a function allows for the subtraction of the double counting of these regions,
which are reproduced by both the soft operator and the selected jet function. To this end, we
introduce the (cross-section-level) eikonal jet function

JE,m (k j; l,β ,n) ≡
∞

∑
p=0

J(p)
E,m (k j; l,β ,n)

≡
∫

ddxeil·x 〈0|Φn(∞,x)Φβ (x,∞)|k j,λ j〉〈k j,λ j|Φβ (∞,0)Φn(0,∞)|0〉 . (4.9)

As is the case for virtual corrections (m = 0 in Eq. (4.9)), subtracting the eikonal radiative jet
from the ordinary jet returns a purely hard-collinear contribution associated with the selected hard
parton.

As a simple proof of concept, we note here that the explicit calculation of S, J and JE at the
lowest non-trivial perturbative order (i.e. with the emission of a single gluon) reproduces the well-
known results for the tree-level eikonal current and the leading order DGLAP splitting kernels,
respectively. For the soft function, in the simple case with only two Wilson lines, one easily finds

S2,1(k;βi) = ∑
λ

〈0|
2

∏
i=1

Φβi(0,∞)|k,λ 〉〈k,λ |
2

∏
i=1

Φβi(∞,0)|0〉=−2g2 T1 ·T2
β1 · β2

β1 · k β2 · k
, (4.10)
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matching the well-known result for a single radiation. Similarly, the tree-level calculation of the
radiative quark jet function Jq,1 involves three diagrams that, summed over fermion spins and gluon
polarisations, in Feynman gauge, yield

∑
s

Jq,1 (k; l, p,n) =
4παsCF

l2 (2π)d
δ

d (l− p− k)
[
−/l γµ/pγ

µ/l +
l2

k ·n
(
/l/n/p+ /p/n/l

)]
, (4.11)

up to terms proportional to n2. Then, choosing lµ as the collinear direction and lµ

⊥ as a reference
vector perpendicular to pµ and kµ , we can set

pµ = zlµ +O (l⊥) , kµ = (1− z)lµ +O (l⊥) , n2 = 0 . (4.12)

We can now focus on the leading behaviour of Jq,1 as kµ

⊥→ 0, and we find

∑
s,λ

Jq,1 (k; l, p,n) =
8παsCF

l2 (2π)d
δ

d (l− p− k)
[

1+ z2

1− z
− ε (1− z) + O (l⊥)

]
, (4.13)

reconstructing, as expected, the spin-averaged DGLAP splitting kernel for the branching q→ qg.
Finally, we look at the soft-collinear local counterterm for single radiation, which gives

∑
λ

JE,m (k; l,β ,n) = g2(2π)d
δ (l− p)

2p ·n
p · k n · k

. (4.14)

In the collinear limit (up to corrections of order l⊥) we can set

l2 = (p+ k)2 = 2 p · k , p ·n = z l ·n , k ·n = (1− z) l ·n , (4.15)

so that the soft-collinear counterterm takes the form

∑
λ

JE,m (k; l,β ,n) =
8παsCF

l2 (2π)d
δ (l− p)

2z
1− z

. (4.16)

Notice that the factor 2z in the numerator is crucial in order to prove that soft and collinear limits
commute (at least at NLO), which in turn simplifies considerably the structure of the subtraction
algorithm [28].

5. NNLO examples

The structure of counterterms that can be derived from virtual factorisation at NLO is standard,
and is reviewed in [28, 29, 30, 31]. Here we will instead focus on the more interesting case of
NNLO counterterms, where the intricacy of nested subtractions comes into play. Our first step is
to expand the factorisation formula for the fixed-angle n-point amplitude, Eq. (2.1) to order g4

s . We
find

A
(2)

n (pi) = S
(2)

n (βi)H
(0)

n (pi) + S
(0)

n (βi)H
(2)

n (pi) + S
(1)

n (βi)H
(1)

n (pi)

+
n

∑
i=1

[
J

(2)
i (pi)−J

(2)
E, i (βi) −J

(1)
E, i (βi)

(
J

(1)
i (pi)−J

(1)
E, i (βi)

)]
A

(0)
n (pi)

+
n

∑
i, j>i

(
J

(1)
i (pi)−J

(1)
E, i (βi)

)(
J

(1)
j (p j)−J

(1)
E, j(β j)

)
A

(0)
n (pi)

+
n

∑
i=1

(
J

(1)
i (pi)−J

(1)
E, i (βi)

)[
S

(1)
n (βi)H

(0)
n (pi) + S

(0)
n (βi)H

(1)
n (pi)

]
. (5.1)
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It is not difficult to indentify the physical origin of soft and collinear poles described in Eq. (5.1). A
slightly more cumbersome task is to construct the double-virtual contribution to the squared matrix
element (VVn in Eq. (3.5)), which involves the product of Eq. (5.1) with the Born amplitude, as well
as the square of the one-loop amplitude. Furthermore, one has to organise the result in terms of
cross-section-level jet and soft virtual functions, in order to be able to use the completeness relations
in Eq. (4.5) and Eq. (4.8) to provide appropriate real-radiation counterterms. We summarise the
structure of poles in the NNLO virtual correction as

(VV )n ≡ (VV )(2s)
n + (VV )(1s)

n +
n

∑
i=1

(VV )
(1hc,1s)
n, i

+
n

∑
i=1

(VV )
(2hc)
n, i +

n

∑
i, j>i=1

(VV )
(2hc)
n, i j +

n

∑
i=1

(VV )
(1hc)
n, i . (5.2)

where (2s) and (1s) denote double soft and single soft contributions, respectively, in each case
including also soft-collinear singularities; similarly, (1hc) and (2hc) identify single and double
hard-collinear poles, respectively: the double hard-collinear component is split into two terms,
according to whether one or two hard partons are involved in the collinear emission; finally, (1hc,
1s) denotes terms with a hard-collinear pole associated with direction i, accompanied by a soft
pole.

To illustrate the next steps, consider the structure of the double collinear radiation along hard
parton i, which is given by

(VV )
(2hc)
n, i =

[
J(2)i,0 − J(2)E, i,0− J(1)E, i,0

(
J(1)i,0 − J(1)E, i,0

)]∣∣∣A (0)
n

∣∣∣2 . (5.3)

The completeness relation in Eq. (4.8) (and its eikonal counterpart) implies in particular[
J(1)E, i,0 +

∫
dΦ1 J(0)E, i,1

][
J(1)i,0 − J(1)E, i,0 +

∫
dΦ
′
1

(
J(0)i,1 − J(0)E, i,1

)]
= finite ,

J(2)i,0 +
∫

dΦ1 J(1)i,1 +
∫

dΦ2 J(0)i,2 = finite , (5.4)

which suggest defining the hard collinear counterterms

K(hc)
n+2, i =

[
J(0)i,2 − J(0)E, i,2 − J(0)E, i,1

(
J(0)i,1 − J(0)E, i,1

)]∣∣∣A (0)
n

∣∣∣2 , (5.5)

K(RV,hc)
n+1, i =

[
J(1)i,1 − J(1)E, i,1− J(1)i,0 J(0)E, i,1− J(1)E, i,0 J(0)i,1 +2 J(1)E, i,0 J(0)E, i,1

]∣∣∣A (0)
n

∣∣∣2 .
The first line in Eq. (5.5) is assigned to the double-unresolved counterterm, since all terms involve
two radiations and no loop corrections. By contrast, the terms in the second line involve just one
radiation, and a loop correction: they are therefore properly assigned to the real-virtual counterterm.
The single-unresolved hard-collinear counterterm can similarly be determined by considering the
single-radiation contributions to the (n+1)-particle matrix element.

As a second example, consider the single and the double soft contributions to the virtual cor-
rection. They can be written as

(VV )(2s)
n = H

(0)†
n S(2)n,0 H

(0)
n , (5.6)

(VV )(1s)
n = H

(0)†
n S(1)n,0 H

(1)
n + H

(1)†
n S(1)n,0 H

(0)
n . (5.7)
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We are led to focus on the NLO and NNLO completeness relation derived from Eq. (4.5). They
imply

S(1)n,0(βi) +
∫

dΦ1 S(0)n,1(k,βi) = finite , (5.8)

S(2)n,0(βi) +
∫

dΦ1 S(1)n,1(k,βi) +
∫

dΦ2 S(0)n,2(k1,k2,βi) = finite . (5.9)

As before, we can assign terms with two radiations to the double-unresolved counterterm, here for
the soft sector, while terms with a single radiation and a loop correction yield the real virtual soft
counterterm. We get

K(s)
n+2 = H

(0)†
n S(0)n,2 H

(0)
n ,

K(RV,s)
n+1 = H

(0)†
n S(0)n,1 H

(1)
n + H

(1)†
n S(0)n,1 H

(0)
n + H

(0)†
n S(1)n,1 H

(0)
n . (5.10)

For completeness, we give also the expressions for the single-unresolved soft and hard-collinear
counterterms, which have (n+1)-particle kinematics. They are given by

K(1,s)
n+2 = H

(0)†
n+1 S(0)n+1,1 H

(0)
n+1 , (5.11)

K(1,hc)
n+2, i =

(
J(0)i,1 − J(0)E, i,1

)∣∣∣A (0)
n+1

∣∣∣2 .
Upon integration over the appropriate radiation phase spaces, the listed local counterterms will gen-
erate soft and collinear single and double poles: by Eq. (4.5) and Eq. (4.8), these poles will cancel
the known virtual singularities, leaving behind a finite and computable remainder. We note that the
double counting of soft-collinear regions has naturally been taken care of, with soft-collinear poles
assigned to the soft counterterms, while collinear counterterms contain exclusively hard contribu-
tions.

6. Perspective

We have given a brief account of some aspects of our approach to the IR subtraction problem
beyond NLO. Specifically, we have presented evidence that the factorisation of virtual corrections
to fixed-angle multi-particle massless gauge theory amplitudes contains important information for
the structure of local subtraction counterterms. Operator expressions generating soft, collinear and
soft-collinear poles at amplitude level suggest the definitions of eikonal form factors and radiative
jet functions, encoding the singular behaviour of real radiation at all loop orders. These functions
and form factors, upon integration over the radiation phase space, must cancel the virtual poles, as
can be seen by simple completeness relations and the application of general cancellation theorems.
The simple organisation of soft and collinear singularities in virtual corrections then reflects into
the structure of real-radiation counterterms. In a separate publication [28] we have described in
detail the other technical tools that are required to turn these considerations into a full-fledged
subtraction algorithm: the organisation of the radiation phase space in sectors with appropriate
sector functions, the phase space mappings allowing the use of on-shell scattering amplitudes for
all multiplicities, and the necessary integrations for local counterterms. We hope that our approach
will prove useful in the streamlining and optimisation of existing NNLO subtraction techniques,

10



P
o
S
(
L
L
2
0
1
8
)
0
1
3

Analytic Subtraction

especially in view of multi-particle applications; we also believe that the information extracted from
virtual factorisation will be crucial for the feasibility of general and efficient subtraction algorithm
at N3LO, when all the relevant tools become available. Work in these directions is in progress.
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